Halogen Bond Asymmetry in Solution
Halogen bonding is the noncovalent interaction of halogen atoms in which they act as electron acceptors. Whereas three-center hydrogen bond complexes, [D···H···D]+ where D is an electron donor, exist in solution as rapidly equilibrating asymmetric species, the analogous halogen bonds, [D···X···D]+,...
Saved in:
Published in: | Journal of the American Chemical Society Vol. 140; no. 41; pp. 13503 - 13513 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
17-10-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Halogen bonding is the noncovalent interaction of halogen atoms in which they act as electron acceptors. Whereas three-center hydrogen bond complexes, [D···H···D]+ where D is an electron donor, exist in solution as rapidly equilibrating asymmetric species, the analogous halogen bonds, [D···X···D]+, have been observed so far only to adopt static and symmetric geometries. Herein, we investigate whether halogen bond asymmetry, i.e., a [D–X···D]+ bond geometry, in which one of the D–X bonds is shorter and stronger, could be induced by modulation of electronic or steric factors. We have also attempted to convert a static three-center halogen bond complex into a mixture of rapidly exchanging asymmetric isomers, [D···X–D]+ ⇄ [D–X···D]+, corresponding to the preferred form of the analogous hydrogen bonded complexes. Using 15N NMR, IPE NMR, and DFT, we prove that a static, asymmetric geometry, [D–X···D]+, is obtained upon desymmetrization of the electron density of a complex. We demonstrate computationally that conversion into a dynamic mixture of asymmetric geometries, [D···X–D]+ ⇄ [D–X···D]+, is achievable upon increasing the donor–donor distance. However, due to the high energetic gain upon formation of the three-center-four-electron halogen bond, the assessed complex strongly prefers to form a dimer with two static and symmetric three-center halogen bonds over a dynamic and asymmetric halogen bonded form. Our observations indicate a vastly different preference in the secondary bonding of H+ and X+. Understanding the consequences of electronic and steric influences on the strength and geometry of the three-center halogen bond provides useful knowledge on chemical bonding and for the development of improved halonium transfer agents. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.8b09467 |