Dye Tracing and Image Analysis for Quantifying Water Infiltration into Frozen Soils
New methods are needed to quantify infiltration into frozen soil, an important issue for agricultural management in northern latitude regions. A dye tracer method that uses digital image analysis and fluorescence imaging is presented for visualizing and quantifying flow pathways in frozen soils. The...
Saved in:
Published in: | Soil Science Society of America journal Vol. 64; no. 2; pp. 505 - 516 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Madison, WI
Soil Science Society of America
01-03-2000
American Society of Agronomy |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | New methods are needed to quantify infiltration into frozen soil, an important issue for agricultural management in northern latitude regions. A dye tracer method that uses digital image analysis and fluorescence imaging is presented for visualizing and quantifying flow pathways in frozen soils. The method was applied to three soil columns in a cold chamber. Two of them were packed with sand and the third was an undisturbed soil monolith. After complete freezing to −5°C, the columns were irrigated at above‐freezing temperatures before they were vertically and horizontally sectioned to analyze pictures of the stained profiles and cross‐sections. Image analysis was done for either the visual or fluorescent spectral ranges of three different tracers. Small samples were taken from the profiles to calibrate the dye tracer concentration. This was achieved by means of second‐order polynomials of the R, G, and B values from the corresponding areas of the pictures with coefficients of determination of 0.92 to 0.99. This method results in concentration maps with a high spatial resolution reflecting the infiltration pattern. The experiment confirmed current hypotheses of infiltration mechanisms into frozen soil in that the infiltrability of the initially wet sand was restricted, whereas in the undisturbed soil monolith, the dye solution infiltrated through preferential pathways which were air filled at the time of freezing. |
---|---|
AbstractList | New methods are needed to quantify infiltration into frozen soil, an important issue for agricultural management in northern latitude regions. A dye tracer method that uses digital image analysis and fluorescence imaging is presented for visualizing and quantifying flow pathways in frozen soils. The method was applied to three soil columns in a cold chamber. Two of them were packed with sand and the third was an undisturbed soil monolith. After complete freezing to −5°C, the columns were irrigated at above‐freezing temperatures before they were vertically and horizontally sectioned to analyze pictures of the stained profiles and cross‐sections. Image analysis was done for either the visual or fluorescent spectral ranges of three different tracers. Small samples were taken from the profiles to calibrate the dye tracer concentration. This was achieved by means of second‐order polynomials of the R, G, and B values from the corresponding areas of the pictures with coefficients of determination of 0.92 to 0.99. This method results in concentration maps with a high spatial resolution reflecting the infiltration pattern. The experiment confirmed current hypotheses of infiltration mechanisms into frozen soil in that the infiltrability of the initially wet sand was restricted, whereas in the undisturbed soil monolith, the dye solution infiltrated through preferential pathways which were air filled at the time of freezing. New methods are needed to quantify infiltration into frozen soil, an important issue for agricultural management in northern latitude regions. A dye tracer method that uses digital image analysis and fluorescence imaging is presented for visualizing and quantifying flow pathways in frozen soils. The method was applied to three soil columns in a cold chamber. Two of them were packed with sand and the third was an undisturbed soil monolith. After complete freezing to -5 degree C, the columns were irrigated at above-freezing temperatures before they were vertically and horizontally sectioned to analyze pictures of the stained profiles and cross-sections. Image analysis was done for either the visual or fluorescent spectral ranges of three different tracers. Small samples were taken from the profiles to calibrate the dye tracer concentration. This was achieved by means of second-order polynomials of the R, G, and B values from the corresponding areas of the pictures with coefficients of determination of 0.92 to 0.99. This method results in concentration maps with a high spatial resolution reflecting the infiltration pattern. The experiment confirmed current hypotheses of infiltration mechanisms into frozen soil in that the infiltrability of the initially wet sand was restricted, whereas in the undisturbed soil monolith, the dye solution infiltrated through preferential pathways which were air filled at the time of freezing. New methods are needed to quantify infiltration into frozen soil, an important issue for agricultural management in northern latitude regions. A dye tracer method that uses digital image analysis and fluorescence imaging is presented for visualizing and quantifying flow pathways in frozen soils. New methods are needed to quantify infiltration into frozen soil, an important issue for agricultural management in northern latitude regions. A dye tracer method that uses digital image analysis and fluorescence imaging is presented for visualizing and quantifying flow pathways in frozen soils. The method was applied to three soil columns in a cold chamber. Two of them were packed with sand and the third was an undisturbed soil monolith. After complete freezing to −5°C, the columns were irrigated at above‐freezing temperatures before they were vertically and horizontally sectioned to analyze pictures of the stained profiles and cross‐sections. Image analysis was done for either the visual or fluorescent spectral ranges of three different tracers. Small samples were taken from the profiles to calibrate the dye tracer concentration. This was achieved by means of second‐order polynomials of the R , G , and B values from the corresponding areas of the pictures with coefficients of determination of 0.92 to 0.99. This method results in concentration maps with a high spatial resolution reflecting the infiltration pattern. The experiment confirmed current hypotheses of infiltration mechanisms into frozen soil in that the infiltrability of the initially wet sand was restricted, whereas in the undisturbed soil monolith, the dye solution infiltrated through preferential pathways which were air filled at the time of freezing. |
Author | Stadler, Daniel Sta¨hli, Manfred Aeby, Philipp Flu¨hler, Hannes |
Author_xml | – sequence: 1 givenname: Daniel surname: Stadler fullname: Stadler, Daniel organization: Institute of Terrestrial Ecology – sequence: 2 givenname: Manfred surname: Sta¨hli fullname: Sta¨hli, Manfred organization: Institute of Terrestrial Ecology – sequence: 3 givenname: Philipp surname: Aeby fullname: Aeby, Philipp organization: Institute of Terrestrial Ecology – sequence: 4 givenname: Hannes surname: Flu¨hler fullname: Flu¨hler, Hannes organization: Institute of Terrestrial Ecology |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1487922$$DView record in Pascal Francis |
BookMark | eNqFkUFrGzEQhUVJoU7aH9CbKKU5bTKSVlrpaNykdQmEsCnNbRmvpSCzllJpTbv99ZWxaaGH9DIDw_cej3mn5CTEYAl5y-CCM6Euc8644QBwoWouQf58QWasFrICpdgJmYFQrJLGyFfkNOcNAJMGYEbaj5Ol9wl7Hx4phjVdbvHR0nnAYco-UxcTvdthGL2b9sg3HG2iy-D8MCYcfQzUhzHS6xR_2UDb6If8mrx0OGT75rjPyNfrq_vF5-rm9tNyMb-psNb6oRJ2H7RGENoq0awaASD1yqylrR0q1UDPuJHY9MjX3DGjHesdL7GdWTlnxBk5P_g-pfh9Z_PYbX3u7TBgsHGXu6YWzIBmqpAfniVZoxshtS7gu3_ATdyl8ozccaZKvJpDgdgB6lPMOVnXPSW_xTR1DLp9G92fNrpjG0Xz_miMucfBJQy9z3-FtW4M5wVbHLAffrDT_327dv6Ft-1-luvh-CB-AyTcn-s |
CODEN | SSSJD4 |
CitedBy_id | crossref_primary_10_2136_vzj2018_04_0084 crossref_primary_10_2136_vzj2007_0156 crossref_primary_10_2136_vzj2004_0634 crossref_primary_10_2136_vzj2008_0064 crossref_primary_10_3390_geosciences11090375 crossref_primary_10_2136_sssaj2003_1319 crossref_primary_10_1016_j_biosystemseng_2020_12_005 crossref_primary_10_2136_vzj2011_0188 crossref_primary_10_1657_1523_0430_2004_036_0128_SIIASV_2_0_CO_2 crossref_primary_10_1039_b900769p crossref_primary_10_2136_vzj2018_08_0147 crossref_primary_10_1016_j_coldregions_2009_06_002 crossref_primary_10_2136_vzj2009_0155 crossref_primary_10_2136_vzj2018_08_0150 crossref_primary_10_1002_vzj2_20101 crossref_primary_10_1002_vzj2_20043 crossref_primary_10_1175_JHM538_1 crossref_primary_10_5194_tc_15_2133_2021 crossref_primary_10_1016_j_jhydrol_2009_02_057 crossref_primary_10_1029_2001RG000109 crossref_primary_10_1097_SS_0000000000000148 crossref_primary_10_1016_j_coldregions_2007_09_005 crossref_primary_10_1016_j_geodrs_2015_08_001 crossref_primary_10_2136_sssaj2008_0032 crossref_primary_10_1002_hyp_10939 crossref_primary_10_1016_j_scitotenv_2018_08_396 crossref_primary_10_1088_1748_9326_abe82c crossref_primary_10_3732_ajb_1500358 crossref_primary_10_2136_vzj2019_01_0012 crossref_primary_10_2136_vzj2016_10_0096 crossref_primary_10_2136_vzj2013_03_0064 crossref_primary_10_2136_sssaj2002_7600 crossref_primary_10_1002_hyp_13629 crossref_primary_10_7132_jrcsa_17_1_1 crossref_primary_10_1002_hyp_439 crossref_primary_10_2136_sssaj2004_0186 crossref_primary_10_1002_hyp_14499 crossref_primary_10_1029_2022WR033075 crossref_primary_10_1002_vzj2_20316 crossref_primary_10_1002_hyp_14277 crossref_primary_10_1002_vzj2_20154 crossref_primary_10_1016_j_jconhyd_2018_11_003 crossref_primary_10_1016_j_jhydrol_2022_128978 crossref_primary_10_1016_j_coldregions_2007_05_014 crossref_primary_10_1016_j_jhydrol_2009_08_013 crossref_primary_10_4141_cjss2012_048 |
Cites_doi | 10.2136/sssaj1999.03615995006300010004x 10.1016/S0165-232X(97)00017-7 10.1016/0169-7722(93)90007-F 10.13031/2013.31040 10.1029/1998WR900045 10.1029/WR019i006p01547 10.1016/S0022-1694(97)00061-9 10.1029/1999WR900185 10.1046/j.1365-2389.2000.00315.x 10.2136/sssaj1997.03615995006100010006x 10.1016/S0022-1694(97)00028-0 10.2136/sssaj1996.03615995006000010005x |
ContentType | Journal Article |
Copyright | 2000 The Authors. 2000 INIST-CNRS Copyright American Society of Agronomy Mar/Apr 2000 |
Copyright_xml | – notice: 2000 The Authors. – notice: 2000 INIST-CNRS – notice: Copyright American Society of Agronomy Mar/Apr 2000 |
DBID | 24P WIN IQODW AAYXX CITATION 7ST 7T7 8FD C1K FR3 P64 SOI 7UA KR7 |
DOI | 10.2136/sssaj2000.642505x |
DatabaseName | Wiley Open Access Journals Wiley Online Library Open Access Pascal-Francis CrossRef Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts Water Resources Abstracts Civil Engineering Abstracts |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Water Resources Abstracts Civil Engineering Abstracts |
DatabaseTitleList | Water Resources Abstracts Technology Research Database CrossRef Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1435-0661 |
EndPage | 516 |
ExternalDocumentID | 54859814 10_2136_sssaj2000_642505x 1487922 SAJ2SSSAJ2000642505X |
Genre | miscellaneous Feature |
GrantInformation_xml | – fundername: Swiss Federal Office for Education and Science (BBW, Bern) |
GroupedDBID | -DZ -~X .86 .~0 0R~ 123 186 18M 1OB 1OC 24P 2WC 33P 3V. 53G 6KN 7X2 7XC 88I 8AF 8FE 8FG 8FH 8FW 8G5 8R4 8R5 8WZ A6W AAHBH AAHHS AANLZ ABCQX ABCUV ABEFU ABJCF ABJNI ABUWG ACAWQ ACCFJ ACCZN ACGFO ACGOD ACIWK ACPOU ACPRK ACXQS ADFRT ADKYN ADYHW ADZMN AEEZP AEIGN AENEX AEQDE AETEA AEUYR AFFNX AFFPM AFKRA AFRAH AHBTC AIDBO AITYG AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ATCPS AZQEC BENPR BFHJK BGLVJ BHPHI BKOMP BKSAR BPHCQ C1A CCPQU CS3 DCZOG DDYGU DU5 DWQXO E3Z EBS ECGQY EJD GNUQQ GUQSH H13 HCIFZ H~9 L6V L7B LAS LATKE LEEKS LK5 M0K M2O M2P M2Q M7R M7S MEWTI MV1 MVM NHAZY NHB O9- OHT P2P PATMY PCBAR PK- PQQKQ PRG PROAC PTHSS PYCSY Q2X R05 RAK ROL RPX RXW S0X SAMSI SJN SUPJJ TAE TN5 TR2 TWZ U2A VJK WIN WOQ WXSBR XIH XJT XOL Y6R YYP ZCA ~02 ~KM 08R ABPTK IQODW TAF AAYXX CITATION 7ST 7T7 8FD C1K FR3 P64 SOI 7UA KR7 |
ID | FETCH-LOGICAL-a488X-3e25054a038e637b730058b9d5e4fa6670c1295a7ca2d2f198f1cf2900f9bff93 |
IEDL.DBID | 33P |
ISSN | 0361-5995 |
IngestDate | Fri Oct 25 07:30:13 EDT 2024 Fri Oct 25 10:33:41 EDT 2024 Thu Oct 10 21:03:52 EDT 2024 Thu Nov 21 21:52:38 EST 2024 Sun Oct 29 17:09:26 EDT 2023 Sat Aug 24 01:08:58 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Water infiltration Tracer technique Visualization Soil column Sand Property of soil Forest soil Digital image Experimental study Color tracers Freezing Image analysis SOIL WATER MOVEMENT Computer graphics Frozen ground Cold climate Soil science Loamy sand soil Preferential flow Cold room Hydraulic properties Quantitative analysis Method study |
Language | English |
License | Attribution-NonCommercial-NoDerivs CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a488X-3e25054a038e637b730058b9d5e4fa6670c1295a7ca2d2f198f1cf2900f9bff93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.2136%2Fsssaj2000.642505x |
PQID | 216058420 |
PQPubID | 40901 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_743190816 proquest_miscellaneous_17873588 proquest_journals_216058420 crossref_primary_10_2136_sssaj2000_642505x pascalfrancis_primary_1487922 wiley_primary_10_2136_sssaj2000_642505x_SAJ2SSSAJ2000642505X |
PublicationCentury | 2000 |
PublicationDate | March 2000 |
PublicationDateYYYYMMDD | 2000-03-01 |
PublicationDate_xml | – month: 03 year: 2000 text: March 2000 |
PublicationDecade | 2000 |
PublicationPlace | Madison, WI |
PublicationPlace_xml | – name: Madison, WI – name: Madison |
PublicationTitle | Soil Science Society of America journal |
PublicationYear | 2000 |
Publisher | Soil Science Society of America American Society of Agronomy |
Publisher_xml | – name: Soil Science Society of America – name: American Society of Agronomy |
References | 1997; 202 1993; 12 1997; 61 1983; 19 1990 1989; 322 2000 1997; 26 1997; 200 1998 1999; 35 1999; 351 1997 1996; 60 1999; 63 1998; 87 1996; 10 Flerchinger G.N. (e_1_2_6_7_1) 1989; 322 Forrer I. (e_1_2_6_10_1) 2000 Lundin L.‐C. (e_1_2_6_12_1) 1990 Sta¨hli M. (e_1_2_6_18_1) 1999; 351 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 Bundt M. (e_1_2_6_5_1) 1998; 87 e_1_2_6_11_1 e_1_2_6_2_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 200 start-page: 345 year: 1997 end-page: 363 article-title: Numerical analysis of simultaneous heat and mass transfer during infiltration into frozen ground publication-title: J. Hydrol – volume: 12 start-page: 197 year: 1993 end-page: 215 article-title: On the application of image analysis to determine concentration distributions in laboratory experiments publication-title: J. Contam. Hydrol – volume: 26 start-page: 181 year: 1997 end-page: 194 article-title: Modelling vertical and lateral water flow in frozen and sloped forest soil plots publication-title: Cold Reg. Sci. Tech – volume: 322 start-page: 565 year: 1989 end-page: 571 article-title: Simultaneous heat and water model of a freezing snow‐residue‐soil system, I. Theory and development publication-title: Trans. ASAE – volume: 63 start-page: 18 year: 1999 end-page: 24 article-title: Discriminating dyes in soil with color image analysis publication-title: Soil Sci. Soc. Am. J – volume: 351 start-page: 95 year: 1999 end-page: 103 article-title: Soil moisture redistribution and infiltration in frozen sandy soils publication-title: Water Resour. Res – volume: 35 start-page: 3049 year: 1999 end-page: 3060 article-title: Longitudinal and lateral dispersion in an unsaturated field soil publication-title: Water Resour. Res – volume: 60 start-page: 13 year: 1996 end-page: 19 article-title: The soil freezing characteristicIts measurement and similarity to the soil moisture characteristic publication-title: Soil Sci. Soc. Am. J – volume: 202 start-page: 95 year: 1997 end-page: 107 article-title: Use of air permeability to estimate infiltrability of frozen soil publication-title: J. Hydrol – volume: 87 start-page: 385 year: 1998 end-page: 388 article-title: Chemische Heterogenit a ¨ ten auf der Profilebene—Unterschiede zwischen pr a ¨ ferentiellen Fließwegen und Matrix. Mitteilungen der Dt publication-title: Bodenkundl. Gesellsch – volume: 19 start-page: 1547 year: 1983 end-page: 1557 article-title: Water movement into seasonally frozen soils publication-title: Water Resour. Res – start-page: 53 year: 1990 end-page: 62 – start-page: 31 year: 1997 end-page: 36 article-title: Mechanics of meltwater movement in seasonally frozen soil – volume: 61 start-page: 33 year: 1997 end-page: 35 article-title: Image analysis for determination of dye tracer concentrations in sand columns publication-title: Soil Sci. Soc. Am. J – year: 2000 article-title: Quantifying dye tracers in soil profiles by image processing. submitted toEur publication-title: J. Soil Sci – volume: 10 start-page: 1305 year: 1996 end-page: 1316 article-title: Preferential flow in a frozen soil — a two‐domain model approach – year: 1998 – ident: e_1_2_6_6_1 doi: 10.2136/sssaj1999.03615995006300010004x – ident: e_1_2_6_2_1 – ident: e_1_2_6_16_1 doi: 10.1016/S0165-232X(97)00017-7 – ident: e_1_2_6_13_1 doi: 10.1016/0169-7722(93)90007-F – volume: 322 start-page: 565 year: 1989 ident: e_1_2_6_7_1 article-title: Simultaneous heat and water model of a freezing snow‐residue‐soil system, I. Theory and development publication-title: Trans. ASAE doi: 10.13031/2013.31040 contributor: fullname: Flerchinger G.N. – ident: e_1_2_6_8_1 – volume: 351 start-page: 95 year: 1999 ident: e_1_2_6_18_1 article-title: Soil moisture redistribution and infiltration in frozen sandy soils publication-title: Water Resour. Res doi: 10.1029/1998WR900045 contributor: fullname: Sta¨hli M. – volume: 87 start-page: 385 year: 1998 ident: e_1_2_6_5_1 article-title: Chemische Heterogenit a ¨ ten auf der Profilebene—Unterschiede zwischen pr a ¨ ferentiellen Fließwegen und Matrix. Mitteilungen der Dt publication-title: Bodenkundl. Gesellsch contributor: fullname: Bundt M. – ident: e_1_2_6_11_1 doi: 10.1029/WR019i006p01547 – ident: e_1_2_6_14_1 doi: 10.1016/S0022-1694(97)00061-9 – ident: e_1_2_6_9_1 doi: 10.1029/1999WR900185 – year: 2000 ident: e_1_2_6_10_1 article-title: Quantifying dye tracers in soil profiles by image processing. submitted toEur publication-title: J. Soil Sci doi: 10.1046/j.1365-2389.2000.00315.x contributor: fullname: Forrer I. – ident: e_1_2_6_3_1 doi: 10.2136/sssaj1997.03615995006100010006x – ident: e_1_2_6_4_1 – start-page: 53 volume-title: Nordisk Hydrologisk konferens year: 1990 ident: e_1_2_6_12_1 contributor: fullname: Lundin L.‐C. – ident: e_1_2_6_19_1 doi: 10.1016/S0022-1694(97)00028-0 – ident: e_1_2_6_17_1 – ident: e_1_2_6_15_1 doi: 10.2136/sssaj1996.03615995006000010005x |
SSID | ssj0015900 |
Score | 1.8715042 |
Snippet | New methods are needed to quantify infiltration into frozen soil, an important issue for agricultural management in northern latitude regions. A dye tracer... |
SourceID | proquest crossref pascalfrancis wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 505 |
SubjectTerms | Agricultural management Agronomy. Soil science and plant productions Biological and medical sciences Earth sciences Earth, ocean, space Exact sciences and technology Frozen ground Fundamental and applied biological sciences. Psychology Hydrogeology Hydrology. Hydrogeology Ice Infiltration Physical properties Physics, chemistry, biochemistry and biology of agricultural and forest soils Soil science Soils Surficial geology Temperature Water Water and solute dynamics |
Title | Dye Tracing and Image Analysis for Quantifying Water Infiltration into Frozen Soils |
URI | https://onlinelibrary.wiley.com/doi/abs/10.2136%2Fsssaj2000.642505x https://www.proquest.com/docview/216058420 https://search.proquest.com/docview/17873588 https://search.proquest.com/docview/743190816 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLaAEwjxRpRnDpyQCmuaronEZQIm4IBABbFblbYJGoIWrewAvx677QYTQhzg0kMfVuvU8ec4_gywLxDDC8FTV4QhBihZO3OVSAI35TKQ2kOHZGm94zwKr3ry9Ixock5GtTA1P8R4wY0so5qvycB1UnUh4XUXkrIs9SMVmhwihEY_TkASo4WqjMO_HmcSqCtmna_0XCLXqjObJOPom4QJ3zT_oktUk637W0wA0K8wtvJD3cV_-YIlWGhgKOvU_80yTJl8BeY6D4OGisOsQnT6Zhi6shSdG9N5xi6ece5hIxYThmiX3Qw1bTaiUil2j6h1wC5y239qqHhZP38tWHdQvJucRUX_qVyDu-7Z7cm527RgcDVads_1Db2Y0C1fmrYfJhW7vUxUFhhhdbsdtlIEDIEOU80zbj0lrZdajjq3KrFW-eswkxe52QCmFYZGiLa0nxlhUiG1pjJX5RMFjky4Awcj5ccvNdNGjBEK6SoeaypuNOXAzsTwfD6BAZjiKGxrNFxxY5QliqIcsOAtB_bGV9GaKEWic1MMy9jD-csPpHSA_XAHIS5F3UocOK4G9_eXjaPOJY8iOlYQkE72Nv_2-BbM1qQAtBtuG2ZeB0OzA9NlNtyt_n88RpdXH2KpBa4 |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED7x42FMaGzAROhY_bCnSYHGcRJb4qVaqdqNoU1hom-Rk9hTJ0hQQx_YX7-7JO1WTYgHeMlDElvJ2ef7zuf7DuCDQAwvBM9cEUXooORh7iqRBm7GZSC1hwbJ0n7HKI4uJnJwRjQ5g0UuTMMPsdxwI82o12tScNqQrs8uN2VIqqrSvyjT5BgxNBpyRJKbIsQJSYkc_rdlLIHqYjYRS88leq0mtkmdnPzXxYp12r7VFQrKNhUuViDov0C2tkTDnef5h9fwqkWirN9MnTewZopdeNn_OWvZOMwexIN7w9CaZWjfmC5yNr7B5YctiEwYAl72fa7pvBFlS7ErBK4zNi7s9Lpl42XT4q5kw1n52xQsLqfX1T78GJ5dfhq5bRUGV6MsJ65v6MOE7vnShH6U1gT3MlV5YITVYRj1MsQMgY4yzXNuPSWtl1mOQrcqtVb5b2GjKAtzAEwr9I4QcGk_N8JkQmpNma7KJxYcmXIHPi6kn9w2ZBsJOikkq2QpqaSVlANHK-PztwX6YIpjZ53FeCWtXlbYFYWBBe850F0-RYWiKIkuTDmvEg-XMD-Q0gH2wBsEuhQVLHHgtB7dxz82ifufeRzTtUaBdHNy-LTmXXgxuvx6npyPL750YKvhCKDDce9g4242N0ewXuXz97Uy_AG_ggjK |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swED4NJk2gaYPBtAwYfuAJKVtjO40t7aWiVBQQYsrQ-hY5iY06laRq6AP8-t0laUc1TXtgL3lIYss553zf-XzfARxJxPBS8syXUYQOSt7NfS3T0M-4CpUJ0CA52u84i6OrkeqfEk3OySIXpuGHWG64kWbU6zUp-DR39dHlpgpJVVXmJyWafEYIjXYcgeRLiXCcCPSFuF6GEqgsZhOwDHxi12pCm9TJlz-6WDFOr6emQjm5psDFCgJ9imNrQzR4-18-YQvetDiU9ZofZxte2OIdbPZuZy0Xh92BuP9gGdqyDK0bM0XOhne4-LAFjQlDuMu-zQ2dNqJcKfYDYeuMDQs3nrRcvGxc3JdsMCsfbcHicjypduFmcPr95MxvazD4BlV75AtLA5OmI5Ttiiit6e1VqvPQSme63aiTIWIITZQZnnMXaOWCzHGUudOpc1q8h_WiLOwHYEajb4Rwy4jcSptJZQzluWpBHDgq5R4cL4SfTBuqjQRdFJJVspRU0krKg4OV6fndAj0wzbGzvcV0Ja1WVtgVBYEl73hwuHyK6kQxElPYcl4lAS5gIlTKA_aXNwhyaSpX4sHXenL_Pdgk7p3zOKZrjQHp5ujj85ofwqvr_iC5HF5d7MFGQxBAJ-P2Yf1-NrcHsFbl80-1KvwCdvgHcA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dye+Tracing+and+Image+Analysis+for+Quantifying+Water+Infiltration+into+Frozen+Soils&rft.jtitle=Soil+Science+Society+of+America+journal&rft.au=Stadler%2C+Daniel&rft.au=Sta%C2%A8hli%2C+Manfred&rft.au=Aeby%2C+Philipp&rft.au=Flu%C2%A8hler%2C+Hannes&rft.date=2000-03-01&rft.issn=0361-5995&rft.eissn=1435-0661&rft.volume=64&rft.issue=2&rft.spage=505&rft.epage=516&rft_id=info:doi/10.2136%2Fsssaj2000.642505x&rft.externalDBID=10.2136%252Fsssaj2000.642505x&rft.externalDocID=SAJ2SSSAJ2000642505X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-5995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-5995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-5995&client=summon |