Phosphorylation of Histone Deacetylase 8: Structural and Mechanistic Analysis of the Phosphomimetic S39E Mutant
Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post-translational modifications are frequently post-translationally modified. HDAC8 is phosphorylated within the deacetylase domain at conserved residue serine 39, which leads to decreased catalytic activity. HDAC8 phosphoryl...
Saved in:
Published in: | Biochemistry (Easton) Vol. 58; no. 45; pp. 4480 - 4493 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
12-11-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post-translational modifications are frequently post-translationally modified. HDAC8 is phosphorylated within the deacetylase domain at conserved residue serine 39, which leads to decreased catalytic activity. HDAC8 phosphorylation at S39 is unique in its location and function and may represent a novel mode of deacetylation regulation. To better understand the impact of phosphorylation of HDAC8 on enzyme structure and function, we performed crystallographic, kinetic, and molecular dynamics studies of the S39E HDAC8 phosphomimetic mutant. This mutation decreases the level of deacetylation of peptides derived from acetylated nuclear and cytoplasmic proteins. However, the magnitude of the effect depends on the peptide sequence and the identity of the active site metal ion [Zn(II) vs Fe(II)], with the value of k cat/K M for the mutant decreasing 9- to >200-fold compared to that of wild-type HDAC8. Furthermore, the dissociation rate constant of the active site metal ion increases by ∼10-fold. S39E HDAC8 was crystallized in complex with the inhibitor Droxinostat, revealing that phosphorylation of S39, as mimicked by the glutamate side chain, perturbs local structure through distortion of the L1 loop. Molecular dynamics simulations of both S39E and phosphorylated S39 HDAC8 demonstrate that the perturbation of the L1 loop likely occurs because of the lost hydrogen bond between D29 and S39. Furthermore, the S39 perturbation causes structural changes that propagate through the protein scaffolding to influence function in the active site. These data demonstrate that phosphorylation plays an important regulatory role for HDAC8 by affecting ligand binding, catalytic efficiency, and substrate selectivity. |
---|---|
AbstractList | Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post translational modifications are frequently post-translationally modified. HDAC8 is phosphorylated within the deacetylase domain at conserved residue serine 39 which leads to decreased catalytic activity. HDAC8 phosphorylation at S39 is unique in its location and function and may represent a novel mode of deacetylation regulation. To better understand the impact of phosphorylation of HDAC8 on enzyme structure and function, we performed crystallographic, kinetic, and molecular dynamics studies of the S39E HDAC8 phosphomimetic mutant. This mutation decreases deacetylation of peptides derived from acetylated nuclear and cytoplasmic proteins. However, the magnitude of the effect depends on the peptide sequence and the identity of the active site metal ion (Zn(II) vs Fe(II)) with the value of
k
cat
/
K
M
for the mutant decreasing 9- to >200-fold compared to wild-type HDAC8. Furthermore, the dissociation rate constant of the active site metal ion increases by ~15-fold. S39E HDAC8 was crystallized in complex with the inhibitor Droxinostat revealing that phosphorylation of S39, as mimicked by the glutamate side chain, perturbs local structure through distortion of the L1 loop. Molecular dynamics simulations of both S39E and phosphorylated S39 HDAC8 demonstrate that the perturbation of the L1 loop likely occurs because of the lost hydrogen bond between D29 and S39. Furthermore, the S39 perturbation causes structural changes that propagate through the protein scaffolding to influence function in the active site. These data demonstrate that phosphorylation plays an important regulatory role for HDAC8 by affecting ligand binding, catalytic efficiency and substrate selectivity. Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post-translational modifications are frequently post-translationally modified. HDAC8 is phosphorylated within the deacetylase domain at conserved residue serine 39, which leads to decreased catalytic activity. HDAC8 phosphorylation at S39 is unique in its location and function and may represent a novel mode of deacetylation regulation. To better understand the impact of phosphorylation of HDAC8 on enzyme structure and function, we performed crystallographic, kinetic, and molecular dynamics studies of the S39E HDAC8 phosphomimetic mutant. This mutation decreases the level of deacetylation of peptides derived from acetylated nuclear and cytoplasmic proteins. However, the magnitude of the effect depends on the peptide sequence and the identity of the active site metal ion [Zn(II) vs Fe(II)], with the value of k cat/K M for the mutant decreasing 9- to >200-fold compared to that of wild-type HDAC8. Furthermore, the dissociation rate constant of the active site metal ion increases by ∼10-fold. S39E HDAC8 was crystallized in complex with the inhibitor Droxinostat, revealing that phosphorylation of S39, as mimicked by the glutamate side chain, perturbs local structure through distortion of the L1 loop. Molecular dynamics simulations of both S39E and phosphorylated S39 HDAC8 demonstrate that the perturbation of the L1 loop likely occurs because of the lost hydrogen bond between D29 and S39. Furthermore, the S39 perturbation causes structural changes that propagate through the protein scaffolding to influence function in the active site. These data demonstrate that phosphorylation plays an important regulatory role for HDAC8 by affecting ligand binding, catalytic efficiency, and substrate selectivity. Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post-translational modifications are frequently post-translationally modified. HDAC8 is phosphorylated within the deacetylase domain at conserved residue serine 39, which leads to decreased catalytic activity. HDAC8 phosphorylation at S39 is unique in its location and function and may represent a novel mode of deacetylation regulation. To better understand the impact of phosphorylation of HDAC8 on enzyme structure and function, we performed crystallographic, kinetic, and molecular dynamics studies of the S39E HDAC8 phosphomimetic mutant. This mutation decreases the level of deacetylation of peptides derived from acetylated nuclear and cytoplasmic proteins. However, the magnitude of the effect depends on the peptide sequence and the identity of the active site metal ion [Zn(II) vs Fe(II)], with the value of / for the mutant decreasing 9- to >200-fold compared to that of wild-type HDAC8. Furthermore, the dissociation rate constant of the active site metal ion increases by ∼10-fold. S39E HDAC8 was crystallized in complex with the inhibitor Droxinostat, revealing that phosphorylation of S39, as mimicked by the glutamate side chain, perturbs local structure through distortion of the L1 loop. Molecular dynamics simulations of both S39E and phosphorylated S39 HDAC8 demonstrate that the perturbation of the L1 loop likely occurs because of the lost hydrogen bond between D29 and S39. Furthermore, the S39 perturbation causes structural changes that propagate through the protein scaffolding to influence function in the active site. These data demonstrate that phosphorylation plays an important regulatory role for HDAC8 by affecting ligand binding, catalytic efficiency, and substrate selectivity. |
Author | Castañeda, Carol Ann Islam, Barira Welker Leng, Katherine R Haider, Shozeb M Christianson, David W Fierke, Carol A Decroos, Christophe |
AuthorAffiliation | Department of Chemistry School of Pharmacy Interdepartmental Program in Chemical Biology Texas A&M University |
AuthorAffiliation_xml | – name: Texas A&M University – name: Department of Chemistry – name: School of Pharmacy – name: Interdepartmental Program in Chemical Biology – name: d School of Pharmacy, University College London, 29-39 Brunswick Square London, WC1N 1AX, UK – name: e Department of Chemistry, Texas A&M University, Jack K. Williams Administration Building, Suite 100 College Station, TX 77843 – name: b Interdepartmental Program in Chemical Biology, University of Michigan, 210 Washtenaw Avenue 4008 Life Sciences Institute, Ann Arbor, MI 48109 – name: a Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109 – name: c Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104 |
Author_xml | – sequence: 1 givenname: Katherine R orcidid: 0000-0001-6021-5159 surname: Welker Leng fullname: Welker Leng, Katherine R organization: Department of Chemistry – sequence: 2 givenname: Carol Ann orcidid: 0000-0002-1233-4062 surname: Castañeda fullname: Castañeda, Carol Ann organization: Interdepartmental Program in Chemical Biology – sequence: 3 givenname: Christophe orcidid: 0000-0002-2610-3484 surname: Decroos fullname: Decroos, Christophe organization: Department of Chemistry – sequence: 4 givenname: Barira surname: Islam fullname: Islam, Barira organization: School of Pharmacy – sequence: 5 givenname: Shozeb M orcidid: 0000-0003-2650-2925 surname: Haider fullname: Haider, Shozeb M organization: School of Pharmacy – sequence: 6 givenname: David W orcidid: 0000-0002-0194-5212 surname: Christianson fullname: Christianson, David W organization: Department of Chemistry – sequence: 7 givenname: Carol A orcidid: 0000-0002-1481-0579 surname: Fierke fullname: Fierke, Carol A email: cafierke@tamu.edu organization: Texas A&M University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31633931$$D View this record in MEDLINE/PubMed https://hal.science/hal-02391044$$DView record in HAL |
BookMark | eNp9kc1u1DAUhS3Uik4LT4CEvKSLTG1f58cskEalMJWmAqmwthzHIa4Se4idSvP2OJpQ0S5YWb7nO-faOufoxHlnEHpHyZoSRq-UDuvaet2ZYS1qQoocXqEVzRnJuBD5CVqRNMyYKMgZOg_hIV05KflrdAa0ABBAV8h_73zYd3489Cpa77Bv8daGmFbhz0ZpE5MQDK4-4vs4TjpOo-qxcg2-M7pTLqFW441T_SHYMLtjZ_ASOtjBzPI9iBt8N0Xl4ht02qo-mLfLeYF-frn5cb3Ndt--3l5vdpnipYhZw6qKMtLoHKAATTlTdduWZVPkVVkKoipFNaVFBQTKXGgAqEnRMtXWjLWigAv06Zi7n-rBNNq4mB4u96Md1HiQXln5XHG2k7_8oywEAU7zFHB5DOhe2LabnZxnhIGghPNHmtgPy7LR_55MiHKwQZu-V874KUgGpCw5FYIlFI6oHn0Io2mfsimRc60y1SqXWuVSa3K9__c3T56_PSbg6gjM7gc_jamQ8N_IP4qLszI |
CitedBy_id | crossref_primary_10_1073_pnas_2310910120 crossref_primary_10_1021_acs_biochem_3c00001 crossref_primary_10_1096_fj_202001301RR crossref_primary_10_1038_s41467_020_17610_w crossref_primary_10_3390_ijms21228828 crossref_primary_10_1186_s13578_022_00821_7 crossref_primary_10_1016_j_jbc_2022_102068 crossref_primary_10_1039_D1SC01929E |
Cites_doi | 10.1073/pnas.140199597 10.1128/MCB.01971-05 10.1007/s008940100045 10.1038/sj.embor.7401047 10.1021/ja205972n 10.1016/j.ab.2014.03.012 10.1128/MCB.24.2.765-773.2004 10.1093/bioinformatics/btt055 10.1107/S0907444909052925 10.1016/S0076-6879(97)76066-X 10.1016/j.tips.2015.04.013 10.1073/pnas.0404603101 10.1021/acs.biochem.5b00010 10.1074/jbc.M117.811026 10.1096/fj.04-2303fje 10.1093/nar/gky092 10.1016/j.jmgm.2005.12.005 10.1006/bbrc.2001.4786 10.1002/prot.10383 10.1016/j.str.2016.02.002 10.1038/srep11385 10.1107/S0907444910007493 10.3390/molecules23030566 10.1074/jbc.M105590200 10.1161/CIRCULATIONAHA.110.003665 10.6028/jres.070C.025 10.1074/jbc.M204149200 10.1021/jm800081j 10.1002/bip.22135 10.1158/1535-7163.MCT-09-0495 10.1021/bi1005046 10.1021/ct400556v 10.1042/BC20080158 10.1016/S0002-9440(10)63320-2 10.1002/pro.2623 10.1021/sb400168u 10.1021/acs.biochem.7b00851 10.1063/1.448118 10.1016/j.bmc.2011.06.030 10.1038/nature11316 10.1074/jbc.M405179200 10.1021/jp8001614 10.1016/S0003-2697(03)00426-3 10.1074/jbc.M112.382358 10.1016/S1074-5521(02)00305-8 10.1016/j.pharmthera.2014.02.012 10.1021/cb500492r 10.1073/pnas.1000462107 10.1128/MCB.20.18.6904-6912.2000 10.1016/0263-7855(96)00018-5 10.1002/cbic.200900417 10.1002/jcc.10128 10.1074/jbc.M111.278549 10.1016/0021-9991(77)90098-5 10.1021/ja408184x 10.1021/bi060212u 10.1021/ci5004653 10.1016/j.bmcl.2011.01.128 10.1002/jcc.20035 10.1074/jbc.M803514200 10.1021/ct9000685 10.1002/1521-3773(20011119)40:22<4201::AID-ANIE4201>3.0.CO;2-V 10.1016/j.str.2004.04.012 10.1074/jbc.M107631200 10.1063/1.464397 10.1021/cb5003762 10.1021/bi801610c 10.1074/jbc.M201174200 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 1XC 5PM |
DOI | 10.1021/acs.biochem.9b00653 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 4493 |
ExternalDocumentID | oai_HAL_hal_02391044v1 10_1021_acs_biochem_9b00653 31633931 c755859563 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM040602 – fundername: NIBIB NIH HHS grantid: P30 EB009998 – fundername: NIGMS NIH HHS grantid: T32 GM008597 – fundername: NIGMS NIH HHS grantid: T32 GM008353 – fundername: NIGMS NIH HHS grantid: R01 GM049758 |
GroupedDBID | - .K2 02 23N 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ F5P GNL IH9 IHE JG JG~ K2 KM L7B LG6 P2P ROL TN5 UI2 VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 --- -DZ -~X .55 4.4 53G ABJNI ABQRX ADHLV AGXLV AHGAQ CGR CUPRZ CUY CVF ECM EIF GGK NPM XSW ZCA ~02 ~KM AAYXX CITATION 7X8 1XC EJD 5PM |
ID | FETCH-LOGICAL-a479t-d288120dc53363c142abff77d6587790a8a1c1168303759c333b06f2afb22f963 |
IEDL.DBID | ACS |
ISSN | 0006-2960 |
IngestDate | Tue Sep 17 21:20:07 EDT 2024 Tue Oct 15 15:54:10 EDT 2024 Sat Aug 17 03:48:51 EDT 2024 Fri Aug 23 04:05:44 EDT 2024 Sat Sep 28 08:30:15 EDT 2024 Thu Aug 27 13:43:59 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a479t-d288120dc53363c142abff77d6587790a8a1c1168303759c333b06f2afb22f963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. Katherine Welker Leng, Carol Ann Castañeda and Carol A. Fierke performed in vitro HDAC8 experiments, analyzed the data and wrote corresponding text. Christophe Decroos and David W. Christianson (University of Pennsylvania) performed crystallography and related methods, analyzed structural data, and wrote text regarding crystal structure. Barira Islam and Shozeb Haider (University College London) performed molecular dynamics simulations, analyzed that data and wrote corresponding text. Present Address: University of Huddersfield, Queensgate, Huddersfield HD1 3DH Present Address: Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France Author Contributions |
ORCID | 0000-0002-1481-0579 0000-0001-6021-5159 0000-0003-2650-2925 0000-0002-0194-5212 0000-0002-1233-4062 0000-0002-2610-3484 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903415 |
PMID | 31633931 |
PQID | 2307741992 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6903415 hal_primary_oai_HAL_hal_02391044v1 proquest_miscellaneous_2307741992 crossref_primary_10_1021_acs_biochem_9b00653 pubmed_primary_31633931 acs_journals_10_1021_acs_biochem_9b00653 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2019-11-12 |
PublicationDateYYYYMMDD | 2019-11-12 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref18/cit18 doi: 10.1073/pnas.140199597 – ident: ref30/cit30 doi: 10.1128/MCB.01971-05 – ident: ref56/cit56 doi: 10.1007/s008940100045 – ident: ref26/cit26 doi: 10.1038/sj.embor.7401047 – ident: ref28/cit28 doi: 10.1021/ja205972n – ident: ref41/cit41 doi: 10.1016/j.ab.2014.03.012 – ident: ref4/cit4 doi: 10.1128/MCB.24.2.765-773.2004 – ident: ref57/cit57 doi: 10.1093/bioinformatics/btt055 – ident: ref62/cit62 doi: 10.1107/S0907444909052925 – ident: ref61/cit61 doi: 10.1016/S0076-6879(97)76066-X – ident: ref8/cit8 doi: 10.1016/j.tips.2015.04.013 – ident: ref29/cit29 doi: 10.1073/pnas.0404603101 – ident: ref33/cit33 doi: 10.1021/acs.biochem.5b00010 – ident: ref70/cit70 doi: 10.1074/jbc.M117.811026 – ident: ref15/cit15 doi: 10.1096/fj.04-2303fje – ident: ref6/cit6 doi: 10.1093/nar/gky092 – ident: ref46/cit46 doi: 10.1016/j.jmgm.2005.12.005 – ident: ref12/cit12 doi: 10.1006/bbrc.2001.4786 – ident: ref60/cit60 doi: 10.1002/prot.10383 – ident: ref68/cit68 doi: 10.1016/j.str.2016.02.002 – ident: ref54/cit54 doi: 10.1038/srep11385 – ident: ref63/cit63 doi: 10.1107/S0907444910007493 – ident: ref7/cit7 doi: 10.3390/molecules23030566 – ident: ref11/cit11 doi: 10.1074/jbc.M105590200 – ident: ref13/cit13 doi: 10.1161/CIRCULATIONAHA.110.003665 – ident: ref40/cit40 doi: 10.6028/jres.070C.025 – ident: ref3/cit3 doi: 10.1074/jbc.M204149200 – ident: ref34/cit34 doi: 10.1021/jm800081j – ident: ref66/cit66 doi: 10.1002/bip.22135 – ident: ref64/cit64 doi: 10.1158/1535-7163.MCT-09-0495 – ident: ref25/cit25 doi: 10.1021/bi1005046 – ident: ref44/cit44 doi: 10.1021/ct400556v – ident: ref1/cit1 doi: 10.1042/BC20080158 – ident: ref16/cit16 doi: 10.1016/S0002-9440(10)63320-2 – ident: ref49/cit49 – ident: ref43/cit43 doi: 10.1002/pro.2623 – ident: ref45/cit45 doi: 10.1021/sb400168u – ident: ref71/cit71 doi: 10.1021/acs.biochem.7b00851 – ident: ref53/cit53 doi: 10.1063/1.448118 – ident: ref27/cit27 doi: 10.1016/j.bmc.2011.06.030 – ident: ref67/cit67 doi: 10.1038/nature11316 – ident: ref19/cit19 doi: 10.1074/jbc.M405179200 – ident: ref37/cit37 – ident: ref50/cit50 doi: 10.1021/jp8001614 – ident: ref39/cit39 doi: 10.1016/S0003-2697(03)00426-3 – ident: ref59/cit59 – ident: ref22/cit22 doi: 10.1074/jbc.M112.382358 – ident: ref38/cit38 doi: 10.1016/S1074-5521(02)00305-8 – ident: ref2/cit2 doi: 10.1016/j.pharmthera.2014.02.012 – ident: ref69/cit69 doi: 10.1021/cb500492r – ident: ref21/cit21 doi: 10.1073/pnas.1000462107 – ident: ref17/cit17 doi: 10.1128/MCB.20.18.6904-6912.2000 – ident: ref58/cit58 doi: 10.1016/0263-7855(96)00018-5 – ident: ref65/cit65 doi: 10.1002/cbic.200900417 – ident: ref48/cit48 doi: 10.1002/jcc.10128 – ident: ref14/cit14 doi: 10.1074/jbc.M111.278549 – ident: ref52/cit52 doi: 10.1016/0021-9991(77)90098-5 – ident: ref32/cit32 doi: 10.1021/ja408184x – ident: ref36/cit36 doi: 10.1021/bi060212u – ident: ref9/cit9 doi: 10.1021/ci5004653 – ident: ref31/cit31 doi: 10.1016/j.bmcl.2011.01.128 – ident: ref47/cit47 doi: 10.1002/jcc.20035 – ident: ref5/cit5 doi: 10.1074/jbc.M803514200 – ident: ref55/cit55 doi: 10.1021/ct9000685 – ident: ref42/cit42 doi: 10.1002/1521-3773(20011119)40:22<4201::AID-ANIE4201>3.0.CO;2-V – ident: ref23/cit23 doi: 10.1016/j.str.2004.04.012 – ident: ref20/cit20 doi: 10.1074/jbc.M107631200 – ident: ref51/cit51 doi: 10.1063/1.464397 – ident: ref35/cit35 doi: 10.1021/cb5003762 – ident: ref24/cit24 doi: 10.1021/bi801610c – ident: ref10/cit10 doi: 10.1074/jbc.M201174200 |
SSID | ssj0004074 |
Score | 2.4102437 |
Snippet | Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post-translational modifications are frequently post-translationally modified. HDAC8... Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post translational modifications are frequently post-translationally modified. HDAC8... |
SourceID | pubmedcentral hal proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 4480 |
SubjectTerms | Biochemistry, Molecular Biology Chemical Sciences Crystallography, X-Ray Histone Deacetylases - chemistry Histone Deacetylases - genetics Histone Deacetylases - metabolism Humans Life Sciences Molecular Dynamics Simulation Phosphorylation Point Mutation Protein Conformation Repressor Proteins - chemistry Repressor Proteins - genetics Repressor Proteins - metabolism Substrate Specificity |
Title | Phosphorylation of Histone Deacetylase 8: Structural and Mechanistic Analysis of the Phosphomimetic S39E Mutant |
URI | http://dx.doi.org/10.1021/acs.biochem.9b00653 https://www.ncbi.nlm.nih.gov/pubmed/31633931 https://search.proquest.com/docview/2307741992 https://hal.science/hal-02391044 https://pubmed.ncbi.nlm.nih.gov/PMC6903415 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6RcoALj4ZHeGmLUMWhTr0PP5ZblKbKgSCkUKk3y96HkkPsCDeV-u8749gtAYrKdR_j9c6u9xvvzDcAn5xB49gWKohFEgYqUSrQUWgCxY0wPoy84RSNPJ0n387TkwnR5AR33OALfpybelgsKX3UakgEfnEke_AQJafkwTcaz2_DIMOWdBmNZIHIvCMZ-rsQOo5MvXMc9RbkDPkn0vzdYfKXE-j06X-O_Rk8aaEmG23XxnN44Mp96I9KNLNXV-yQNc6fzV_1fXg07hK_9aH6vqjq9aL6ebX1k2OVZw2bSOnYCX5B3QVW1I6lX9i8YZ8l5g6Wl5bNHMURN9TPrGM7od4IMlkrdLVcUdgkm0s9YbMN5TB-AWenkx_jadDmZQhyleiLwIoUYUFoDULFWBquRF54nyQW0QzRF-Zpzg3ncSopwa42UsoijL3IfSGExx3_EvZKHPNrYKnFCsQMmkeJSr3VzilrpUJhIipcMYDPOIdZu6_qrLkyFzyjwnZis3ZiB3DUaTJbb5k6_t38I2r7piWxbE9HXzMqo3hftFLVJR_AQbcYMlQC3aXkpas2dUb-8wjGtBYDeLVdHDeyJGJcqSX2TnaWzc7DdmvK5aKh9o51iLAienP_134LjxHDaQqP5OId7KHe3Xvo1Xbzodkd112nDR4 |
link.rule.ids | 230,315,782,786,887,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6R8lBeOFqOcC4IIR5w8R4-lrcoTRVEUiGlSLyt7D2UPMSucIPUf8-MY7cEEEK87jH27s56v_HOfAPw2ls0jl2polRkcaQypSKdxDZS3Aob4iRYTtHI00V2-jU_nhBNjupjYfAlGpTUtJf41-wC_D2VlSvKIrU-Ih6_NJEDuJmkCIcJEI0X19GQcce9jLayQIDecw39WQidSrbZOZUGS_KJ_B1w_uo3-dNBdHLn_4ZwF253wJONtppyD2746gAORxUa3etL9oa1rqDtP_YD2B_3aeAOof68rJvzZf3tcus1x-rAWm6RyrNj_J76C6xoPMs_sEXLRUs8HqyoHJt7iipuiaBZz31CvRFysk7oerWmIEq2kHrC5hvKaHwfvpxMzsbTqMvSEBUq0xeREzmChNhZBI6ptFyJogwhyxxiGyIzLPKCW87TXFK6XW2llGWcBlGEUoiA-_8B7FX4zo-A5Q4rEEFonmQqD057r5yTCoWJpPTlEN7iHJpulzWmvUAX3FBhN7Gmm9ghvOsX1JxveTv-3vwVLvpVS-Lcno5mhsoo-hdtVvWdD-FlrxMGF4FuVorK15vGkDc9QjOtxRAebnXkSpZExCu1xN7ZjvbsPGy3plotW6LvVMcIMpLH_z7sF7A_PZvPzOzj6acncAvRnabASS6ewh7qgH8Gg8Ztnrcb5gfoShWL |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwEB7RRQJeOHY5ymkQQjwQiI8c5q3qoSJ2VysVJN6sxIfahyYV2SLtv2cmTRYKCCFe7XgS22P7m3jmG4CX3qJx7EoVpSKLI5UpFekktpHiVtgQJ8FyikaeL7LTL_lkSjQ5eR8Lgx_RoKSmvcSnVb1xoWMY4O-ovFxRJqn1W-LySxM5gKtJmmkyu0bjxY-IyLjjX0Z7WSBI7_mG_iyETibb7J1MgyX5Rf4OOn_1nfzpMJrd-v9u3IabHQBlo53G3IErvjqEo1GFxvf6gr1irUto-6_9EK6P-3RwR1CfLetms6y_Xuy851gdWMsxUnk2wX3Vn2NF41n-ni1aTlri82BF5diJp-jilhCa9Rwo1BqhJ-uErldrCqZkC6mn7GRLmY3vwufZ9NN4HnXZGqJCZfo8ciJHsBA7iwAylZYrUZQhZJlDjEOkhkVecMt5mktKu6utlLKM0yCKUAoRcB-4BwcVfvMDYLnDCkQSmieZyoPT3ivnpEJhIil9OYTXOIamW22NaS_SBTdU2A2s6QZ2CG_6STWbHX_H3x9_gRN_-SRxb89Hx4bKKAoYbVf1jQ_hea8XBieBbliKytfbxpBXPUI0rcUQ7u_05FKWROQrtcTW2Z4G7b1sv6ZaLVvC71THCDaSh__e7Wdw7WwyM8cfTj8-ghsI8jTFT3LxGA5QBfwTGDRu-7RdM98B0jAYDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorylation+of+Histone+Deacetylase+8%3A+Structural+and+Mechanistic+Analysis+of+the+Phosphomimetic+S39E+Mutant&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Welker+Leng%2C+Katherine+R&rft.au=Casta%C3%B1eda%2C+Carol+Ann&rft.au=Decroos%2C+Christophe&rft.au=Islam%2C+Barira&rft.date=2019-11-12&rft.eissn=1520-4995&rft.volume=58&rft.issue=45&rft.spage=4480&rft.epage=4493&rft_id=info:doi/10.1021%2Facs.biochem.9b00653&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |