Potentiometric MRI of a Superconcentrated Lithium Electrolyte: Testing the Irreversible Thermodynamics Approach
Superconcentrated electrolytes, being highly thermodynamically nonideal, provide a stringent proving ground for continuum transport theories. Herein, we test an ostensibly complete model of LiPF6 in ethyl-methyl carbonate (EMC) based on the Onsager–Stefan–Maxwell theory from irreversible thermodynam...
Saved in:
Published in: | ACS energy letters Vol. 6; no. 9; pp. 3086 - 3095 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
10-09-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Superconcentrated electrolytes, being highly thermodynamically nonideal, provide a stringent proving ground for continuum transport theories. Herein, we test an ostensibly complete model of LiPF6 in ethyl-methyl carbonate (EMC) based on the Onsager–Stefan–Maxwell theory from irreversible thermodynamics. We perform synchronous magnetic resonance imaging (MRI) and chronopotentiometry to examine how superconcentrated LiPF6:EMC responds to galvanostatic polarization and open-circuit relaxation. We simulate this experiment using an independently parametrized model with six composition-dependent electrolyte properties, quantified up to saturation. Spectroscopy reveals increasing ion association and solvent coordination with salt concentration. The potentiometric MRI data agree closely with the predicted ion distributions and overpotentials, providing a completely independent validation of the theory. Superconcentrated electrolytes exhibit strong cation–anion interactions and extreme solute-volume effects that mimic elevated lithium transference. Our simulations allow surface overpotentials to be extracted from cell-voltage data to track lithium interfaces. Potentiometric MRI is a powerful tool to illuminate electrolytic transport phenomena. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2380-8195 2380-8195 |
DOI: | 10.1021/acsenergylett.1c01213 |