Phosphorylation of Histone Deacetylase 8: Structural and Mechanistic Analysis of the Phosphomimetic S39E Mutant

Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post-translational modifications are frequently post-translationally modified. HDAC8 is phosphorylated within the deacetylase domain at conserved residue serine 39, which leads to decreased catalytic activity. HDAC8 phosphoryl...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) Vol. 58; no. 45; pp. 4480 - 4493
Main Authors: Welker Leng, Katherine R, Castañeda, Carol Ann, Decroos, Christophe, Islam, Barira, Haider, Shozeb M, Christianson, David W, Fierke, Carol A
Format: Journal Article
Language:English
Published: United States American Chemical Society 12-11-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post-translational modifications are frequently post-translationally modified. HDAC8 is phosphorylated within the deacetylase domain at conserved residue serine 39, which leads to decreased catalytic activity. HDAC8 phosphorylation at S39 is unique in its location and function and may represent a novel mode of deacetylation regulation. To better understand the impact of phosphorylation of HDAC8 on enzyme structure and function, we performed crystallographic, kinetic, and molecular dynamics studies of the S39E HDAC8 phosphomimetic mutant. This mutation decreases the level of deacetylation of peptides derived from acetylated nuclear and cytoplasmic proteins. However, the magnitude of the effect depends on the peptide sequence and the identity of the active site metal ion [Zn­(II) vs Fe­(II)], with the value of k cat/K M for the mutant decreasing 9- to >200-fold compared to that of wild-type HDAC8. Furthermore, the dissociation rate constant of the active site metal ion increases by ∼10-fold. S39E HDAC8 was crystallized in complex with the inhibitor Droxinostat, revealing that phosphorylation of S39, as mimicked by the glutamate side chain, perturbs local structure through distortion of the L1 loop. Molecular dynamics simulations of both S39E and phosphorylated S39 HDAC8 demonstrate that the perturbation of the L1 loop likely occurs because of the lost hydrogen bond between D29 and S39. Furthermore, the S39 perturbation causes structural changes that propagate through the protein scaffolding to influence function in the active site. These data demonstrate that phosphorylation plays an important regulatory role for HDAC8 by affecting ligand binding, catalytic efficiency, and substrate selectivity.
AbstractList Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post translational modifications are frequently post-translationally modified. HDAC8 is phosphorylated within the deacetylase domain at conserved residue serine 39 which leads to decreased catalytic activity. HDAC8 phosphorylation at S39 is unique in its location and function and may represent a novel mode of deacetylation regulation. To better understand the impact of phosphorylation of HDAC8 on enzyme structure and function, we performed crystallographic, kinetic, and molecular dynamics studies of the S39E HDAC8 phosphomimetic mutant. This mutation decreases deacetylation of peptides derived from acetylated nuclear and cytoplasmic proteins. However, the magnitude of the effect depends on the peptide sequence and the identity of the active site metal ion (Zn(II) vs Fe(II)) with the value of k cat / K M for the mutant decreasing 9- to >200-fold compared to wild-type HDAC8. Furthermore, the dissociation rate constant of the active site metal ion increases by ~15-fold. S39E HDAC8 was crystallized in complex with the inhibitor Droxinostat revealing that phosphorylation of S39, as mimicked by the glutamate side chain, perturbs local structure through distortion of the L1 loop. Molecular dynamics simulations of both S39E and phosphorylated S39 HDAC8 demonstrate that the perturbation of the L1 loop likely occurs because of the lost hydrogen bond between D29 and S39. Furthermore, the S39 perturbation causes structural changes that propagate through the protein scaffolding to influence function in the active site. These data demonstrate that phosphorylation plays an important regulatory role for HDAC8 by affecting ligand binding, catalytic efficiency and substrate selectivity.
Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post-translational modifications are frequently post-translationally modified. HDAC8 is phosphorylated within the deacetylase domain at conserved residue serine 39, which leads to decreased catalytic activity. HDAC8 phosphorylation at S39 is unique in its location and function and may represent a novel mode of deacetylation regulation. To better understand the impact of phosphorylation of HDAC8 on enzyme structure and function, we performed crystallographic, kinetic, and molecular dynamics studies of the S39E HDAC8 phosphomimetic mutant. This mutation decreases the level of deacetylation of peptides derived from acetylated nuclear and cytoplasmic proteins. However, the magnitude of the effect depends on the peptide sequence and the identity of the active site metal ion [Zn­(II) vs Fe­(II)], with the value of k cat/K M for the mutant decreasing 9- to >200-fold compared to that of wild-type HDAC8. Furthermore, the dissociation rate constant of the active site metal ion increases by ∼10-fold. S39E HDAC8 was crystallized in complex with the inhibitor Droxinostat, revealing that phosphorylation of S39, as mimicked by the glutamate side chain, perturbs local structure through distortion of the L1 loop. Molecular dynamics simulations of both S39E and phosphorylated S39 HDAC8 demonstrate that the perturbation of the L1 loop likely occurs because of the lost hydrogen bond between D29 and S39. Furthermore, the S39 perturbation causes structural changes that propagate through the protein scaffolding to influence function in the active site. These data demonstrate that phosphorylation plays an important regulatory role for HDAC8 by affecting ligand binding, catalytic efficiency, and substrate selectivity.
Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post-translational modifications are frequently post-translationally modified. HDAC8 is phosphorylated within the deacetylase domain at conserved residue serine 39, which leads to decreased catalytic activity. HDAC8 phosphorylation at S39 is unique in its location and function and may represent a novel mode of deacetylation regulation. To better understand the impact of phosphorylation of HDAC8 on enzyme structure and function, we performed crystallographic, kinetic, and molecular dynamics studies of the S39E HDAC8 phosphomimetic mutant. This mutation decreases the level of deacetylation of peptides derived from acetylated nuclear and cytoplasmic proteins. However, the magnitude of the effect depends on the peptide sequence and the identity of the active site metal ion [Zn(II) vs Fe(II)], with the value of / for the mutant decreasing 9- to >200-fold compared to that of wild-type HDAC8. Furthermore, the dissociation rate constant of the active site metal ion increases by ∼10-fold. S39E HDAC8 was crystallized in complex with the inhibitor Droxinostat, revealing that phosphorylation of S39, as mimicked by the glutamate side chain, perturbs local structure through distortion of the L1 loop. Molecular dynamics simulations of both S39E and phosphorylated S39 HDAC8 demonstrate that the perturbation of the L1 loop likely occurs because of the lost hydrogen bond between D29 and S39. Furthermore, the S39 perturbation causes structural changes that propagate through the protein scaffolding to influence function in the active site. These data demonstrate that phosphorylation plays an important regulatory role for HDAC8 by affecting ligand binding, catalytic efficiency, and substrate selectivity.
Author Castañeda, Carol Ann
Islam, Barira
Welker Leng, Katherine R
Haider, Shozeb M
Christianson, David W
Fierke, Carol A
Decroos, Christophe
AuthorAffiliation Department of Chemistry
School of Pharmacy
Interdepartmental Program in Chemical Biology
Texas A&M University
AuthorAffiliation_xml – name: Texas A&M University
– name: Department of Chemistry
– name: School of Pharmacy
– name: Interdepartmental Program in Chemical Biology
– name: d School of Pharmacy, University College London, 29-39 Brunswick Square London, WC1N 1AX, UK
– name: e Department of Chemistry, Texas A&M University, Jack K. Williams Administration Building, Suite 100 College Station, TX 77843
– name: b Interdepartmental Program in Chemical Biology, University of Michigan, 210 Washtenaw Avenue 4008 Life Sciences Institute, Ann Arbor, MI 48109
– name: a Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
– name: c Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104
Author_xml – sequence: 1
  givenname: Katherine R
  orcidid: 0000-0001-6021-5159
  surname: Welker Leng
  fullname: Welker Leng, Katherine R
  organization: Department of Chemistry
– sequence: 2
  givenname: Carol Ann
  orcidid: 0000-0002-1233-4062
  surname: Castañeda
  fullname: Castañeda, Carol Ann
  organization: Interdepartmental Program in Chemical Biology
– sequence: 3
  givenname: Christophe
  orcidid: 0000-0002-2610-3484
  surname: Decroos
  fullname: Decroos, Christophe
  organization: Department of Chemistry
– sequence: 4
  givenname: Barira
  surname: Islam
  fullname: Islam, Barira
  organization: School of Pharmacy
– sequence: 5
  givenname: Shozeb M
  orcidid: 0000-0003-2650-2925
  surname: Haider
  fullname: Haider, Shozeb M
  organization: School of Pharmacy
– sequence: 6
  givenname: David W
  orcidid: 0000-0002-0194-5212
  surname: Christianson
  fullname: Christianson, David W
  organization: Department of Chemistry
– sequence: 7
  givenname: Carol A
  orcidid: 0000-0002-1481-0579
  surname: Fierke
  fullname: Fierke, Carol A
  email: cafierke@tamu.edu
  organization: Texas A&M University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31633931$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02391044$$DView record in HAL
BookMark eNp9kc1u1DAUhS3Uik4LT4CEvKSLTG1f58cskEalMJWmAqmwthzHIa4Se4idSvP2OJpQ0S5YWb7nO-faOufoxHlnEHpHyZoSRq-UDuvaet2ZYS1qQoocXqEVzRnJuBD5CVqRNMyYKMgZOg_hIV05KflrdAa0ABBAV8h_73zYd3489Cpa77Bv8daGmFbhz0ZpE5MQDK4-4vs4TjpOo-qxcg2-M7pTLqFW441T_SHYMLtjZ_ASOtjBzPI9iBt8N0Xl4ht02qo-mLfLeYF-frn5cb3Ndt--3l5vdpnipYhZw6qKMtLoHKAATTlTdduWZVPkVVkKoipFNaVFBQTKXGgAqEnRMtXWjLWigAv06Zi7n-rBNNq4mB4u96Md1HiQXln5XHG2k7_8oywEAU7zFHB5DOhe2LabnZxnhIGghPNHmtgPy7LR_55MiHKwQZu-V874KUgGpCw5FYIlFI6oHn0Io2mfsimRc60y1SqXWuVSa3K9__c3T56_PSbg6gjM7gc_jamQ8N_IP4qLszI
CitedBy_id crossref_primary_10_1073_pnas_2310910120
crossref_primary_10_1021_acs_biochem_3c00001
crossref_primary_10_1096_fj_202001301RR
crossref_primary_10_1038_s41467_020_17610_w
crossref_primary_10_3390_ijms21228828
crossref_primary_10_1186_s13578_022_00821_7
crossref_primary_10_1016_j_jbc_2022_102068
crossref_primary_10_1039_D1SC01929E
Cites_doi 10.1073/pnas.140199597
10.1128/MCB.01971-05
10.1007/s008940100045
10.1038/sj.embor.7401047
10.1021/ja205972n
10.1016/j.ab.2014.03.012
10.1128/MCB.24.2.765-773.2004
10.1093/bioinformatics/btt055
10.1107/S0907444909052925
10.1016/S0076-6879(97)76066-X
10.1016/j.tips.2015.04.013
10.1073/pnas.0404603101
10.1021/acs.biochem.5b00010
10.1074/jbc.M117.811026
10.1096/fj.04-2303fje
10.1093/nar/gky092
10.1016/j.jmgm.2005.12.005
10.1006/bbrc.2001.4786
10.1002/prot.10383
10.1016/j.str.2016.02.002
10.1038/srep11385
10.1107/S0907444910007493
10.3390/molecules23030566
10.1074/jbc.M105590200
10.1161/CIRCULATIONAHA.110.003665
10.6028/jres.070C.025
10.1074/jbc.M204149200
10.1021/jm800081j
10.1002/bip.22135
10.1158/1535-7163.MCT-09-0495
10.1021/bi1005046
10.1021/ct400556v
10.1042/BC20080158
10.1016/S0002-9440(10)63320-2
10.1002/pro.2623
10.1021/sb400168u
10.1021/acs.biochem.7b00851
10.1063/1.448118
10.1016/j.bmc.2011.06.030
10.1038/nature11316
10.1074/jbc.M405179200
10.1021/jp8001614
10.1016/S0003-2697(03)00426-3
10.1074/jbc.M112.382358
10.1016/S1074-5521(02)00305-8
10.1016/j.pharmthera.2014.02.012
10.1021/cb500492r
10.1073/pnas.1000462107
10.1128/MCB.20.18.6904-6912.2000
10.1016/0263-7855(96)00018-5
10.1002/cbic.200900417
10.1002/jcc.10128
10.1074/jbc.M111.278549
10.1016/0021-9991(77)90098-5
10.1021/ja408184x
10.1021/bi060212u
10.1021/ci5004653
10.1016/j.bmcl.2011.01.128
10.1002/jcc.20035
10.1074/jbc.M803514200
10.1021/ct9000685
10.1002/1521-3773(20011119)40:22<4201::AID-ANIE4201>3.0.CO;2-V
10.1016/j.str.2004.04.012
10.1074/jbc.M107631200
10.1063/1.464397
10.1021/cb5003762
10.1021/bi801610c
10.1074/jbc.M201174200
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
1XC
5PM
DOI 10.1021/acs.biochem.9b00653
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 4493
ExternalDocumentID oai_HAL_hal_02391044v1
10_1021_acs_biochem_9b00653
31633931
c755859563
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM040602
– fundername: NIBIB NIH HHS
  grantid: P30 EB009998
– fundername: NIGMS NIH HHS
  grantid: T32 GM008597
– fundername: NIGMS NIH HHS
  grantid: T32 GM008353
– fundername: NIGMS NIH HHS
  grantid: R01 GM049758
GroupedDBID -
.K2
02
23N
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
4.4
53G
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
NPM
XSW
ZCA
~02
~KM
AAYXX
CITATION
7X8
1XC
EJD
5PM
ID FETCH-LOGICAL-a479t-d288120dc53363c142abff77d6587790a8a1c1168303759c333b06f2afb22f963
IEDL.DBID ACS
ISSN 0006-2960
IngestDate Tue Sep 17 21:20:07 EDT 2024
Tue Oct 15 15:54:10 EDT 2024
Sat Aug 17 03:48:51 EDT 2024
Fri Aug 23 04:05:44 EDT 2024
Sat Sep 28 08:30:15 EDT 2024
Thu Aug 27 13:43:59 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a479t-d288120dc53363c142abff77d6587790a8a1c1168303759c333b06f2afb22f963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. Katherine Welker Leng, Carol Ann Castañeda and Carol A. Fierke performed in vitro HDAC8 experiments, analyzed the data and wrote corresponding text. Christophe Decroos and David W. Christianson (University of Pennsylvania) performed crystallography and related methods, analyzed structural data, and wrote text regarding crystal structure. Barira Islam and Shozeb Haider (University College London) performed molecular dynamics simulations, analyzed that data and wrote corresponding text.
Present Address: University of Huddersfield, Queensgate, Huddersfield HD1 3DH
Present Address: Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
Author Contributions
ORCID 0000-0002-1481-0579
0000-0001-6021-5159
0000-0003-2650-2925
0000-0002-0194-5212
0000-0002-1233-4062
0000-0002-2610-3484
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903415
PMID 31633931
PQID 2307741992
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6903415
hal_primary_oai_HAL_hal_02391044v1
proquest_miscellaneous_2307741992
crossref_primary_10_1021_acs_biochem_9b00653
pubmed_primary_31633931
acs_journals_10_1021_acs_biochem_9b00653
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-11-12
PublicationDateYYYYMMDD 2019-11-12
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref18/cit18
  doi: 10.1073/pnas.140199597
– ident: ref30/cit30
  doi: 10.1128/MCB.01971-05
– ident: ref56/cit56
  doi: 10.1007/s008940100045
– ident: ref26/cit26
  doi: 10.1038/sj.embor.7401047
– ident: ref28/cit28
  doi: 10.1021/ja205972n
– ident: ref41/cit41
  doi: 10.1016/j.ab.2014.03.012
– ident: ref4/cit4
  doi: 10.1128/MCB.24.2.765-773.2004
– ident: ref57/cit57
  doi: 10.1093/bioinformatics/btt055
– ident: ref62/cit62
  doi: 10.1107/S0907444909052925
– ident: ref61/cit61
  doi: 10.1016/S0076-6879(97)76066-X
– ident: ref8/cit8
  doi: 10.1016/j.tips.2015.04.013
– ident: ref29/cit29
  doi: 10.1073/pnas.0404603101
– ident: ref33/cit33
  doi: 10.1021/acs.biochem.5b00010
– ident: ref70/cit70
  doi: 10.1074/jbc.M117.811026
– ident: ref15/cit15
  doi: 10.1096/fj.04-2303fje
– ident: ref6/cit6
  doi: 10.1093/nar/gky092
– ident: ref46/cit46
  doi: 10.1016/j.jmgm.2005.12.005
– ident: ref12/cit12
  doi: 10.1006/bbrc.2001.4786
– ident: ref60/cit60
  doi: 10.1002/prot.10383
– ident: ref68/cit68
  doi: 10.1016/j.str.2016.02.002
– ident: ref54/cit54
  doi: 10.1038/srep11385
– ident: ref63/cit63
  doi: 10.1107/S0907444910007493
– ident: ref7/cit7
  doi: 10.3390/molecules23030566
– ident: ref11/cit11
  doi: 10.1074/jbc.M105590200
– ident: ref13/cit13
  doi: 10.1161/CIRCULATIONAHA.110.003665
– ident: ref40/cit40
  doi: 10.6028/jres.070C.025
– ident: ref3/cit3
  doi: 10.1074/jbc.M204149200
– ident: ref34/cit34
  doi: 10.1021/jm800081j
– ident: ref66/cit66
  doi: 10.1002/bip.22135
– ident: ref64/cit64
  doi: 10.1158/1535-7163.MCT-09-0495
– ident: ref25/cit25
  doi: 10.1021/bi1005046
– ident: ref44/cit44
  doi: 10.1021/ct400556v
– ident: ref1/cit1
  doi: 10.1042/BC20080158
– ident: ref16/cit16
  doi: 10.1016/S0002-9440(10)63320-2
– ident: ref49/cit49
– ident: ref43/cit43
  doi: 10.1002/pro.2623
– ident: ref45/cit45
  doi: 10.1021/sb400168u
– ident: ref71/cit71
  doi: 10.1021/acs.biochem.7b00851
– ident: ref53/cit53
  doi: 10.1063/1.448118
– ident: ref27/cit27
  doi: 10.1016/j.bmc.2011.06.030
– ident: ref67/cit67
  doi: 10.1038/nature11316
– ident: ref19/cit19
  doi: 10.1074/jbc.M405179200
– ident: ref37/cit37
– ident: ref50/cit50
  doi: 10.1021/jp8001614
– ident: ref39/cit39
  doi: 10.1016/S0003-2697(03)00426-3
– ident: ref59/cit59
– ident: ref22/cit22
  doi: 10.1074/jbc.M112.382358
– ident: ref38/cit38
  doi: 10.1016/S1074-5521(02)00305-8
– ident: ref2/cit2
  doi: 10.1016/j.pharmthera.2014.02.012
– ident: ref69/cit69
  doi: 10.1021/cb500492r
– ident: ref21/cit21
  doi: 10.1073/pnas.1000462107
– ident: ref17/cit17
  doi: 10.1128/MCB.20.18.6904-6912.2000
– ident: ref58/cit58
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref65/cit65
  doi: 10.1002/cbic.200900417
– ident: ref48/cit48
  doi: 10.1002/jcc.10128
– ident: ref14/cit14
  doi: 10.1074/jbc.M111.278549
– ident: ref52/cit52
  doi: 10.1016/0021-9991(77)90098-5
– ident: ref32/cit32
  doi: 10.1021/ja408184x
– ident: ref36/cit36
  doi: 10.1021/bi060212u
– ident: ref9/cit9
  doi: 10.1021/ci5004653
– ident: ref31/cit31
  doi: 10.1016/j.bmcl.2011.01.128
– ident: ref47/cit47
  doi: 10.1002/jcc.20035
– ident: ref5/cit5
  doi: 10.1074/jbc.M803514200
– ident: ref55/cit55
  doi: 10.1021/ct9000685
– ident: ref42/cit42
  doi: 10.1002/1521-3773(20011119)40:22<4201::AID-ANIE4201>3.0.CO;2-V
– ident: ref23/cit23
  doi: 10.1016/j.str.2004.04.012
– ident: ref20/cit20
  doi: 10.1074/jbc.M107631200
– ident: ref51/cit51
  doi: 10.1063/1.464397
– ident: ref35/cit35
  doi: 10.1021/cb5003762
– ident: ref24/cit24
  doi: 10.1021/bi801610c
– ident: ref10/cit10
  doi: 10.1074/jbc.M201174200
SSID ssj0004074
Score 2.4102437
Snippet Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post-translational modifications are frequently post-translationally modified. HDAC8...
Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post translational modifications are frequently post-translationally modified. HDAC8...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4480
SubjectTerms Biochemistry, Molecular Biology
Chemical Sciences
Crystallography, X-Ray
Histone Deacetylases - chemistry
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Humans
Life Sciences
Molecular Dynamics Simulation
Phosphorylation
Point Mutation
Protein Conformation
Repressor Proteins - chemistry
Repressor Proteins - genetics
Repressor Proteins - metabolism
Substrate Specificity
Title Phosphorylation of Histone Deacetylase 8: Structural and Mechanistic Analysis of the Phosphomimetic S39E Mutant
URI http://dx.doi.org/10.1021/acs.biochem.9b00653
https://www.ncbi.nlm.nih.gov/pubmed/31633931
https://search.proquest.com/docview/2307741992
https://hal.science/hal-02391044
https://pubmed.ncbi.nlm.nih.gov/PMC6903415
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6RcoALj4ZHeGmLUMWhTr0PP5ZblKbKgSCkUKk3y96HkkPsCDeV-u8749gtAYrKdR_j9c6u9xvvzDcAn5xB49gWKohFEgYqUSrQUWgCxY0wPoy84RSNPJ0n387TkwnR5AR33OALfpybelgsKX3UakgEfnEke_AQJafkwTcaz2_DIMOWdBmNZIHIvCMZ-rsQOo5MvXMc9RbkDPkn0vzdYfKXE-j06X-O_Rk8aaEmG23XxnN44Mp96I9KNLNXV-yQNc6fzV_1fXg07hK_9aH6vqjq9aL6ebX1k2OVZw2bSOnYCX5B3QVW1I6lX9i8YZ8l5g6Wl5bNHMURN9TPrGM7od4IMlkrdLVcUdgkm0s9YbMN5TB-AWenkx_jadDmZQhyleiLwIoUYUFoDULFWBquRF54nyQW0QzRF-Zpzg3ncSopwa42UsoijL3IfSGExx3_EvZKHPNrYKnFCsQMmkeJSr3VzilrpUJhIipcMYDPOIdZu6_qrLkyFzyjwnZis3ZiB3DUaTJbb5k6_t38I2r7piWxbE9HXzMqo3hftFLVJR_AQbcYMlQC3aXkpas2dUb-8wjGtBYDeLVdHDeyJGJcqSX2TnaWzc7DdmvK5aKh9o51iLAienP_134LjxHDaQqP5OId7KHe3Xvo1Xbzodkd112nDR4
link.rule.ids 230,315,782,786,887,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6R8lBeOFqOcC4IIR5w8R4-lrcoTRVEUiGlSLyt7D2UPMSucIPUf8-MY7cEEEK87jH27s56v_HOfAPw2ls0jl2polRkcaQypSKdxDZS3Aob4iRYTtHI00V2-jU_nhBNjupjYfAlGpTUtJf41-wC_D2VlSvKIrU-Ih6_NJEDuJmkCIcJEI0X19GQcce9jLayQIDecw39WQidSrbZOZUGS_KJ_B1w_uo3-dNBdHLn_4ZwF253wJONtppyD2746gAORxUa3etL9oa1rqDtP_YD2B_3aeAOof68rJvzZf3tcus1x-rAWm6RyrNj_J76C6xoPMs_sEXLRUs8HqyoHJt7iipuiaBZz31CvRFysk7oerWmIEq2kHrC5hvKaHwfvpxMzsbTqMvSEBUq0xeREzmChNhZBI6ptFyJogwhyxxiGyIzLPKCW87TXFK6XW2llGWcBlGEUoiA-_8B7FX4zo-A5Q4rEEFonmQqD057r5yTCoWJpPTlEN7iHJpulzWmvUAX3FBhN7Gmm9ghvOsX1JxveTv-3vwVLvpVS-Lcno5mhsoo-hdtVvWdD-FlrxMGF4FuVorK15vGkDc9QjOtxRAebnXkSpZExCu1xN7ZjvbsPGy3plotW6LvVMcIMpLH_z7sF7A_PZvPzOzj6acncAvRnabASS6ewh7qgH8Gg8Ztnrcb5gfoShWL
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwEB7RRQJeOHY5ymkQQjwQiI8c5q3qoSJ2VysVJN6sxIfahyYV2SLtv2cmTRYKCCFe7XgS22P7m3jmG4CX3qJx7EoVpSKLI5UpFekktpHiVtgQJ8FyikaeL7LTL_lkSjQ5eR8Lgx_RoKSmvcSnVb1xoWMY4O-ovFxRJqn1W-LySxM5gKtJmmkyu0bjxY-IyLjjX0Z7WSBI7_mG_iyETibb7J1MgyX5Rf4OOn_1nfzpMJrd-v9u3IabHQBlo53G3IErvjqEo1GFxvf6gr1irUto-6_9EK6P-3RwR1CfLetms6y_Xuy851gdWMsxUnk2wX3Vn2NF41n-ni1aTlri82BF5diJp-jilhCa9Rwo1BqhJ-uErldrCqZkC6mn7GRLmY3vwufZ9NN4HnXZGqJCZfo8ciJHsBA7iwAylZYrUZQhZJlDjEOkhkVecMt5mktKu6utlLKM0yCKUAoRcB-4BwcVfvMDYLnDCkQSmieZyoPT3ivnpEJhIil9OYTXOIamW22NaS_SBTdU2A2s6QZ2CG_6STWbHX_H3x9_gRN_-SRxb89Hx4bKKAoYbVf1jQ_hea8XBieBbliKytfbxpBXPUI0rcUQ7u_05FKWROQrtcTW2Z4G7b1sv6ZaLVvC71THCDaSh__e7Wdw7WwyM8cfTj8-ghsI8jTFT3LxGA5QBfwTGDRu-7RdM98B0jAYDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorylation+of+Histone+Deacetylase+8%3A+Structural+and+Mechanistic+Analysis+of+the+Phosphomimetic+S39E+Mutant&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Welker+Leng%2C+Katherine+R&rft.au=Casta%C3%B1eda%2C+Carol+Ann&rft.au=Decroos%2C+Christophe&rft.au=Islam%2C+Barira&rft.date=2019-11-12&rft.eissn=1520-4995&rft.volume=58&rft.issue=45&rft.spage=4480&rft.epage=4493&rft_id=info:doi/10.1021%2Facs.biochem.9b00653&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon