Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models
Solubility and vapor pressure measurements of hydrocarbons in water are generally thought to provide estimates of the strength of the hydrophobic effect in the range 20-30 cal/(mol.A2). Our reassessment of the solubility data on the basis of new developments in solution thermodynamics suggests that...
Saved in:
Published in: | Biochemistry (Easton) Vol. 30; no. 40; pp. 9686 - 9697 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Chemical Society
08-10-1991
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Solubility and vapor pressure measurements of hydrocarbons in water are generally thought to provide estimates of the strength of the hydrophobic effect in the range 20-30 cal/(mol.A2). Our reassessment of the solubility data on the basis of new developments in solution thermodynamics suggests that the hydrophobic surface free energy for hydrocarbon solutes is 46-47 cal/(mol.A2), although the actual value depends strongly on curvature effects [Nicholls et al. (1991) Proteins (in press); Sharp et al. (1991) Science 252, 106-109]. The arguments to support such a significant increase in the estimate of the hydrophobic effect stem partly from theoretical considerations and partly from the experimental results of De Young and Dill [(1990) J. Phys. Chem. 94, 801-809] on benzene partition between water and alkane solvents. Previous estimates of the hydrophobic effect derive from an analysis of solute partition data, which does not fully account for changes in volume entropy. We show here how the ideal gas equations, combined with experimental molar volumes, can account for such changes. Revised solubility scales for the 20 amino acids, based on cyclohexane to water and octanol to water transfer energies, are derived. The agreement between these scales, particularly the octanol scale, and mutant protein stability measurements from Kellis et al. [(1989) Biochemistry 28, 4914-4922] and Shortle et al. [(1990) Biochemistry 29, 8033-8041] is good. The increased strength of the hydrophobic interaction has implications for the energetics of protein folding, substrate binding, and nucleic acid base stacking and the interpretation of computer simulations. |
---|---|
AbstractList | Previous estimates of the hydrophobic effect derive from an analysis of solute partition data, which does not fully account for changes in volume entropy. We show here how the ideal gas equations, combined with experimental molar volumes, can account for such changes. The increased strength of the hydrophobic interaction has implications for the energetics of protein folding, substrate binding, and nucleic acid base stacking and the interpretation of computer simulations. Solubility and vapor pressure measurements of hydrocarbons in water are generally thought to provide estimates of the strength of the hydrophobic effect in the range 20-30 cal/(mol.A2). Our reassessment of the solubility data on the basis of new developments in solution thermodynamics suggests that the hydrophobic surface free energy for hydrocarbon solutes is 46-47 cal/(mol.A2), although the actual value depends strongly on curvature effects [Nicholls et al. (1991) Proteins (in press); Sharp et al. (1991) Science 252, 106-109]. The arguments to support such a significant increase in the estimate of the hydrophobic effect stem partly from theoretical considerations and partly from the experimental results of De Young and Dill [(1990) J. Phys. Chem. 94, 801-809] on benzene partition between water and alkane solvents. Previous estimates of the hydrophobic effect derive from an analysis of solute partition data, which does not fully account for changes in volume entropy. We show here how the ideal gas equations, combined with experimental molar volumes, can account for such changes. Revised solubility scales for the 20 amino acids, based on cyclohexane to water and octanol to water transfer energies, are derived. The agreement between these scales, particularly the octanol scale, and mutant protein stability measurements from Kellis et al. [(1989) Biochemistry 28, 4914-4922] and Shortle et al. [(1990) Biochemistry 29, 8033-8041] is good. The increased strength of the hydrophobic interaction has implications for the energetics of protein folding, substrate binding, and nucleic acid base stacking and the interpretation of computer simulations. |
Author | Friedman, Richard Sharp, Kim A Nicholls, Anthony Honig, Barry |
Author_xml | – sequence: 1 givenname: Kim A surname: Sharp fullname: Sharp, Kim A – sequence: 2 givenname: Anthony surname: Nicholls fullname: Nicholls, Anthony – sequence: 3 givenname: Richard surname: Friedman fullname: Friedman, Richard – sequence: 4 givenname: Barry surname: Honig fullname: Honig, Barry |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5028818$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/1911756$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1UVLaFE2ekHBAcqoDHm8QON1T1A2klvsrZmjiTrktiB9srbf97XGVVOCBxGo3eb55G752wI-cdMfYS-DvgAt53lnPgFXKQT9gKasHLqm3rI7binDelaBv-jJ3EeJfXisvqmB1DCyDrZsXixT4FNMm622J73wc_b31nTTEEooIchVtLMW9-Kmg_U7ATuYRj0WPCD0WgEZP1Lm7tXCRfzMEnsq4Y_Ng_OKLri7QlHyhZk68m39MYn7OnA46RXhzmKftxeXFzfl1uPl99Ov-4KbFSPJW1EYgNByG7nhQKqTrTi0ZAv25BKVJyqGRfUwUDKN4ZUdMau45IQIdDhetT9mbxzW_92lFMerLR0DiiI7-LWgoQwCX8F4QGeN20bQbPFtAEH2OgQc85EQz3Grh-6EL_1UWmXx1sd91E_R92CT_rrw86xpzOENAZGx-xmgulQGWsXDAbE-0fZQw_dSPXstY3X77rr2LDry6_Cb3J_NuFRxP1nd8Fl0P-54O_AbEbsFY |
CitedBy_id | crossref_primary_10_1016_S0301_4622_98_00229_4 crossref_primary_10_1110_ps_0219002 crossref_primary_10_1002_pro_5560050821 crossref_primary_10_1073_pnas_1318754110 crossref_primary_10_1016_j_jmb_2007_05_078 crossref_primary_10_1080_07391102_2000_10506608 crossref_primary_10_1021_acs_jcim_5b00704 crossref_primary_10_1002_jmr_564 crossref_primary_10_1021_jm049524q crossref_primary_10_1002_jcc_21129 crossref_primary_10_1529_biophysj_104_050203 crossref_primary_10_1007_BF00141573 crossref_primary_10_1155_2015_678764 crossref_primary_10_1021_ar900009e crossref_primary_10_1002_jcc_24512 crossref_primary_10_1021_jp4042233 crossref_primary_10_1016_0022_2836_92_90121_Y crossref_primary_10_1134_1_2149075 crossref_primary_10_1002_ange_19951071339 crossref_primary_10_1002_prot_20247 crossref_primary_10_1080_07391102_1997_10508940 crossref_primary_10_1007_s10858_020_00335_9 crossref_primary_10_1016_0021_9673_94_80515_6 crossref_primary_10_1016_S0968_0896_00_00198_X crossref_primary_10_1021_jp9521621 crossref_primary_10_1002_pro_2860 crossref_primary_10_1021_ci700041j crossref_primary_10_1007_s10822_011_9470_9 crossref_primary_10_1016_0197_0186_92_90146_I crossref_primary_10_1093_jac_dkp024 crossref_primary_10_1016_S1058_6687_05_80036_1 crossref_primary_10_1002_pro_5560020505 crossref_primary_10_1002_prot_10414 crossref_primary_10_1002__SICI_1099_1352_199905_06_12_3_177__AID_JMR451_3_0_CO_2_Z crossref_primary_10_1016_S0301_4622_02_00038_8 crossref_primary_10_1002_jcc_540140503 crossref_primary_10_1021_acs_jpcb_5b04208 crossref_primary_10_1038_nsb1196_923 crossref_primary_10_3390_ijms12128449 crossref_primary_10_1016_S0040_6031_02_00457_4 crossref_primary_10_1016_S0167_4838_01_00281_3 crossref_primary_10_1017_S003358351200011X crossref_primary_10_1073_pnas_94_3_808 crossref_primary_10_1246_bcsj_20180008 crossref_primary_10_1007_BF02174465 crossref_primary_10_1080_21505594_2019_1635418 crossref_primary_10_1111_j_1365_2958_1992_tb01382_x crossref_primary_10_1529_biophysj_104_040071 crossref_primary_10_1002_pro_5560020509 crossref_primary_10_1021_jp062796f crossref_primary_10_1002__SICI_1097_0134_199705_28_1_117__AID_PROT12_3_0_CO_2_M crossref_primary_10_1016_S0006_3495_04_74204_6 crossref_primary_10_1017_S0033583500002845 crossref_primary_10_1021_jp993081y crossref_primary_10_1063_1_468327 crossref_primary_10_1021_ja4040472 crossref_primary_10_1002__SICI_1097_0282_1997_44_3_201__AID_BIP2_3_0_CO_2_Z crossref_primary_10_1002__SICI_1097_0282_199912_50_7_742__AID_BIP7_3_0_CO_2_6 crossref_primary_10_1074_jbc_270_25_15076 crossref_primary_10_1021_ie9507437 crossref_primary_10_1002_bip_360320205 crossref_primary_10_1021_jp0003297 crossref_primary_10_1016_0301_4622_94_00047_6 crossref_primary_10_1002_bip_360360304 crossref_primary_10_1063_1_477940 crossref_primary_10_1002_pro_5560060618 crossref_primary_10_1002_ange_1761051104 crossref_primary_10_1002_prot_22689 crossref_primary_10_1016_j_molcatb_2016_04_005 crossref_primary_10_1021_bi991460b crossref_primary_10_1177_095632029300400101 crossref_primary_10_1007_s10822_005_9024_0 crossref_primary_10_1021_cr960149m crossref_primary_10_1016_0079_6107_93_90002_2 crossref_primary_10_1073_pnas_1220825110 crossref_primary_10_1002_pro_5560041206 crossref_primary_10_1021_bi300653m crossref_primary_10_1002_pro_5560050702 crossref_primary_10_1085_jgp_202213189 crossref_primary_10_1016_S0166_1280_96_04946_9 crossref_primary_10_1021_acs_jpcb_2c05367 crossref_primary_10_1007_s10955_011_0232_9 crossref_primary_10_1021_acs_chemrev_5b00583 crossref_primary_10_1021_jp962972s crossref_primary_10_1002_1097_0134_20010101_42_1_49__AID_PROT60_3_0_CO_2_Z crossref_primary_10_1016_0022_2836_92_90906_Z crossref_primary_10_1021_jp9724838 crossref_primary_10_1007_s00249_010_0577_z crossref_primary_10_1016_j_jsb_2005_09_005 crossref_primary_10_1110_ps_8_4_890 crossref_primary_10_1016_S0301_4622_98_00167_7 crossref_primary_10_1006_jmbi_1997_1399 crossref_primary_10_1002_jmr_300060305 crossref_primary_10_1016_S0301_4622_99_00105_2 crossref_primary_10_1002_pro_5560020410 crossref_primary_10_1002_prot_10584 crossref_primary_10_1002_jcc_20634 crossref_primary_10_1016_0300_9084_94_90139_2 crossref_primary_10_1002_jcc_20750 crossref_primary_10_1016_j_aca_2004_11_039 crossref_primary_10_1007_BF00134174 crossref_primary_10_1007_s00109_007_0239_5 crossref_primary_10_4137_PRI_S10988 crossref_primary_10_1016_j_str_2004_12_012 crossref_primary_10_1016_0079_6107_93_90017_E crossref_primary_10_1016_j_chroma_2004_10_015 crossref_primary_10_1016_S0006_3495_99_77400_X crossref_primary_10_1002_asia_200900679 crossref_primary_10_1016_0022_2836_92_90895_Q crossref_primary_10_1016_0079_6107_92_90006_R crossref_primary_10_1146_annurev_biophys_28_1_319 crossref_primary_10_1016_0166_1280_95_04424_8 crossref_primary_10_1021_ct300941v crossref_primary_10_1021_acs_jpcc_9b03680 crossref_primary_10_1073_pnas_1203720109 crossref_primary_10_1103_PhysRevE_90_042709 crossref_primary_10_1209_epl_i2004_10056_2 crossref_primary_10_1002_prot_10217 crossref_primary_10_1016_j_bpc_2004_03_001 crossref_primary_10_1111_j_1432_1033_1995_0060o_x crossref_primary_10_1143_JPSJ_63_814 crossref_primary_10_1021_jp960668t crossref_primary_10_1002_anie_199315451 crossref_primary_10_1016_j_jsb_2016_09_003 crossref_primary_10_1002_adem_200500141 crossref_primary_10_1016_S0006_3495_04_74127_2 crossref_primary_10_1016_S0301_4622_02_00281_8 crossref_primary_10_1016_0009_2614_93_85403_B crossref_primary_10_1016_S0301_0104_00_00178_6 crossref_primary_10_1016_0141_0229_92_90049_T crossref_primary_10_1002_anie_199625881 crossref_primary_10_1002_pro_5560041014 crossref_primary_10_1073_pnas_0610945104 crossref_primary_10_1080_10826070701465456 crossref_primary_10_1016_0301_4622_94_00041_7 crossref_primary_10_1002_pro_5560020310 crossref_primary_10_1016_0958_1669_94_90046_9 crossref_primary_10_1016_j_jmb_2010_07_021 crossref_primary_10_1002_jcc_540141103 crossref_primary_10_1016_S0969_2126_03_00073_X crossref_primary_10_1093_protein_12_10_841 crossref_primary_10_1006_jmbi_1999_3411 crossref_primary_10_1002_prot_340230203 crossref_primary_10_1146_annurev_biochem_69_1_881 crossref_primary_10_1002_prot_340110407 crossref_primary_10_1002_pro_5560041004 crossref_primary_10_1088_1478_3975_2_2_S02 crossref_primary_10_3109_10799899409066029 crossref_primary_10_1126_science_1615324 crossref_primary_10_1515_bchm3_1992_373_2_447 crossref_primary_10_1021_jp9807165 crossref_primary_10_1080_00268979500101791 crossref_primary_10_1146_annurev_physchem_032210_103509 crossref_primary_10_1021_jp953016y crossref_primary_10_1002_pro_5560040616 crossref_primary_10_1021_acs_jctc_2c00219 crossref_primary_10_1016_S0009_2614_97_01381_X crossref_primary_10_1016_S0009_2614_97_01147_0 crossref_primary_10_1021_jp107111f crossref_primary_10_1111_j_1399_3011_1996_tb01351_x crossref_primary_10_1002_rcm_4141 crossref_primary_10_1017_S0033583500004522 crossref_primary_10_1098_rsta_1993_0125 crossref_primary_10_1016_0021_9673_93_80819_T crossref_primary_10_1063_1_2138030 crossref_primary_10_1103_PhysRevLett_91_158102 crossref_primary_10_1021_jp9638503 crossref_primary_10_1063_1_463919 crossref_primary_10_1002_bip_20600 crossref_primary_10_1016_0301_4622_93_E0096_N crossref_primary_10_1021_jm950591h crossref_primary_10_1063_1_1633257 crossref_primary_10_1002_1097_0282_200011_54_6_416__AID_BIP60_3_0_CO_2_2 crossref_primary_10_1002_prot_10020 crossref_primary_10_1093_protein_15_8_659 crossref_primary_10_1002__SICI_1097_0282_20000415_53_5_423__AID_BIP6_3_0_CO_2_C crossref_primary_10_1021_acs_jcim_3c01611 crossref_primary_10_1016_S0301_4622_99_00119_2 crossref_primary_10_1016_j_cplett_2009_12_086 crossref_primary_10_1021_ja9026314 crossref_primary_10_1063_1_1990110 crossref_primary_10_1016_S0006_3495_99_77389_3 crossref_primary_10_1063_1_3590718 crossref_primary_10_1111_j_1399_3011_1996_tb01110_x crossref_primary_10_1002__SICI_1097_0282_199711_42_6_633__AID_BIP2_3_0_CO_2_V crossref_primary_10_1016_S0301_4622_98_00226_9 crossref_primary_10_1021_jp036650h crossref_primary_10_1016_S0003_9861_02_00202_3 crossref_primary_10_1021_cr960435y crossref_primary_10_1103_PhysRevLett_94_018101 crossref_primary_10_1002_bmc_543 crossref_primary_10_1016_j_str_2005_01_018 crossref_primary_10_1006_jmbi_1997_1010 crossref_primary_10_1021_jp962811o crossref_primary_10_1021_jp051528z crossref_primary_10_1039_c2ob26602d crossref_primary_10_1073_pnas_95_11_6103 crossref_primary_10_1002_prot_340180205 crossref_primary_10_1016_S0009_2614_97_00165_6 crossref_primary_10_1088_0953_8984_19_28_285210 crossref_primary_10_1021_ja906399e crossref_primary_10_1515_BC_2006_038 crossref_primary_10_3109_10799899709036621 crossref_primary_10_1016_S0006_3495_99_77186_9 crossref_primary_10_1016_0166_1280_95_04433_7 crossref_primary_10_1021_ct600274a crossref_primary_10_1088_0953_8984_19_28_285213 crossref_primary_10_1002__SICI_1097_0134_199610_26_2_123__AID_PROT2_3_0_CO_2_H crossref_primary_10_1016_0301_4622_95_00120_4 crossref_primary_10_1002_cmdc_200600223 crossref_primary_10_1063_1_470596 crossref_primary_10_1002_prot_10241 crossref_primary_10_1021_ja029892o crossref_primary_10_1002__SICI_1097_0134_19981001_33_1_39__AID_PROT4_3_0_CO_2_G crossref_primary_10_1006_jmbi_1999_3211 crossref_primary_10_1016_S0079_6107_96_00001_6 crossref_primary_10_1110_ps_8_3_587 crossref_primary_10_1006_jmbi_1998_2277 crossref_primary_10_1080_08927029308022161 crossref_primary_10_1016_S0959_440X_94_90318_2 crossref_primary_10_1039_P29940000405 crossref_primary_10_1016_j_molliq_2018_10_024 crossref_primary_10_1021_ci500183u crossref_primary_10_1080_08927029308022162 crossref_primary_10_1002_pro_5560040513 crossref_primary_10_1039_a827057z crossref_primary_10_1002_pro_5560010204 crossref_primary_10_1074_jbc_M501519200 crossref_primary_10_1110_ps_8_4_820 crossref_primary_10_1080_07391102_1993_10508011 crossref_primary_10_1002_cphc_200500213 crossref_primary_10_1002_prot_340200203 crossref_primary_10_1016_S0304_4157_96_00009_3 crossref_primary_10_1074_jbc_272_20_13006 crossref_primary_10_1021_jp500980x crossref_primary_10_1038_356453a0 crossref_primary_10_1146_annurev_biophys_26_1_425 crossref_primary_10_1002_anie_199514831 crossref_primary_10_4208_cicp_290711_121011s crossref_primary_10_1126_science_1553543 crossref_primary_10_1152_ajpheart_00706_2005 crossref_primary_10_1016_j_sbi_2011_01_011 crossref_primary_10_1021_ja001788o crossref_primary_10_1115_1_4032759 crossref_primary_10_1002_pro_457 crossref_primary_10_1021_jp015514e crossref_primary_10_1016_S0014_5793_03_00148_0 crossref_primary_10_1002_pro_5560030501 crossref_primary_10_1039_C8CC00695D crossref_primary_10_1038_s42004_019_0242_0 crossref_primary_10_1016_0009_2614_93_89025_D crossref_primary_10_1021_cr990139w crossref_primary_10_1088_0953_8984_17_18_019 crossref_primary_10_3389_fimmu_2019_02047 crossref_primary_10_1021_jp970257s crossref_primary_10_1007_s00424_010_0885_2 crossref_primary_10_1002_ange_19961082205 crossref_primary_10_1016_j_jics_2022_100698 crossref_primary_10_1016_0301_4622_94_00062_X crossref_primary_10_1021_jp980643p crossref_primary_10_1002_pro_5560021110 crossref_primary_10_5012_bkcs_2011_32_6_1985 crossref_primary_10_1016_j_jmb_2004_09_061 crossref_primary_10_1002_prot_20290 crossref_primary_10_1002_qsar_200330812 crossref_primary_10_1016_S0021_9673_03_00182_1 crossref_primary_10_1021_jp9845120 crossref_primary_10_1016_j_chroma_2008_11_055 crossref_primary_10_1016_S1074_5521_99_89004_8 crossref_primary_10_1021_la036330p crossref_primary_10_1016_j_bpj_2020_02_032 crossref_primary_10_1143_JPSJ_62_1782 crossref_primary_10_1002_prot_340200307 crossref_primary_10_1063_1_2844788 crossref_primary_10_1073_pnas_2335923100 crossref_primary_10_1111_j_1365_2958_1993_tb01662_x crossref_primary_10_1016_S0301_4622_98_00201_4 crossref_primary_10_1021_jp972358w crossref_primary_10_1016_0022_2836_92_90229_D crossref_primary_10_1016_0302_4598_96_05076_3 crossref_primary_10_1021_jp9117369 crossref_primary_10_1016_0021_9673_93_80800_N crossref_primary_10_1088_0953_8984_22_28_284108 crossref_primary_10_1016_0301_4622_94_00060_3 crossref_primary_10_1021_ja056278e crossref_primary_10_1074_jbc_M201373200 crossref_primary_10_1155_2014_971258 crossref_primary_10_1002_1097_0134_20010201_42_2_243__AID_PROT120_3_0_CO_2_B crossref_primary_10_1002_nadc_19920400215 crossref_primary_10_1002_jcc_540160904 crossref_primary_10_1006_jmbi_1999_3371 crossref_primary_10_1063_1_469854 crossref_primary_10_1007_s10822_008_9175_x crossref_primary_10_1016_j_jmb_2004_11_046 crossref_primary_10_1002_cbdv_200490084 crossref_primary_10_1007_s12039_009_0105_9 crossref_primary_10_1016_S0301_4622_98_00236_1 crossref_primary_10_1016_j_molliq_2024_125247 crossref_primary_10_1002_jcc_1134 crossref_primary_10_1110_ps_035022_108 crossref_primary_10_1016_S0959_440X_94_90063_9 crossref_primary_10_1002_prot_22803 crossref_primary_10_1016_j_biochi_2024_01_014 crossref_primary_10_1080_01932699808913178 crossref_primary_10_1093_protein_gzi009 crossref_primary_10_1016_j_str_2008_05_008 crossref_primary_10_1016_S0301_4622_97_00110_5 crossref_primary_10_1021_bi802117k crossref_primary_10_1016_0039_128X_94_00070_S crossref_primary_10_1007_BF00126743 crossref_primary_10_1080_00032719_2010_520393 |
ContentType | Journal Article |
Copyright | 1992 INIST-CNRS |
Copyright_xml | – notice: 1992 INIST-CNRS |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 8FD C1K FR3 M81 P64 7X8 |
DOI | 10.1021/bi00104a017 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biochemistry Abstracts 3 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Engineering Research Database Technology Research Database Biochemistry Abstracts 3 Bacteriology Abstracts (Microbiology B) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 9697 |
ExternalDocumentID | 10_1021_bi00104a017 1911756 5028818 ark_67375_TPS_Q2L0GFR2_L c478099033 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM-41371 – fundername: NIGMS NIH HHS grantid: GM-30518 |
GroupedDBID | - .K2 02 08R 186 1WB 23N 3O- 53G 55 55A 5GY 5RE 5VS 85S AABXI AAYJJ ABFLS ABMVS ABOCM ABPTK ABUFD ACGFS ACJ ACNCT ACS AENEX AETEA AFFDN AFFNX AFMIJ AGXLV AIDAL AJUXI AJYGW ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 D0L DU5 DZ F20 F5P G8K GJ HR J5H JG JG~ K2 K78 KM L7B LG6 MVM NHB OHT P2P RNS ROL TN5 UNC UQL VQA W1F WH7 X X7M XFK YQJ YXE YZZ ZA5 ZE2 ZGI ZXP --- -DZ -~X .55 .GJ .HR 6TJ ABDPE ABHMW ABJNI BSCLL CUPRZ EBS GGK VG9 XOL YYP ZCA ~02 ~KM 4.4 7~N 8W4 ABDTD ABFRP ABQRX ABUCX ACKIV ADGIM ADHLV AEESW AFEFF AHGAQ ED~ EJD GNL IH9 IHE IQODW UI2 VF5 XJT XSW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 8FD C1K FR3 M81 P64 7X8 |
ID | FETCH-LOGICAL-a480t-5c2aa60127bde8a278bcd2621d39188e87f47d5e41f180bc25e3abbee21baf4a3 |
IEDL.DBID | ACS |
ISSN | 0006-2960 |
IngestDate | Fri Oct 25 05:51:53 EDT 2024 Fri Oct 25 09:19:34 EDT 2024 Thu Nov 21 22:08:19 EST 2024 Wed Oct 16 00:50:28 EDT 2024 Fri Nov 25 13:54:31 EST 2022 Wed Oct 30 09:27:22 EDT 2024 Thu Aug 27 13:42:39 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Keywords | Proteins Thermodynamics Hydrophobicity Aqueous solution Solute effect Free energy |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a480t-5c2aa60127bde8a278bcd2621d39188e87f47d5e41f180bc25e3abbee21baf4a3 |
Notes | istex:EA28D3A801424B2C6F37FEA63281C0292DA7206C ark:/67375/TPS-Q2L0GFR2-L ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 1911756 |
PQID | 16105699 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_72121071 proquest_miscellaneous_16105699 crossref_primary_10_1021_bi00104a017 pubmed_primary_1911756 pascalfrancis_primary_5028818 istex_primary_ark_67375_TPS_Q2L0GFR2_L acs_journals_10_1021_bi00104a017 |
ProviderPackageCode | JG~ 55A AABXI ACJ AGXLV W1F ANTXH ACS .K2 ABMVS 1WB BAANH AQSVZ |
PublicationCentury | 1900 |
PublicationDate | 1991-10-08 |
PublicationDateYYYYMMDD | 1991-10-08 |
PublicationDate_xml | – month: 10 year: 1991 text: 1991-10-08 day: 08 |
PublicationDecade | 1990 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 1991 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Biochemistry 1993 May 25;32(20):5490 |
References_xml | |
SSID | ssj0004074 |
Score | 1.9545071 |
Snippet | Solubility and vapor pressure measurements of hydrocarbons in water are generally thought to provide estimates of the strength of the hydrophobic effect in the... Previous estimates of the hydrophobic effect derive from an analysis of solute partition data, which does not fully account for changes in volume entropy. We... |
SourceID | proquest crossref pubmed pascalfrancis istex acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 9686 |
SubjectTerms | Alkanes - chemistry Amino Acids - chemistry Biological and medical sciences Computer Simulation Energy Transfer Fundamental and applied biological sciences. Psychology Models, Molecular Models, Theoretical Molecular biophysics Physico-chemical properties of biomolecules Protein Conformation Solubility Surface Properties Thermodynamics |
Title | Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models |
URI | http://dx.doi.org/10.1021/bi00104a017 https://api.istex.fr/ark:/67375/TPS-Q2L0GFR2-L/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/1911756 https://search.proquest.com/docview/16105699 https://search.proquest.com/docview/72121071 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3R9gAXKC0VAVrmUHqLiB0ndrhVyy4cKgRskbhF_gq7QiSrZFdq_z22k223VVdwtyXbM5bfeN68ATil1KvbpTKmhvKY6dTGikgTs0zlwoUfXuPcf11M-Zef4uPYy-S825LBp-S9mgcNGelcZwf2KHcYwSOg0fS2_DEZxJZdcEwdIh_K8O5N9s-P7u48P3v-JK88HVJ27kSqvpXFdqwZ3pzJs_9c7T48HUAlnvde8Bwe2foADs9rF1D_ucYzDDTP8H9-AI9H6xZvh9CNr5ahSqr-hbNr0zaLWaPmGqvWWvR61F5DAn0FCm52AkBPK_2A7ZpHN5svcNlgkHyY11j1CS2UtcGNOkkMTXe6F_BjMr4cfY6HLgyxZCJZxpmmUuY-Q62MFZJyobShOSUmLYgQVvCKcZNZRioiEqVpZlOplLWUKFkxmR7Bbt3U9iWg0EmhFdMmJYbJQguWMaUdQCCFrDjVEaAzUTncoq4MCXJKyo1DjeB0bb9y0etxPDzsLNj2Zoxsf3sKG8_Ky6_T8hu9SD5NvtPyIoLjO8a_mZA54OXATARv185QOuP4bIqsbbNyi3PAM8uLYvsIF1y7gJqTCI56L7pdceEVUvNX_97va3gSyGmBdfgGdpftyh7DTmdWJ-ES_AUuOP7J |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6x7WG8wNiYCDDmh2lPRMSOnTi8TV27IcoEtEi8Rf6VtUIkVdJK23-P7SRrh5gm3u3ocj7rvvPdfQdwQohjt4tFSDRJQ6piE0osdEiZTLgNPxzHuXu6mKRXP_n50NHkvO97YawQjf1S45P4a3YB_EHOPZWMsBa0BTsssTDYAaHBZN0FGXWcyzZGJhaYd914f212Xkg197zQjlPojauKFI1VTNFOtHgYcnrXM3r-f0LvwbMOYqKz1iZewBNT7sPBWWnD69-36BT5ok__mr4Pu4N-4NsBNMObpe-ZKq_R7FbX1WJWyblCRW0McuzUjlECuX4UtDkXALki04-o7qvqZvMFWlbIE0DMS1S06S0kSo02uiaRH8HTvIQfo-F0cBl2MxlCQXm0DJkiQiQuXy214YKkXCpNEoJ1nGHODU8LmmpmKC4wj6QizMRCSmMIlqKgIj6E7bIqzStAXEWZklTpGGsqMsUpo1JZuIAzUaREBYCsTvPuTjW5T5cTnG8oNYCT_hjzRcvO8e9lp_6I79aI-pcraEtZPv06yb-RcXQx-k7ycQBH92zgbgOzMMxCmwCOe5vI7eG43IooTbWywlkYypIse3iFDbVteJ3iAA5bY1pLnDm-1OT14_97DLuX0y_jfPzp6vMbeOrL1nw94lvYXtYrcwRbjV698_fiD02pB0U |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xTQJe-NiYCDDmh2lvEbFjJw5vVdcCopoGHRJvlr9CK0RSJa20_ffYTrJ1iAnxbkeX85185_vd7wBOCPHsdqmMiSF5THVqY4WliSlTGXfph-c4908X8_z8Oz-beJqcZOiFcUK07kttKOJ7r16ZsmcYwO_UMtDJSGdFO7DHsrzw6dZoPL_thEx63mWXJxMXnPcdeX9s9jeRbu_cRHteqVceGSlbp5yym2pxf9gZrp_p0_8X_Bk86UNNNOps4zk8sNU-HIwql2b_ukanKIA_w6v6PjwaD4PfDqCdXK1D71T1Ay2uTVOvFrVaalQ21iLPUu2ZJZDvS0Hb8wGQB5u-R82ArlssV2hdo0AEsaxQ2ZW5kKwM2uqeRGEUT_sCvk0nl-OPcT-bIZaUJ-uYaSJl5uvWylguSc6VNiQj2KQF5tzyvKS5YZbiEvNEacJsKpWylmAlSyrTQ9it6sq-BMR1UmhFtUmxobLQnDKqtAsbcCHLnOgIkNOr6H2rFaFsTrDYUmoEJ8NRilXH0vH3ZafhmG_WyOanB7blTFxezMUXMks-TL8SMYvg6I4d3GxgLhxzIU4Ex4NdCHc4vsYiK1tvnHAuHGVZUdy_wqXcLs3OcQSHnUHdSlx43tTs1b__9xgeXpxNxezT-efX8Dig1wIs8Q3srpuNPYKd1mzeBtf4Dd_BCcg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+hydrophobic+free+energies+from+experimental+data%3A+relationship+to+protein+folding+and+theoretical+models&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Sharp%2C+K+A&rft.au=Nicholls%2C+A&rft.au=Friedman%2C+R&rft.au=Honig%2C+B&rft.date=1991-10-08&rft.issn=0006-2960&rft.volume=30&rft.issue=40&rft.spage=9686&rft.epage=9697&rft_id=info:doi/10.1021%2Fbi00104a017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |