Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models

Solubility and vapor pressure measurements of hydrocarbons in water are generally thought to provide estimates of the strength of the hydrophobic effect in the range 20-30 cal/(mol.A2). Our reassessment of the solubility data on the basis of new developments in solution thermodynamics suggests that...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) Vol. 30; no. 40; pp. 9686 - 9697
Main Authors: Sharp, Kim A, Nicholls, Anthony, Friedman, Richard, Honig, Barry
Format: Journal Article
Language:English
Published: Washington, DC American Chemical Society 08-10-1991
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Solubility and vapor pressure measurements of hydrocarbons in water are generally thought to provide estimates of the strength of the hydrophobic effect in the range 20-30 cal/(mol.A2). Our reassessment of the solubility data on the basis of new developments in solution thermodynamics suggests that the hydrophobic surface free energy for hydrocarbon solutes is 46-47 cal/(mol.A2), although the actual value depends strongly on curvature effects [Nicholls et al. (1991) Proteins (in press); Sharp et al. (1991) Science 252, 106-109]. The arguments to support such a significant increase in the estimate of the hydrophobic effect stem partly from theoretical considerations and partly from the experimental results of De Young and Dill [(1990) J. Phys. Chem. 94, 801-809] on benzene partition between water and alkane solvents. Previous estimates of the hydrophobic effect derive from an analysis of solute partition data, which does not fully account for changes in volume entropy. We show here how the ideal gas equations, combined with experimental molar volumes, can account for such changes. Revised solubility scales for the 20 amino acids, based on cyclohexane to water and octanol to water transfer energies, are derived. The agreement between these scales, particularly the octanol scale, and mutant protein stability measurements from Kellis et al. [(1989) Biochemistry 28, 4914-4922] and Shortle et al. [(1990) Biochemistry 29, 8033-8041] is good. The increased strength of the hydrophobic interaction has implications for the energetics of protein folding, substrate binding, and nucleic acid base stacking and the interpretation of computer simulations.
AbstractList Previous estimates of the hydrophobic effect derive from an analysis of solute partition data, which does not fully account for changes in volume entropy. We show here how the ideal gas equations, combined with experimental molar volumes, can account for such changes. The increased strength of the hydrophobic interaction has implications for the energetics of protein folding, substrate binding, and nucleic acid base stacking and the interpretation of computer simulations.
Solubility and vapor pressure measurements of hydrocarbons in water are generally thought to provide estimates of the strength of the hydrophobic effect in the range 20-30 cal/(mol.A2). Our reassessment of the solubility data on the basis of new developments in solution thermodynamics suggests that the hydrophobic surface free energy for hydrocarbon solutes is 46-47 cal/(mol.A2), although the actual value depends strongly on curvature effects [Nicholls et al. (1991) Proteins (in press); Sharp et al. (1991) Science 252, 106-109]. The arguments to support such a significant increase in the estimate of the hydrophobic effect stem partly from theoretical considerations and partly from the experimental results of De Young and Dill [(1990) J. Phys. Chem. 94, 801-809] on benzene partition between water and alkane solvents. Previous estimates of the hydrophobic effect derive from an analysis of solute partition data, which does not fully account for changes in volume entropy. We show here how the ideal gas equations, combined with experimental molar volumes, can account for such changes. Revised solubility scales for the 20 amino acids, based on cyclohexane to water and octanol to water transfer energies, are derived. The agreement between these scales, particularly the octanol scale, and mutant protein stability measurements from Kellis et al. [(1989) Biochemistry 28, 4914-4922] and Shortle et al. [(1990) Biochemistry 29, 8033-8041] is good. The increased strength of the hydrophobic interaction has implications for the energetics of protein folding, substrate binding, and nucleic acid base stacking and the interpretation of computer simulations.
Author Friedman, Richard
Sharp, Kim A
Nicholls, Anthony
Honig, Barry
Author_xml – sequence: 1
  givenname: Kim A
  surname: Sharp
  fullname: Sharp, Kim A
– sequence: 2
  givenname: Anthony
  surname: Nicholls
  fullname: Nicholls, Anthony
– sequence: 3
  givenname: Richard
  surname: Friedman
  fullname: Friedman, Richard
– sequence: 4
  givenname: Barry
  surname: Honig
  fullname: Honig, Barry
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5028818$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/1911756$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1UVLaFE2ekHBAcqoDHm8QON1T1A2klvsrZmjiTrktiB9srbf97XGVVOCBxGo3eb55G752wI-cdMfYS-DvgAt53lnPgFXKQT9gKasHLqm3rI7binDelaBv-jJ3EeJfXisvqmB1DCyDrZsXixT4FNMm622J73wc_b31nTTEEooIchVtLMW9-Kmg_U7ATuYRj0WPCD0WgEZP1Lm7tXCRfzMEnsq4Y_Ng_OKLri7QlHyhZk68m39MYn7OnA46RXhzmKftxeXFzfl1uPl99Ov-4KbFSPJW1EYgNByG7nhQKqTrTi0ZAv25BKVJyqGRfUwUDKN4ZUdMau45IQIdDhetT9mbxzW_92lFMerLR0DiiI7-LWgoQwCX8F4QGeN20bQbPFtAEH2OgQc85EQz3Grh-6EL_1UWmXx1sd91E_R92CT_rrw86xpzOENAZGx-xmgulQGWsXDAbE-0fZQw_dSPXstY3X77rr2LDry6_Cb3J_NuFRxP1nd8Fl0P-54O_AbEbsFY
CitedBy_id crossref_primary_10_1016_S0301_4622_98_00229_4
crossref_primary_10_1110_ps_0219002
crossref_primary_10_1002_pro_5560050821
crossref_primary_10_1073_pnas_1318754110
crossref_primary_10_1016_j_jmb_2007_05_078
crossref_primary_10_1080_07391102_2000_10506608
crossref_primary_10_1021_acs_jcim_5b00704
crossref_primary_10_1002_jmr_564
crossref_primary_10_1021_jm049524q
crossref_primary_10_1002_jcc_21129
crossref_primary_10_1529_biophysj_104_050203
crossref_primary_10_1007_BF00141573
crossref_primary_10_1155_2015_678764
crossref_primary_10_1021_ar900009e
crossref_primary_10_1002_jcc_24512
crossref_primary_10_1021_jp4042233
crossref_primary_10_1016_0022_2836_92_90121_Y
crossref_primary_10_1134_1_2149075
crossref_primary_10_1002_ange_19951071339
crossref_primary_10_1002_prot_20247
crossref_primary_10_1080_07391102_1997_10508940
crossref_primary_10_1007_s10858_020_00335_9
crossref_primary_10_1016_0021_9673_94_80515_6
crossref_primary_10_1016_S0968_0896_00_00198_X
crossref_primary_10_1021_jp9521621
crossref_primary_10_1002_pro_2860
crossref_primary_10_1021_ci700041j
crossref_primary_10_1007_s10822_011_9470_9
crossref_primary_10_1016_0197_0186_92_90146_I
crossref_primary_10_1093_jac_dkp024
crossref_primary_10_1016_S1058_6687_05_80036_1
crossref_primary_10_1002_pro_5560020505
crossref_primary_10_1002_prot_10414
crossref_primary_10_1002__SICI_1099_1352_199905_06_12_3_177__AID_JMR451_3_0_CO_2_Z
crossref_primary_10_1016_S0301_4622_02_00038_8
crossref_primary_10_1002_jcc_540140503
crossref_primary_10_1021_acs_jpcb_5b04208
crossref_primary_10_1038_nsb1196_923
crossref_primary_10_3390_ijms12128449
crossref_primary_10_1016_S0040_6031_02_00457_4
crossref_primary_10_1016_S0167_4838_01_00281_3
crossref_primary_10_1017_S003358351200011X
crossref_primary_10_1073_pnas_94_3_808
crossref_primary_10_1246_bcsj_20180008
crossref_primary_10_1007_BF02174465
crossref_primary_10_1080_21505594_2019_1635418
crossref_primary_10_1111_j_1365_2958_1992_tb01382_x
crossref_primary_10_1529_biophysj_104_040071
crossref_primary_10_1002_pro_5560020509
crossref_primary_10_1021_jp062796f
crossref_primary_10_1002__SICI_1097_0134_199705_28_1_117__AID_PROT12_3_0_CO_2_M
crossref_primary_10_1016_S0006_3495_04_74204_6
crossref_primary_10_1017_S0033583500002845
crossref_primary_10_1021_jp993081y
crossref_primary_10_1063_1_468327
crossref_primary_10_1021_ja4040472
crossref_primary_10_1002__SICI_1097_0282_1997_44_3_201__AID_BIP2_3_0_CO_2_Z
crossref_primary_10_1002__SICI_1097_0282_199912_50_7_742__AID_BIP7_3_0_CO_2_6
crossref_primary_10_1074_jbc_270_25_15076
crossref_primary_10_1021_ie9507437
crossref_primary_10_1002_bip_360320205
crossref_primary_10_1021_jp0003297
crossref_primary_10_1016_0301_4622_94_00047_6
crossref_primary_10_1002_bip_360360304
crossref_primary_10_1063_1_477940
crossref_primary_10_1002_pro_5560060618
crossref_primary_10_1002_ange_1761051104
crossref_primary_10_1002_prot_22689
crossref_primary_10_1016_j_molcatb_2016_04_005
crossref_primary_10_1021_bi991460b
crossref_primary_10_1177_095632029300400101
crossref_primary_10_1007_s10822_005_9024_0
crossref_primary_10_1021_cr960149m
crossref_primary_10_1016_0079_6107_93_90002_2
crossref_primary_10_1073_pnas_1220825110
crossref_primary_10_1002_pro_5560041206
crossref_primary_10_1021_bi300653m
crossref_primary_10_1002_pro_5560050702
crossref_primary_10_1085_jgp_202213189
crossref_primary_10_1016_S0166_1280_96_04946_9
crossref_primary_10_1021_acs_jpcb_2c05367
crossref_primary_10_1007_s10955_011_0232_9
crossref_primary_10_1021_acs_chemrev_5b00583
crossref_primary_10_1021_jp962972s
crossref_primary_10_1002_1097_0134_20010101_42_1_49__AID_PROT60_3_0_CO_2_Z
crossref_primary_10_1016_0022_2836_92_90906_Z
crossref_primary_10_1021_jp9724838
crossref_primary_10_1007_s00249_010_0577_z
crossref_primary_10_1016_j_jsb_2005_09_005
crossref_primary_10_1110_ps_8_4_890
crossref_primary_10_1016_S0301_4622_98_00167_7
crossref_primary_10_1006_jmbi_1997_1399
crossref_primary_10_1002_jmr_300060305
crossref_primary_10_1016_S0301_4622_99_00105_2
crossref_primary_10_1002_pro_5560020410
crossref_primary_10_1002_prot_10584
crossref_primary_10_1002_jcc_20634
crossref_primary_10_1016_0300_9084_94_90139_2
crossref_primary_10_1002_jcc_20750
crossref_primary_10_1016_j_aca_2004_11_039
crossref_primary_10_1007_BF00134174
crossref_primary_10_1007_s00109_007_0239_5
crossref_primary_10_4137_PRI_S10988
crossref_primary_10_1016_j_str_2004_12_012
crossref_primary_10_1016_0079_6107_93_90017_E
crossref_primary_10_1016_j_chroma_2004_10_015
crossref_primary_10_1016_S0006_3495_99_77400_X
crossref_primary_10_1002_asia_200900679
crossref_primary_10_1016_0022_2836_92_90895_Q
crossref_primary_10_1016_0079_6107_92_90006_R
crossref_primary_10_1146_annurev_biophys_28_1_319
crossref_primary_10_1016_0166_1280_95_04424_8
crossref_primary_10_1021_ct300941v
crossref_primary_10_1021_acs_jpcc_9b03680
crossref_primary_10_1073_pnas_1203720109
crossref_primary_10_1103_PhysRevE_90_042709
crossref_primary_10_1209_epl_i2004_10056_2
crossref_primary_10_1002_prot_10217
crossref_primary_10_1016_j_bpc_2004_03_001
crossref_primary_10_1111_j_1432_1033_1995_0060o_x
crossref_primary_10_1143_JPSJ_63_814
crossref_primary_10_1021_jp960668t
crossref_primary_10_1002_anie_199315451
crossref_primary_10_1016_j_jsb_2016_09_003
crossref_primary_10_1002_adem_200500141
crossref_primary_10_1016_S0006_3495_04_74127_2
crossref_primary_10_1016_S0301_4622_02_00281_8
crossref_primary_10_1016_0009_2614_93_85403_B
crossref_primary_10_1016_S0301_0104_00_00178_6
crossref_primary_10_1016_0141_0229_92_90049_T
crossref_primary_10_1002_anie_199625881
crossref_primary_10_1002_pro_5560041014
crossref_primary_10_1073_pnas_0610945104
crossref_primary_10_1080_10826070701465456
crossref_primary_10_1016_0301_4622_94_00041_7
crossref_primary_10_1002_pro_5560020310
crossref_primary_10_1016_0958_1669_94_90046_9
crossref_primary_10_1016_j_jmb_2010_07_021
crossref_primary_10_1002_jcc_540141103
crossref_primary_10_1016_S0969_2126_03_00073_X
crossref_primary_10_1093_protein_12_10_841
crossref_primary_10_1006_jmbi_1999_3411
crossref_primary_10_1002_prot_340230203
crossref_primary_10_1146_annurev_biochem_69_1_881
crossref_primary_10_1002_prot_340110407
crossref_primary_10_1002_pro_5560041004
crossref_primary_10_1088_1478_3975_2_2_S02
crossref_primary_10_3109_10799899409066029
crossref_primary_10_1126_science_1615324
crossref_primary_10_1515_bchm3_1992_373_2_447
crossref_primary_10_1021_jp9807165
crossref_primary_10_1080_00268979500101791
crossref_primary_10_1146_annurev_physchem_032210_103509
crossref_primary_10_1021_jp953016y
crossref_primary_10_1002_pro_5560040616
crossref_primary_10_1021_acs_jctc_2c00219
crossref_primary_10_1016_S0009_2614_97_01381_X
crossref_primary_10_1016_S0009_2614_97_01147_0
crossref_primary_10_1021_jp107111f
crossref_primary_10_1111_j_1399_3011_1996_tb01351_x
crossref_primary_10_1002_rcm_4141
crossref_primary_10_1017_S0033583500004522
crossref_primary_10_1098_rsta_1993_0125
crossref_primary_10_1016_0021_9673_93_80819_T
crossref_primary_10_1063_1_2138030
crossref_primary_10_1103_PhysRevLett_91_158102
crossref_primary_10_1021_jp9638503
crossref_primary_10_1063_1_463919
crossref_primary_10_1002_bip_20600
crossref_primary_10_1016_0301_4622_93_E0096_N
crossref_primary_10_1021_jm950591h
crossref_primary_10_1063_1_1633257
crossref_primary_10_1002_1097_0282_200011_54_6_416__AID_BIP60_3_0_CO_2_2
crossref_primary_10_1002_prot_10020
crossref_primary_10_1093_protein_15_8_659
crossref_primary_10_1002__SICI_1097_0282_20000415_53_5_423__AID_BIP6_3_0_CO_2_C
crossref_primary_10_1021_acs_jcim_3c01611
crossref_primary_10_1016_S0301_4622_99_00119_2
crossref_primary_10_1016_j_cplett_2009_12_086
crossref_primary_10_1021_ja9026314
crossref_primary_10_1063_1_1990110
crossref_primary_10_1016_S0006_3495_99_77389_3
crossref_primary_10_1063_1_3590718
crossref_primary_10_1111_j_1399_3011_1996_tb01110_x
crossref_primary_10_1002__SICI_1097_0282_199711_42_6_633__AID_BIP2_3_0_CO_2_V
crossref_primary_10_1016_S0301_4622_98_00226_9
crossref_primary_10_1021_jp036650h
crossref_primary_10_1016_S0003_9861_02_00202_3
crossref_primary_10_1021_cr960435y
crossref_primary_10_1103_PhysRevLett_94_018101
crossref_primary_10_1002_bmc_543
crossref_primary_10_1016_j_str_2005_01_018
crossref_primary_10_1006_jmbi_1997_1010
crossref_primary_10_1021_jp962811o
crossref_primary_10_1021_jp051528z
crossref_primary_10_1039_c2ob26602d
crossref_primary_10_1073_pnas_95_11_6103
crossref_primary_10_1002_prot_340180205
crossref_primary_10_1016_S0009_2614_97_00165_6
crossref_primary_10_1088_0953_8984_19_28_285210
crossref_primary_10_1021_ja906399e
crossref_primary_10_1515_BC_2006_038
crossref_primary_10_3109_10799899709036621
crossref_primary_10_1016_S0006_3495_99_77186_9
crossref_primary_10_1016_0166_1280_95_04433_7
crossref_primary_10_1021_ct600274a
crossref_primary_10_1088_0953_8984_19_28_285213
crossref_primary_10_1002__SICI_1097_0134_199610_26_2_123__AID_PROT2_3_0_CO_2_H
crossref_primary_10_1016_0301_4622_95_00120_4
crossref_primary_10_1002_cmdc_200600223
crossref_primary_10_1063_1_470596
crossref_primary_10_1002_prot_10241
crossref_primary_10_1021_ja029892o
crossref_primary_10_1002__SICI_1097_0134_19981001_33_1_39__AID_PROT4_3_0_CO_2_G
crossref_primary_10_1006_jmbi_1999_3211
crossref_primary_10_1016_S0079_6107_96_00001_6
crossref_primary_10_1110_ps_8_3_587
crossref_primary_10_1006_jmbi_1998_2277
crossref_primary_10_1080_08927029308022161
crossref_primary_10_1016_S0959_440X_94_90318_2
crossref_primary_10_1039_P29940000405
crossref_primary_10_1016_j_molliq_2018_10_024
crossref_primary_10_1021_ci500183u
crossref_primary_10_1080_08927029308022162
crossref_primary_10_1002_pro_5560040513
crossref_primary_10_1039_a827057z
crossref_primary_10_1002_pro_5560010204
crossref_primary_10_1074_jbc_M501519200
crossref_primary_10_1110_ps_8_4_820
crossref_primary_10_1080_07391102_1993_10508011
crossref_primary_10_1002_cphc_200500213
crossref_primary_10_1002_prot_340200203
crossref_primary_10_1016_S0304_4157_96_00009_3
crossref_primary_10_1074_jbc_272_20_13006
crossref_primary_10_1021_jp500980x
crossref_primary_10_1038_356453a0
crossref_primary_10_1146_annurev_biophys_26_1_425
crossref_primary_10_1002_anie_199514831
crossref_primary_10_4208_cicp_290711_121011s
crossref_primary_10_1126_science_1553543
crossref_primary_10_1152_ajpheart_00706_2005
crossref_primary_10_1016_j_sbi_2011_01_011
crossref_primary_10_1021_ja001788o
crossref_primary_10_1115_1_4032759
crossref_primary_10_1002_pro_457
crossref_primary_10_1021_jp015514e
crossref_primary_10_1016_S0014_5793_03_00148_0
crossref_primary_10_1002_pro_5560030501
crossref_primary_10_1039_C8CC00695D
crossref_primary_10_1038_s42004_019_0242_0
crossref_primary_10_1016_0009_2614_93_89025_D
crossref_primary_10_1021_cr990139w
crossref_primary_10_1088_0953_8984_17_18_019
crossref_primary_10_3389_fimmu_2019_02047
crossref_primary_10_1021_jp970257s
crossref_primary_10_1007_s00424_010_0885_2
crossref_primary_10_1002_ange_19961082205
crossref_primary_10_1016_j_jics_2022_100698
crossref_primary_10_1016_0301_4622_94_00062_X
crossref_primary_10_1021_jp980643p
crossref_primary_10_1002_pro_5560021110
crossref_primary_10_5012_bkcs_2011_32_6_1985
crossref_primary_10_1016_j_jmb_2004_09_061
crossref_primary_10_1002_prot_20290
crossref_primary_10_1002_qsar_200330812
crossref_primary_10_1016_S0021_9673_03_00182_1
crossref_primary_10_1021_jp9845120
crossref_primary_10_1016_j_chroma_2008_11_055
crossref_primary_10_1016_S1074_5521_99_89004_8
crossref_primary_10_1021_la036330p
crossref_primary_10_1016_j_bpj_2020_02_032
crossref_primary_10_1143_JPSJ_62_1782
crossref_primary_10_1002_prot_340200307
crossref_primary_10_1063_1_2844788
crossref_primary_10_1073_pnas_2335923100
crossref_primary_10_1111_j_1365_2958_1993_tb01662_x
crossref_primary_10_1016_S0301_4622_98_00201_4
crossref_primary_10_1021_jp972358w
crossref_primary_10_1016_0022_2836_92_90229_D
crossref_primary_10_1016_0302_4598_96_05076_3
crossref_primary_10_1021_jp9117369
crossref_primary_10_1016_0021_9673_93_80800_N
crossref_primary_10_1088_0953_8984_22_28_284108
crossref_primary_10_1016_0301_4622_94_00060_3
crossref_primary_10_1021_ja056278e
crossref_primary_10_1074_jbc_M201373200
crossref_primary_10_1155_2014_971258
crossref_primary_10_1002_1097_0134_20010201_42_2_243__AID_PROT120_3_0_CO_2_B
crossref_primary_10_1002_nadc_19920400215
crossref_primary_10_1002_jcc_540160904
crossref_primary_10_1006_jmbi_1999_3371
crossref_primary_10_1063_1_469854
crossref_primary_10_1007_s10822_008_9175_x
crossref_primary_10_1016_j_jmb_2004_11_046
crossref_primary_10_1002_cbdv_200490084
crossref_primary_10_1007_s12039_009_0105_9
crossref_primary_10_1016_S0301_4622_98_00236_1
crossref_primary_10_1016_j_molliq_2024_125247
crossref_primary_10_1002_jcc_1134
crossref_primary_10_1110_ps_035022_108
crossref_primary_10_1016_S0959_440X_94_90063_9
crossref_primary_10_1002_prot_22803
crossref_primary_10_1016_j_biochi_2024_01_014
crossref_primary_10_1080_01932699808913178
crossref_primary_10_1093_protein_gzi009
crossref_primary_10_1016_j_str_2008_05_008
crossref_primary_10_1016_S0301_4622_97_00110_5
crossref_primary_10_1021_bi802117k
crossref_primary_10_1016_0039_128X_94_00070_S
crossref_primary_10_1007_BF00126743
crossref_primary_10_1080_00032719_2010_520393
ContentType Journal Article
Copyright 1992 INIST-CNRS
Copyright_xml – notice: 1992 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
8FD
C1K
FR3
M81
P64
7X8
DOI 10.1021/bi00104a017
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biochemistry Abstracts 3
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Technology Research Database
Biochemistry Abstracts 3
Bacteriology Abstracts (Microbiology B)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 9697
ExternalDocumentID 10_1021_bi00104a017
1911756
5028818
ark_67375_TPS_Q2L0GFR2_L
c478099033
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM-41371
– fundername: NIGMS NIH HHS
  grantid: GM-30518
GroupedDBID -
.K2
02
08R
186
1WB
23N
3O-
53G
55
55A
5GY
5RE
5VS
85S
AABXI
AAYJJ
ABFLS
ABMVS
ABOCM
ABPTK
ABUFD
ACGFS
ACJ
ACNCT
ACS
AENEX
AETEA
AFFDN
AFFNX
AFMIJ
AGXLV
AIDAL
AJUXI
AJYGW
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
D0L
DU5
DZ
F20
F5P
G8K
GJ
HR
J5H
JG
JG~
K2
K78
KM
L7B
LG6
MVM
NHB
OHT
P2P
RNS
ROL
TN5
UNC
UQL
VQA
W1F
WH7
X
X7M
XFK
YQJ
YXE
YZZ
ZA5
ZE2
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
.HR
6TJ
ABDPE
ABHMW
ABJNI
BSCLL
CUPRZ
EBS
GGK
VG9
XOL
YYP
ZCA
~02
~KM
4.4
7~N
8W4
ABDTD
ABFRP
ABQRX
ABUCX
ACKIV
ADGIM
ADHLV
AEESW
AFEFF
AHGAQ
ED~
EJD
GNL
IH9
IHE
IQODW
UI2
VF5
XJT
XSW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
8FD
C1K
FR3
M81
P64
7X8
ID FETCH-LOGICAL-a480t-5c2aa60127bde8a278bcd2621d39188e87f47d5e41f180bc25e3abbee21baf4a3
IEDL.DBID ACS
ISSN 0006-2960
IngestDate Fri Oct 25 05:51:53 EDT 2024
Fri Oct 25 09:19:34 EDT 2024
Thu Nov 21 22:08:19 EST 2024
Wed Oct 16 00:50:28 EDT 2024
Fri Nov 25 13:54:31 EST 2022
Wed Oct 30 09:27:22 EDT 2024
Thu Aug 27 13:42:39 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords Proteins
Thermodynamics
Hydrophobicity
Aqueous solution
Solute effect
Free energy
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a480t-5c2aa60127bde8a278bcd2621d39188e87f47d5e41f180bc25e3abbee21baf4a3
Notes istex:EA28D3A801424B2C6F37FEA63281C0292DA7206C
ark:/67375/TPS-Q2L0GFR2-L
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 1911756
PQID 16105699
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_72121071
proquest_miscellaneous_16105699
crossref_primary_10_1021_bi00104a017
pubmed_primary_1911756
pascalfrancis_primary_5028818
istex_primary_ark_67375_TPS_Q2L0GFR2_L
acs_journals_10_1021_bi00104a017
ProviderPackageCode JG~
55A
AABXI
ACJ
AGXLV
W1F
ANTXH
ACS
.K2
ABMVS
1WB
BAANH
AQSVZ
PublicationCentury 1900
PublicationDate 1991-10-08
PublicationDateYYYYMMDD 1991-10-08
PublicationDate_xml – month: 10
  year: 1991
  text: 1991-10-08
  day: 08
PublicationDecade 1990
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 1991
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Biochemistry 1993 May 25;32(20):5490
References_xml
SSID ssj0004074
Score 1.9545071
Snippet Solubility and vapor pressure measurements of hydrocarbons in water are generally thought to provide estimates of the strength of the hydrophobic effect in the...
Previous estimates of the hydrophobic effect derive from an analysis of solute partition data, which does not fully account for changes in volume entropy. We...
SourceID proquest
crossref
pubmed
pascalfrancis
istex
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 9686
SubjectTerms Alkanes - chemistry
Amino Acids - chemistry
Biological and medical sciences
Computer Simulation
Energy Transfer
Fundamental and applied biological sciences. Psychology
Models, Molecular
Models, Theoretical
Molecular biophysics
Physico-chemical properties of biomolecules
Protein Conformation
Solubility
Surface Properties
Thermodynamics
Title Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models
URI http://dx.doi.org/10.1021/bi00104a017
https://api.istex.fr/ark:/67375/TPS-Q2L0GFR2-L/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/1911756
https://search.proquest.com/docview/16105699
https://search.proquest.com/docview/72121071
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3R9gAXKC0VAVrmUHqLiB0ndrhVyy4cKgRskbhF_gq7QiSrZFdq_z22k223VVdwtyXbM5bfeN68ATil1KvbpTKmhvKY6dTGikgTs0zlwoUfXuPcf11M-Zef4uPYy-S825LBp-S9mgcNGelcZwf2KHcYwSOg0fS2_DEZxJZdcEwdIh_K8O5N9s-P7u48P3v-JK88HVJ27kSqvpXFdqwZ3pzJs_9c7T48HUAlnvde8Bwe2foADs9rF1D_ucYzDDTP8H9-AI9H6xZvh9CNr5ahSqr-hbNr0zaLWaPmGqvWWvR61F5DAn0FCm52AkBPK_2A7ZpHN5svcNlgkHyY11j1CS2UtcGNOkkMTXe6F_BjMr4cfY6HLgyxZCJZxpmmUuY-Q62MFZJyobShOSUmLYgQVvCKcZNZRioiEqVpZlOplLWUKFkxmR7Bbt3U9iWg0EmhFdMmJYbJQguWMaUdQCCFrDjVEaAzUTncoq4MCXJKyo1DjeB0bb9y0etxPDzsLNj2Zoxsf3sKG8_Ky6_T8hu9SD5NvtPyIoLjO8a_mZA54OXATARv185QOuP4bIqsbbNyi3PAM8uLYvsIF1y7gJqTCI56L7pdceEVUvNX_97va3gSyGmBdfgGdpftyh7DTmdWJ-ES_AUuOP7J
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6x7WG8wNiYCDDmh2lPRMSOnTi8TV27IcoEtEi8Rf6VtUIkVdJK23-P7SRrh5gm3u3ocj7rvvPdfQdwQohjt4tFSDRJQ6piE0osdEiZTLgNPxzHuXu6mKRXP_n50NHkvO97YawQjf1S45P4a3YB_EHOPZWMsBa0BTsssTDYAaHBZN0FGXWcyzZGJhaYd914f212Xkg197zQjlPojauKFI1VTNFOtHgYcnrXM3r-f0LvwbMOYqKz1iZewBNT7sPBWWnD69-36BT5ok__mr4Pu4N-4NsBNMObpe-ZKq_R7FbX1WJWyblCRW0McuzUjlECuX4UtDkXALki04-o7qvqZvMFWlbIE0DMS1S06S0kSo02uiaRH8HTvIQfo-F0cBl2MxlCQXm0DJkiQiQuXy214YKkXCpNEoJ1nGHODU8LmmpmKC4wj6QizMRCSmMIlqKgIj6E7bIqzStAXEWZklTpGGsqMsUpo1JZuIAzUaREBYCsTvPuTjW5T5cTnG8oNYCT_hjzRcvO8e9lp_6I79aI-pcraEtZPv06yb-RcXQx-k7ycQBH92zgbgOzMMxCmwCOe5vI7eG43IooTbWywlkYypIse3iFDbVteJ3iAA5bY1pLnDm-1OT14_97DLuX0y_jfPzp6vMbeOrL1nw94lvYXtYrcwRbjV698_fiD02pB0U
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xTQJe-NiYCDDmh2lvEbFjJw5vVdcCopoGHRJvlr9CK0RSJa20_ffYTrJ1iAnxbkeX85185_vd7wBOCPHsdqmMiSF5THVqY4WliSlTGXfph-c4908X8_z8Oz-beJqcZOiFcUK07kttKOJ7r16ZsmcYwO_UMtDJSGdFO7DHsrzw6dZoPL_thEx63mWXJxMXnPcdeX9s9jeRbu_cRHteqVceGSlbp5yym2pxf9gZrp_p0_8X_Bk86UNNNOps4zk8sNU-HIwql2b_ukanKIA_w6v6PjwaD4PfDqCdXK1D71T1Ay2uTVOvFrVaalQ21iLPUu2ZJZDvS0Hb8wGQB5u-R82ArlssV2hdo0AEsaxQ2ZW5kKwM2uqeRGEUT_sCvk0nl-OPcT-bIZaUJ-uYaSJl5uvWylguSc6VNiQj2KQF5tzyvKS5YZbiEvNEacJsKpWylmAlSyrTQ9it6sq-BMR1UmhFtUmxobLQnDKqtAsbcCHLnOgIkNOr6H2rFaFsTrDYUmoEJ8NRilXH0vH3ZafhmG_WyOanB7blTFxezMUXMks-TL8SMYvg6I4d3GxgLhxzIU4Ex4NdCHc4vsYiK1tvnHAuHGVZUdy_wqXcLs3OcQSHnUHdSlx43tTs1b__9xgeXpxNxezT-efX8Dig1wIs8Q3srpuNPYKd1mzeBtf4Dd_BCcg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+hydrophobic+free+energies+from+experimental+data%3A+relationship+to+protein+folding+and+theoretical+models&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Sharp%2C+K+A&rft.au=Nicholls%2C+A&rft.au=Friedman%2C+R&rft.au=Honig%2C+B&rft.date=1991-10-08&rft.issn=0006-2960&rft.volume=30&rft.issue=40&rft.spage=9686&rft.epage=9697&rft_id=info:doi/10.1021%2Fbi00104a017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon