Laboratory Measurements of the Wave‐Induced Motion of Plastic Particles: Influence of Wave Period, Plastic Size and Plastic Density

The transport of plastic particles from inland sources to the oceans garbage patches occurs trough coastal regions where the transport processes depend highly on wave‐induced motions. In this study, experimental measurements of the plastic particles wave‐induced Lagrangian drift in intermediate wate...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Oceans Vol. 125; no. 12; pp. e2020JC016294 - n/a
Main Authors: Alsina, José M., Jongedijk, Cleo E., van Sebille, Erik
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01-12-2020
John Wiley and Sons Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The transport of plastic particles from inland sources to the oceans garbage patches occurs trough coastal regions where the transport processes depend highly on wave‐induced motions. In this study, experimental measurements of the plastic particles wave‐induced Lagrangian drift in intermediate water depth are presented investigating the influence of the wave conditions, particle size and density on the motion of relatively large plastic particles. A large influence of the particle density is observed causing particles to float or sink for relative densities lower and larger than water respectively. The measured net drift of the floating particles correlates well with theoretical solutions for particle Stokes drift, where the net drift is proportional to the square of the wave steepness. Floating particles remain at the free water surface because of buoyancy and no evidence of any other influence of particle inertia on the net drift is observed. Nonfloating particles move close to the bed with lower velocity magnitudes than the floating particles’ motion at the free surface. The drift of nonfloating particles reduces with decreasing wave number, and therefore wave steepness. Plain Language Summary Marine plastic pollution attracts significant attention from scientists and the general public. Most focus is on the floating plastic that accumulates in the centers of the ocean basin. However, for plastic originating from land to end up in these open‐ocean regions, it first needs to be transported through the coastal zone. Little is known how coastal waves transport plastic. Here, we use a 16 m‐long wave‐flume to measure how waves transport both floating and nonfloating plastic particles in the laboratory. The floating particles move with the waves as predicted by the so‐called Stokes drift, while nonfloating particles feel the effect of the bottom shear. These results improve our understanding of how plastics move from the coast to the open ocean and vice versa, thereby supporting improvements in our modeling capacity of the transport of marine plastic litter. Key Points A 16 m wave flume is used to measure wave transport of floating and non‐floating plastic Floating plastic transport correlates well with Stokes drift and buoyancy is the only non‐inertial effect Non‐floating particles experience shear forces. Transport varies with particle size and density
AbstractList The transport of plastic particles from inland sources to the oceans garbage patches occurs trough coastal regions where the transport processes depend highly on wave-induced motions. In this study, experimental measurements of the plastic particles wave-induced Lagrangian drift in intermediate water depth are presented investigating the influence of the wave conditions, particle size and density on the motion of relatively large plastic particles. A large influence of the particle density is observed causing particles to float or sink for relative densities lower and larger than water respectively. The measured net drift of the floating particles correlates well with theoretical solutions for particle Stokes drift, where the net drift is proportional to the square of the wave steepness. Floating particles remain at the free water surface because of buoyancy and no evidence of any other influence of particle inertia on the net drift is observed. Nonfloating particles move close to the bed with lower velocity magnitudes than the floating particles' motion at the free surface. The drift of nonfloating particles reduces with decreasing wave number, and therefore wave steepness.
The transport of plastic particles from inland sources to the oceans garbage patches occurs trough coastal regions where the transport processes depend highly on wave‐induced motions. In this study, experimental measurements of the plastic particles wave‐induced Lagrangian drift in intermediate water depth are presented investigating the influence of the wave conditions, particle size and density on the motion of relatively large plastic particles. A large influence of the particle density is observed causing particles to float or sink for relative densities lower and larger than water respectively. The measured net drift of the floating particles correlates well with theoretical solutions for particle Stokes drift, where the net drift is proportional to the square of the wave steepness. Floating particles remain at the free water surface because of buoyancy and no evidence of any other influence of particle inertia on the net drift is observed. Nonfloating particles move close to the bed with lower velocity magnitudes than the floating particles’ motion at the free surface. The drift of nonfloating particles reduces with decreasing wave number, and therefore wave steepness. Marine plastic pollution attracts significant attention from scientists and the general public. Most focus is on the floating plastic that accumulates in the centers of the ocean basin. However, for plastic originating from land to end up in these open‐ocean regions, it first needs to be transported through the coastal zone. Little is known how coastal waves transport plastic. Here, we use a 16 m‐long wave‐flume to measure how waves transport both floating and nonfloating plastic particles in the laboratory. The floating particles move with the waves as predicted by the so‐called Stokes drift, while nonfloating particles feel the effect of the bottom shear. These results improve our understanding of how plastics move from the coast to the open ocean and vice versa, thereby supporting improvements in our modeling capacity of the transport of marine plastic litter. A 16 m wave flume is used to measure wave transport of floating and non‐floating plastic Floating plastic transport correlates well with Stokes drift and buoyancy is the only non‐inertial effect Non‐floating particles experience shear forces. Transport varies with particle size and density
The transport of plastic particles from inland sources to the oceans garbage patches occurs trough coastal regions where the transport processes depend highly on wave‐induced motions. In this study, experimental measurements of the plastic particles wave‐induced Lagrangian drift in intermediate water depth are presented investigating the influence of the wave conditions, particle size and density on the motion of relatively large plastic particles. A large influence of the particle density is observed causing particles to float or sink for relative densities lower and larger than water respectively. The measured net drift of the floating particles correlates well with theoretical solutions for particle Stokes drift, where the net drift is proportional to the square of the wave steepness. Floating particles remain at the free water surface because of buoyancy and no evidence of any other influence of particle inertia on the net drift is observed. Nonfloating particles move close to the bed with lower velocity magnitudes than the floating particles’ motion at the free surface. The drift of nonfloating particles reduces with decreasing wave number, and therefore wave steepness. Plain Language Summary Marine plastic pollution attracts significant attention from scientists and the general public. Most focus is on the floating plastic that accumulates in the centers of the ocean basin. However, for plastic originating from land to end up in these open‐ocean regions, it first needs to be transported through the coastal zone. Little is known how coastal waves transport plastic. Here, we use a 16 m‐long wave‐flume to measure how waves transport both floating and nonfloating plastic particles in the laboratory. The floating particles move with the waves as predicted by the so‐called Stokes drift, while nonfloating particles feel the effect of the bottom shear. These results improve our understanding of how plastics move from the coast to the open ocean and vice versa, thereby supporting improvements in our modeling capacity of the transport of marine plastic litter. Key Points A 16 m wave flume is used to measure wave transport of floating and non‐floating plastic Floating plastic transport correlates well with Stokes drift and buoyancy is the only non‐inertial effect Non‐floating particles experience shear forces. Transport varies with particle size and density
The transport of plastic particles from inland sources to the oceans garbage patches occurs trough coastal regions where the transport processes depend highly on wave‐induced motions. In this study, experimental measurements of the plastic particles wave‐induced Lagrangian drift in intermediate water depth are presented investigating the influence of the wave conditions, particle size and density on the motion of relatively large plastic particles. A large influence of the particle density is observed causing particles to float or sink for relative densities lower and larger than water respectively. The measured net drift of the floating particles correlates well with theoretical solutions for particle Stokes drift, where the net drift is proportional to the square of the wave steepness. Floating particles remain at the free water surface because of buoyancy and no evidence of any other influence of particle inertia on the net drift is observed. Nonfloating particles move close to the bed with lower velocity magnitudes than the floating particles’ motion at the free surface. The drift of nonfloating particles reduces with decreasing wave number, and therefore wave steepness. A 16 m wave flume is used to measure wave transport of floating and non‐floating plastic Floating plastic transport correlates well with Stokes drift and buoyancy is the only non‐inertial effect Non‐floating particles experience shear forces. Transport varies with particle size and density
Author Alsina, José M.
van Sebille, Erik
Jongedijk, Cleo E.
AuthorAffiliation 3 Institute for Marine and Atmospheric Research Utrecht University Utrecht The Netherlands
1 Laboratory of Maritime Engineering Department of Civil and Environmental Engineering Universitat Politècnica de Catalunya Barcelona Spain
2 Department of Civil and Environmental Engineering Imperial College London London UK
AuthorAffiliation_xml – name: 2 Department of Civil and Environmental Engineering Imperial College London London UK
– name: 1 Laboratory of Maritime Engineering Department of Civil and Environmental Engineering Universitat Politècnica de Catalunya Barcelona Spain
– name: 3 Institute for Marine and Atmospheric Research Utrecht University Utrecht The Netherlands
Author_xml – sequence: 1
  givenname: José M.
  orcidid: 0000-0002-3055-5379
  surname: Alsina
  fullname: Alsina, José M.
  organization: Universitat Politècnica de Catalunya
– sequence: 2
  givenname: Cleo E.
  orcidid: 0000-0001-9847-5212
  surname: Jongedijk
  fullname: Jongedijk, Cleo E.
  organization: Imperial College London
– sequence: 3
  givenname: Erik
  orcidid: 0000-0003-2041-0704
  surname: van Sebille
  fullname: van Sebille, Erik
  email: e.vansebille@uu.nl
  organization: Utrecht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33717775$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1UREvpjTOKxIVDF-xxEsccKqGFtlttxYo_4mg5zoS6ytrFToqWUy_c-Yz9JDjaEhUO-PIsz89v5mkekx3nHRLylNGXjIJ8BRTo2ZyyEmT-gOwBK-VMgmQ7010Uu-QgxkuaTsWqPJePyC7nggkhij3yc6lrH3TvwyY7Rx2HgGt0fcx8m_UXmH3R13h782vhmsFgk5373no3Fledjr012UqHJB3G19nCtd2AzuBYHz9mKwzWN4cT_NH-wEy7Znp4iy7afvOEPGx1F_HgTvfJ5-N3n-ans-X7k8X8zXKmcyHLGfC6KVgKRrlomla0mqFkHGs0stU18NaIXBiTRAvEHGguRAkCOJTYyJLvk6Ot79VQr7ExKWnQnboKdq3DRnlt1d8VZy_UV3-thGRSQpEMXtwZBP9twNirtY0Gu0479ENUUFCWelYVJPT5P-ilH4JL8RTkAqpCcjZOdLilTPAxBmynYRhV44rV_RUn_Nn9ABP8Z6EJ4Fvgu-1w818zdXbyYQ45iJL_BlI4s8s
CitedBy_id crossref_primary_10_1016_j_envres_2023_115783
crossref_primary_10_3390_jmse10121934
crossref_primary_10_59887_2073_6673_2023_16_4__3
crossref_primary_10_1016_j_watres_2023_119970
crossref_primary_10_1016_j_marpolbul_2023_114610
crossref_primary_10_1016_j_dsr_2024_104266
crossref_primary_10_1017_jfm_2022_95
crossref_primary_10_1111_jiec_13349
crossref_primary_10_1016_j_marpolbul_2022_113902
crossref_primary_10_5194_os_18_269_2022
crossref_primary_10_1016_j_marpolbul_2024_116191
crossref_primary_10_1109_JOE_2023_3274176
crossref_primary_10_1021_acs_est_2c03363
crossref_primary_10_3390_jmse11122317
crossref_primary_10_1016_j_marpolbul_2024_116493
crossref_primary_10_1017_jfm_2023_671
crossref_primary_10_1103_PhysRevFluids_8_070701
crossref_primary_10_5194_gmd_17_2221_2024
crossref_primary_10_1016_j_marpolbul_2024_116248
crossref_primary_10_3390_jmse11081599
crossref_primary_10_1016_j_cageo_2023_105322
crossref_primary_10_3389_fmars_2023_1213333
crossref_primary_10_1016_j_oceaneng_2022_110932
crossref_primary_10_1016_j_marpolbul_2022_114561
crossref_primary_10_3390_w13233432
Cites_doi 10.1175/JPO-D-18-0227.1
10.1017/jfm.2016.726
10.1017/S0022112070002306
10.3354/meps11223
10.1016/j.marpolbul.2014.09.041
10.1063/1.864230
10.1016/S0378-3839(98)00019-2
10.1017/S0022112006003594
10.5334/jors.101
10.1103/PhysRevFluids.4.114801
10.1007/978-3-642-85567-2
10.1088/1748-9326/ab7836
10.1017/jfm.2019.584
10.1175/2008JPO3793.1
10.1038/s41598-019-49413-5
10.1371/journal.pone.0111913
10.1017/jfm.2019.544
10.1017/S0022112004003283
10.1080/00221686.2016.1168490
10.1016/0378-3839(84)90030-9
10.1016/j.marpolbul.2014.07.016
10.1002/2017JC012703
10.1142/1269
10.1029/JC089iC05p07999
10.1103/PhysRevFluids.4.034301
10.1017/S0022112006002965
10.1080/00221689009499069
10.1007/s00348-009-0715-5
10.1017/jfm.2017.548
10.1088/1748-9326/ab6d7d
10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2
10.1029/2018JC014547
10.1038/s41558-018-0209-7
10.1016/j.jhazmat.2019.02.067
10.1209/0295-5075/102/14003
10.1175/JTECH-D-11-00128.1
10.1098/rsta.1953.0006
10.1029/2011JF002070
ContentType Journal Article
Copyright 2020. The Authors.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. The Authors.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
7X8
5PM
DOI 10.1029/2020JC016294
DatabaseName Wiley-Blackwell Open Access Collection
Wiley-Blackwell Open Access Backfiles (Open Access)
PubMed
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
DocumentTitleAlternate Alsina et al
EISSN 2169-9291
EndPage n/a
ExternalDocumentID 10_1029_2020JC016294
33717775
JGRC24276
Genre article
Journal Article
GrantInformation_xml – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  funderid: 715386
– fundername: ;
  grantid: 715386
GroupedDBID 05W
0R~
1OC
24P
31~
33P
3V.
50Y
52M
702
7XC
8-1
88I
8CJ
8FE
8FH
A00
AAESR
AAHHS
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABPVW
ABUWG
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOD
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
D1J
D1K
DPXWK
DRFUL
DRSTM
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
HCIFZ
HGLYW
HVGLF
HZ~
K6-
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2P
M7R
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
R.K
RJQFR
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
NPM
AAMNL
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
7X8
5PM
ID FETCH-LOGICAL-a4796-23bd51216037ddf7fa1e913ebec9fab23fc747ccfc7a7ee4204776272326ed963
IEDL.DBID 33P
ISSN 2169-9275
IngestDate Tue Sep 17 21:15:24 EDT 2024
Sat Aug 17 05:44:54 EDT 2024
Tue Nov 19 06:19:55 EST 2024
Thu Nov 21 23:44:58 EST 2024
Sat Nov 02 12:22:31 EDT 2024
Sat Aug 24 01:07:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords marine plastic
coastal waves
wave flume experiment
Language English
License Attribution
2020. The Authors.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4796-23bd51216037ddf7fa1e913ebec9fab23fc747ccfc7a7ee4204776272326ed963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2041-0704
0000-0002-3055-5379
0000-0001-9847-5212
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020JC016294
PMID 33717775
PQID 2472859316
PQPubID 54728
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7919925
proquest_miscellaneous_2501477882
proquest_journals_2472859316
crossref_primary_10_1029_2020JC016294
pubmed_primary_33717775
wiley_primary_10_1029_2020JC016294_JGRC24276
PublicationCentury 2000
PublicationDate December 2020
2020-Dec
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: Hoboken
PublicationTitle Journal of geophysical research. Oceans
PublicationTitleAlternate J Geophys Res Oceans
PublicationYear 2020
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2019; 9
2019; 4
1999; 29
2008; 38
1984; 89
1976
2016; 54
2019; 369
2019; 124
2020; 15
2013; 102
2015; 528
2020; 123
2003
2017; 376
2014; 89
2017; 810
2014; 86
1933
2016; 4
2018; 8
2010; 48
2017; 829
1990
1990; 28
2020
1984; 8
2007; 573
2007; 571
2019; 49
1970; 43
2005; 528
2012; 29
1953; 245
2019; 879
2019; 876
2014; 9
2017; 122
1983; 26
2012; 117
1998; 34
1992; 3
1992; 4
1847; 8
e_1_2_9_30_1
Shields A. (e_1_2_9_37_1) 1933
Meller Y. (e_1_2_9_24_1) 2016; 4
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_33_1
Padilla E. M. (e_1_2_9_31_1) 2020; 123
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Stokes G. G. (e_1_2_9_38_1) 1847; 8
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
van den Bremer T. S. (e_1_2_9_42_1) 2017; 376
e_1_2_9_4_1
e_1_2_9_3_1
Hwung H. H. (e_1_2_9_12_1) 1990
e_1_2_9_2_1
Fredsøe J. (e_1_2_9_9_1) 1992
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 89
  start-page: 7999
  issue: C5
  year: 1984
  end-page: 8007
  article-title: Turbulent wave boundary layers. 2. Second–order theory and mass transport
  publication-title: Journal of Geophysical Research
– volume: 34
  start-page: 197
  year: 1998
  end-page: 219
  article-title: The motion of large bottom particles (cobbles) in a wave‐induced oscillatory flow
  publication-title: Coastal Engineering
– volume: 124
  start-page: 1474
  year: 2019
  end-page: 1490
  article-title: The role of Ekman currents, geostrophy, and stokes drift in the accumulation of floating microplastic
  publication-title: Journal of Geophysical Research: Oceans
– volume: 102
  year: 2013
  article-title: Stokes drift for inertial particles transported by water waves
  publication-title: Europhysics Letters
– volume: 571
  start-page: 265
  year: 2007
  end-page: 280
  article-title: Steady streaming in a turbulent oscillating boundary layer
  publication-title: Journal of Fluid Mechanics
– year: 1933
– volume: 4
  year: 2019
  article-title: Laboratory study of the wave‐induced mean flow and set‐down in unidirectional surface gravity wave packets on finite water depth
  publication-title: Physical Review Fluids
– volume: 26
  start-page: 883
  year: 1983
  end-page: 889
  article-title: Equation of motion for a small rigid sphere in a nonuniform flow
  publication-title: Physics of Fluids
– volume: 9
  issue: 12
  year: 2014
  article-title: Plastic pollution in the worlds oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea
  publication-title: PloS One
– volume: 4
  year: 1992
– start-page: 129
  year: 2003
– volume: 876
  start-page: R1
  year: 2019
  article-title: Laboratory studies of Lagrangian transport by breaking surface waves
  publication-title: Journal of Fluid Mechanics
– volume: 8
  start-page: 17
  year: 2018
  article-title: Antarcticas ecological isolation will be broken by storm driven dispersal and warming
  publication-title: Nature Climate Change
– volume: 829
  start-page: 364
  year: 2017
  end-page: 391
  article-title: Lagrangian transport by breaking surface waves
  publication-title: Journal of Fluid Mechanics
– year: 1990
– volume: 29
  start-page: 2523
  year: 1999
  end-page: 2540
  article-title: The wave–driven ocean circulation
  publication-title: Journal of Physical Oceanography
– volume: 8
  year: 1847
  article-title: On the theory of oscillatory waves
  publication-title: Transactions of the Cambridge Philosophical Society
– volume: 28
  start-page: 273
  issue: 3
  year: 1990
  end-page: 282
  article-title: Convection within an experimental wave flume
  publication-title: Journal of Hydraulic Research
– volume: 49
  issue: 4
  year: 2019
  article-title: Lagrangian transport by non–breaking and breaking deep–water waves at the ocean surface
  publication-title: Journal of Physical Oceanography
– volume: 54
  start-page: 423
  year: 2016
  end-page: 434
  article-title: Experimental study of wave‐induced mass transport
  publication-title: Journal of Hydraulic Research
– volume: 123
  start-page: 8921
  year: 2020
  end-page: 8940
  article-title: A general framework for wave separation in the frequency domain
  publication-title: Coastal Engineering
– volume: 528
  start-page: 87
  year: 2005
  end-page: 118
  article-title: Lagrangian measurement of vorticity dynamics in turbulent flow
  publication-title: Journal of Fluid Mechanics
– volume: 4
  issue: 1
  year: 2016
  article-title: Particle data management software for 3DParticle tracking velocimetry and related applications the flowtracks package
  publication-title: Journal of Open Research Software
– volume: 810
  start-page: R1
  year: 2017
  article-title: Experimental particle paths and drift velocity in steep waves at finite water depth
  publication-title: Journal of Fluid Mechanics
– volume: 573
  start-page: 131
  year: 2007
  end-page: 147
  article-title: Laboratory observations of mean flows under surface gravity waves
  publication-title: Journal of Fluid Mechanics
– volume: 528
  start-page: 71
  year: 2015
  end-page: 86
  article-title: Transport of larvae and detritus across the surf zone of a steep reflective pocket beach
  publication-title: Marine Ecology Progress Series
– volume: 4
  year: 2019
  article-title: Orientation dynamics of nonspherical particles under surface gravity waves
  publication-title: Physical Review. Fluids
– volume: 38
  start-page: 2846
  year: 2008
  end-page: 2853
  article-title: Settling of particles beneath water waves
  publication-title: Journal of Physical Oceanography
– volume: 122
  start-page: 6773
  issue: 8
  year: 2017
  end-page: 6794
  article-title: Transfer and dissipation of energy during wave group propagation on a gentle beach slope
  publication-title: Journal of Geophysical Research: Oceans
– volume: 89
  start-page: 324
  year: 2014
  end-page: 330
  article-title: Selective transport of microplastics and mesoplastics by drifting in coastal waters
  publication-title: Marine Pollution Bulletin
– volume: 48
  start-page: 105
  issue: 1
  year: 2010
  end-page: 110
  article-title: Real–time image processing for particle tracking velocimetry
  publication-title: Experiments in Fluids
– volume: 29
  start-page: 944
  year: 2012
  end-page: 959
  article-title: Observing ocean surface waves with GPS‐tracked buoys
  publication-title: Journal of Atmospheric and Oceanic Technology
– year: 2020
  article-title: Coastal margins and backshores represent a major sink for marine debris: Insights from a continental‐scale analysis
  publication-title: Environmental Research Letter
– volume: 8
  year: 1984
  article-title: Mass flux and undertow in a surf zone
  publication-title: Coastal Engineering
– volume: 369
  start-page: 691
  year: 2019
  end-page: 698
  article-title: Distribution of plastic polymer types in the marine environment; A meta‐analysis
  publication-title: Journal of Hazardous Materials
– volume: 9
  year: 2019
  article-title: A global mass budget for positively buoyant macroplastic debris in the ocean
  publication-title: Scientific Reports
– volume: 3
  year: 1992
– volume: 43
  start-page: 177
  year: 1970
  end-page: 185
  article-title: On the mass transport induced by oscillatory flow in a turbulent boundary layer
  publication-title: Journal of Fluid Mechanics
– volume: 245
  start-page: 535
  year: 1953
  end-page: 581
  article-title: Mass transport in water waves
  publication-title: Philosophical Transactions of the Royal Society of London ‐ A
– volume: 376
  year: 2017
  article-title: Stokes drift
  publication-title: Philosophical Transactions of the Royal Society of London ‐ A
– volume: 117
  year: 2012
  article-title: Net currents in the wave bottom boundary layer: On waveshape streaming and progressive wave streaming
  publication-title: Journal of Geophysical Research
– year: 1976
– volume: 15
  year: 2020
  article-title: The physical oceanography of the transport of floating marine debris
  publication-title: Environmental Research Letters
– volume: 879
  year: 2019
  article-title: Experimental study of particle trajectories below deep‐water surface gravity wave groups
  publication-title: Journal of Fluid Mechanics
– volume: 86
  start-page: 219
  year: 2014
  end-page: 228
  article-title: Marine litter ensemble transport simulations in the southern North Sea
  publication-title: Marine Pollution Bulletin
– ident: e_1_2_9_33_1
  doi: 10.1175/JPO-D-18-0227.1
– ident: e_1_2_9_10_1
  doi: 10.1017/jfm.2016.726
– ident: e_1_2_9_14_1
  doi: 10.1017/S0022112070002306
– ident: e_1_2_9_36_1
  doi: 10.3354/meps11223
– ident: e_1_2_9_13_1
  doi: 10.1016/j.marpolbul.2014.09.041
– ident: e_1_2_9_22_1
  doi: 10.1063/1.864230
– ident: e_1_2_9_45_1
  doi: 10.1016/S0378-3839(98)00019-2
– year: 1992
  ident: e_1_2_9_9_1
  contributor:
    fullname: Fredsøe J.
– ident: e_1_2_9_25_1
  doi: 10.1017/S0022112006003594
– volume: 4
  start-page: e23
  issue: 1
  year: 2016
  ident: e_1_2_9_24_1
  article-title: Particle data management software for 3DParticle tracking velocimetry and related applications the flowtracks package
  publication-title: Journal of Open Research Software
  doi: 10.5334/jors.101
  contributor:
    fullname: Meller Y.
– ident: e_1_2_9_2_1
  doi: 10.1103/PhysRevFluids.4.114801
– ident: e_1_2_9_16_1
  doi: 10.1007/978-3-642-85567-2
– ident: e_1_2_9_28_1
  doi: 10.1088/1748-9326/ab7836
– ident: e_1_2_9_43_1
  doi: 10.1017/jfm.2019.584
– ident: e_1_2_9_5_1
  doi: 10.1175/2008JPO3793.1
– ident: e_1_2_9_17_1
  doi: 10.1038/s41598-019-49413-5
– volume: 123
  start-page: 8921
  year: 2020
  ident: e_1_2_9_31_1
  article-title: A general framework for wave separation in the frequency domain
  publication-title: Coastal Engineering
  contributor:
    fullname: Padilla E. M.
– ident: e_1_2_9_6_1
  doi: 10.1371/journal.pone.0111913
– ident: e_1_2_9_18_1
  doi: 10.1017/jfm.2019.544
– ident: e_1_2_9_20_1
  doi: 10.1017/S0022112004003283
– ident: e_1_2_9_32_1
  doi: 10.1080/00221686.2016.1168490
– ident: e_1_2_9_39_1
  doi: 10.1016/0378-3839(84)90030-9
– ident: e_1_2_9_26_1
  doi: 10.1016/j.marpolbul.2014.07.016
– ident: e_1_2_9_30_1
  doi: 10.1002/2017JC012703
– ident: e_1_2_9_27_1
  doi: 10.1142/1269
– ident: e_1_2_9_41_1
  doi: 10.1029/JC089iC05p07999
– ident: e_1_2_9_4_1
  doi: 10.1103/PhysRevFluids.4.034301
– ident: e_1_2_9_35_1
  doi: 10.1017/S0022112006002965
– ident: e_1_2_9_40_1
  doi: 10.1080/00221689009499069
– ident: e_1_2_9_21_1
  doi: 10.1007/s00348-009-0715-5
– ident: e_1_2_9_3_1
  doi: 10.1017/jfm.2017.548
– ident: e_1_2_9_46_1
– ident: e_1_2_9_44_1
  doi: 10.1088/1748-9326/ab6d7d
– year: 1933
  ident: e_1_2_9_37_1
  contributor:
    fullname: Shields A.
– ident: e_1_2_9_23_1
  doi: 10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2
– ident: e_1_2_9_29_1
  doi: 10.1029/2018JC014547
– volume: 376
  year: 2017
  ident: e_1_2_9_42_1
  article-title: Stokes drift
  publication-title: Philosophical Transactions of the Royal Society of London ‐ A
  contributor:
    fullname: van den Bremer T. S.
– ident: e_1_2_9_8_1
  doi: 10.1038/s41558-018-0209-7
– ident: e_1_2_9_7_1
  doi: 10.1016/j.jhazmat.2019.02.067
– start-page: 544556
  volume-title: Proc. 22nd Int. Conf. Coastal engineering, ASCE
  year: 1990
  ident: e_1_2_9_12_1
  contributor:
    fullname: Hwung H. H.
– ident: e_1_2_9_34_1
  doi: 10.1209/0295-5075/102/14003
– ident: e_1_2_9_11_1
  doi: 10.1175/JTECH-D-11-00128.1
– ident: e_1_2_9_19_1
  doi: 10.1098/rsta.1953.0006
– ident: e_1_2_9_15_1
  doi: 10.1029/2011JF002070
– volume: 8
  start-page: 441455
  year: 1847
  ident: e_1_2_9_38_1
  article-title: On the theory of oscillatory waves
  publication-title: Transactions of the Cambridge Philosophical Society
  contributor:
    fullname: Stokes G. G.
SSID ssj0000818449
Score 2.3480093
Snippet The transport of plastic particles from inland sources to the oceans garbage patches occurs trough coastal regions where the transport processes depend highly...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2020JC016294
SubjectTerms Abrupt/Rapid Climate Change
Aerosols
Aerosols and Particles
Air/Sea Constituent Fluxes
Air/Sea Interactions
Atmospheric
Atmospheric Composition and Structure
Atmospheric Processes
Avalanches
Benefit‐cost Analysis
Biogeosciences
Climate and Interannual Variability
Climate Change and Variability
Climate Dynamics
Climate Impact
Climate Impacts
Climate Variability
Climatology
Coastal waves
Coastal zone
Coastal zones
Computational Geophysics
Cryosphere
Decadal Ocean Variability
Density
Disaster Risk Analysis and Assessment
Drift
Earth System Modeling
Earthquake Ground Motions and Engineering Seismology
Effusive Volcanism
Explosive Volcanism
Floating
Flumes
Free surfaces
Garbage
General Circulation
Geodesy and Gravity
Geological
Geophysics
Global Change
Global Change from Geodesy
Gravity and Isostasy
Hydrological Cycles and Budgets
Hydrology
Impacts of Global Change
Inertia
Informatics
Intermediate water
Intermediate water masses
Laboratories
Land/Atmosphere Interactions
Marine Geology and Geophysics
marine plastic
Marine Pollution
Mass Balance
Megacities and Urban Environment
Modeling
Movement
Mud Volcanism
Natural Hazards
Nearshore Processes
Numerical Modeling
Numerical Solutions
Ocean basins
Ocean influence of Earth rotation
Ocean models
Ocean Monitoring with Geodetic Techniques
Ocean/Atmosphere Interactions
Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions
Oceanic
Oceanography: Biological and Chemical
Oceanography: General
Oceanography: Physical
Oceans
Paleoceanography
Particle density (concentration)
Particle inertia
Physical Modeling
Plastic pollution
Plastics
Policy Sciences
Pollution: Urban and Regional
Pollution: Urban, Regional and Global
Polymers
Radio Oceanography
Radio Science
Regional Climate Change
Regional Modeling
Regions
Risk
Sea Level Change
Sea Level: Variations and Mean
Seismology
Slopes
Solid Earth
Stokes drift
Surface Waves and Tides
Theoretical Modeling
Transport processes
Tsunamis and Storm Surges
Urban Systems
Volcanic Hazards and Risks
Volcano Monitoring
Volcano Seismology
Volcano/Climate Interactions
Volcanology
Water Cycles
Water depth
Water pollution
wave flume experiment
Wave number
Wave period
Wave slope
Title Laboratory Measurements of the Wave‐Induced Motion of Plastic Particles: Influence of Wave Period, Plastic Size and Plastic Density
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020JC016294
https://www.ncbi.nlm.nih.gov/pubmed/33717775
https://www.proquest.com/docview/2472859316
https://search.proquest.com/docview/2501477882
https://pubmed.ncbi.nlm.nih.gov/PMC7919925
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VniokSssrUCojwa0RG9vNxD0goW1LqSisKAhukRM7opek6naRyolL7_zG_pLOOA92VakS4hQpYzsPz9jf2ONvAF7SJFSMlFIxVuSb6MyZOLOJiYu0ctYVRWnC-YqDY_z4PdvdY5qcN_1ZmJYfYlhwY8sI4zUbuC2mHdkAc2SS1z46HBNikYbpQMlRCCc41GRYYmG2Nh0AsExSExuJ213oO7Xwer7-4qR0A2neDJicB7JhJtpf_d9vuA_3Ogwq3rZKswZLvl6Hu59Kb-uOwPoBXH5otaM5uxBHf9cRp6KpBGFG8c3-9Fe__3Dmj9I7cRSSAbFwQnCc2hWTPuRuR7zvE6GwnCuKCel947aGwscnv7ywtRtu7HJc_fnFQ_i6v_dlfBB3KRtiq9GksVSFIwjBuavRuQorm3iTKNYUU9lCqqok_6Us6WLRey1HGmk4RsJ1qXc0GDyC5bqp_RMQHPfqRqmRznpNTqTFVGelpuac9llWRvCq77P8tGXmyMOOujT5_H-NYKPv0Lyzz2kuNTJzn0rSCF4MYrIs3i6xtW9mVIa3XBHJBYngcdv_w4OUIjcYcTsCXNCMoQCzdi9K6pMfgb0bDUf8Us2toBm3vnt--O7zmEAUpk__rfgzWGFBG3ezAcvnZzP_HO5M3Wwz2Mg1FNcRFw
link.rule.ids 230,315,782,786,887,1408,27934,27935,46065,46489
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcgAhlTcEChgJbo3Y2G4m5oLQtmVbdsuKFpVb5MSO6CVB3W6lcuqld34jv4SZvNhVJSTEKVI8dh6esb-xx98AvKJJKBsopUIsyDfRiTNhYiMTZnHhrMuy3NTnK0YHuP812dpmmpx33VmYhh-iX3Bjy6jHazZwXpBu2QaYJJPc9sHekCCLNHoFrutYJ6zWSk37RRbma9M1BJZRbEIjcbMNfqcm3iw2sDwtXcGaV0MmF6FsPRft3P7vr7gDay0MFe8bvbkL13x5D259yr0tWw7r-3A5bhSkOjkXkz9LiTNRFYJgoziyZ_7XxU9O_pF7JyZ1PiAunBIip3bFtIu6eyt2u1woXM4VxZRUv3IbvfDB8Q8vbOn6G1scWn96_gC-7GwfDkdhm7UhtBpNHEqVOUIRnL4anSuwsJE3kWJlMYXNpCpycmHynC4WvddyoJFGZCRoF3tH48FDWC2r0j8GwaGvbhAb6azX5EdapD7ONTXntE-SPIDXXael3xtyjrTeVJcmXfyvAax3PZq2JjpLpUYm71NRHMDLvpiMi3dMbOmrOcnwrisieSEBPGoUoH-QUuQJI24GgEuq0QswcfdySXn8rSbwRsNBv1Rzo1aNv757uvfh85BwFMZP_k38BdwYHU7G6Xh3_-NTuMlCTRjOOqyensz9M1iZufnz2mB-A06WFUA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiGEVN40UMBIcGvExnYzMQcktNulLW2JKKjcIid2RC9J1e0ilRMX7vxGfgkzebGrSkiIU6R47Dw8Y39jj78BeE6TUD5SSoVYkm-iE2fCxEYmzOPSWZfnhWnOV-wc4eHnZLLNNDmv-7MwLT_EsODGltGM12zgp67syAaYI5O89tHemBCLNHoFrmpC4hzSp1Q6rLEwXZtuELCMYhMaiVtd7Ds18XKxgeVZ6RLUvBwxuYhkm6loevN_P-IWrHUgVLxpteY2XPHVHbjxvvC26his78KP_VY96rMLcfBnIXEm6lIQaBTH9qv_9f0np_4ovBMHTTYgLkwJj1O7Iu1j7l6J3T4TCpdzRZGS4tducxA-Ovnmha3ccGPCgfXnF_fg03T743gn7HI2hFajiUOpckcYgpNXo3MlljbyJlKsKqa0uVRlQQ5MUdDFovdajjTSeIwE7GLvaDS4D6tVXfl1EBz46kaxkc56TV6kxVgnhabmnPZJUgTwou-z7LSl5siaLXVpssX_GsBG36FZZ6CzTGpk6j4VxQE8G4rJtHi_xFa-npMM77kikg8SwIO2_4cHKUV-MOJWALikGYMA03Yvl1QnXxr6bjQc8ks1NxvN-Ou7Z3tvP4wJRWH88N_En8K1dDLN9ncP3z2C6yzTxuBswOr52dw_hpWZmz9pzOU32x0T5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laboratory+Measurements+of+the+Wave%E2%80%90Induced+Motion+of+Plastic+Particles%3A+Influence+of+Wave+Period%2C+Plastic+Size+and+Plastic+Density&rft.jtitle=Journal+of+geophysical+research.+Oceans&rft.au=Alsina%2C+Jos%C3%A9+M.&rft.au=Jongedijk%2C+Cleo+E.&rft.au=van+Sebille%2C+Erik&rft.date=2020-12-01&rft.issn=2169-9275&rft.eissn=2169-9291&rft.volume=125&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020JC016294&rft.externalDBID=10.1029%252F2020JC016294&rft.externalDocID=JGRC24276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9275&client=summon