Laboratory Measurements of the Wave‐Induced Motion of Plastic Particles: Influence of Wave Period, Plastic Size and Plastic Density
The transport of plastic particles from inland sources to the oceans garbage patches occurs trough coastal regions where the transport processes depend highly on wave‐induced motions. In this study, experimental measurements of the plastic particles wave‐induced Lagrangian drift in intermediate wate...
Saved in:
Published in: | Journal of geophysical research. Oceans Vol. 125; no. 12; pp. e2020JC016294 - n/a |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Blackwell Publishing Ltd
01-12-2020
John Wiley and Sons Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The transport of plastic particles from inland sources to the oceans garbage patches occurs trough coastal regions where the transport processes depend highly on wave‐induced motions. In this study, experimental measurements of the plastic particles wave‐induced Lagrangian drift in intermediate water depth are presented investigating the influence of the wave conditions, particle size and density on the motion of relatively large plastic particles. A large influence of the particle density is observed causing particles to float or sink for relative densities lower and larger than water respectively. The measured net drift of the floating particles correlates well with theoretical solutions for particle Stokes drift, where the net drift is proportional to the square of the wave steepness. Floating particles remain at the free water surface because of buoyancy and no evidence of any other influence of particle inertia on the net drift is observed. Nonfloating particles move close to the bed with lower velocity magnitudes than the floating particles’ motion at the free surface. The drift of nonfloating particles reduces with decreasing wave number, and therefore wave steepness.
Plain Language Summary
Marine plastic pollution attracts significant attention from scientists and the general public. Most focus is on the floating plastic that accumulates in the centers of the ocean basin. However, for plastic originating from land to end up in these open‐ocean regions, it first needs to be transported through the coastal zone. Little is known how coastal waves transport plastic. Here, we use a 16 m‐long wave‐flume to measure how waves transport both floating and nonfloating plastic particles in the laboratory. The floating particles move with the waves as predicted by the so‐called Stokes drift, while nonfloating particles feel the effect of the bottom shear. These results improve our understanding of how plastics move from the coast to the open ocean and vice versa, thereby supporting improvements in our modeling capacity of the transport of marine plastic litter.
Key Points
A 16 m wave flume is used to measure wave transport of floating and non‐floating plastic
Floating plastic transport correlates well with Stokes drift and buoyancy is the only non‐inertial effect
Non‐floating particles experience shear forces. Transport varies with particle size and density |
---|---|
AbstractList | The transport of plastic particles from inland sources to the oceans garbage patches occurs trough coastal regions where the transport processes depend highly on wave-induced motions. In this study, experimental measurements of the plastic particles wave-induced Lagrangian drift in intermediate water depth are presented investigating the influence of the wave conditions, particle size and density on the motion of relatively large plastic particles. A large influence of the particle density is observed causing particles to float or sink for relative densities lower and larger than water respectively. The measured net drift of the floating particles correlates well with theoretical solutions for particle Stokes drift, where the net drift is proportional to the square of the wave steepness. Floating particles remain at the free water surface because of buoyancy and no evidence of any other influence of particle inertia on the net drift is observed. Nonfloating particles move close to the bed with lower velocity magnitudes than the floating particles' motion at the free surface. The drift of nonfloating particles reduces with decreasing wave number, and therefore wave steepness. The transport of plastic particles from inland sources to the oceans garbage patches occurs trough coastal regions where the transport processes depend highly on wave‐induced motions. In this study, experimental measurements of the plastic particles wave‐induced Lagrangian drift in intermediate water depth are presented investigating the influence of the wave conditions, particle size and density on the motion of relatively large plastic particles. A large influence of the particle density is observed causing particles to float or sink for relative densities lower and larger than water respectively. The measured net drift of the floating particles correlates well with theoretical solutions for particle Stokes drift, where the net drift is proportional to the square of the wave steepness. Floating particles remain at the free water surface because of buoyancy and no evidence of any other influence of particle inertia on the net drift is observed. Nonfloating particles move close to the bed with lower velocity magnitudes than the floating particles’ motion at the free surface. The drift of nonfloating particles reduces with decreasing wave number, and therefore wave steepness. Marine plastic pollution attracts significant attention from scientists and the general public. Most focus is on the floating plastic that accumulates in the centers of the ocean basin. However, for plastic originating from land to end up in these open‐ocean regions, it first needs to be transported through the coastal zone. Little is known how coastal waves transport plastic. Here, we use a 16 m‐long wave‐flume to measure how waves transport both floating and nonfloating plastic particles in the laboratory. The floating particles move with the waves as predicted by the so‐called Stokes drift, while nonfloating particles feel the effect of the bottom shear. These results improve our understanding of how plastics move from the coast to the open ocean and vice versa, thereby supporting improvements in our modeling capacity of the transport of marine plastic litter. A 16 m wave flume is used to measure wave transport of floating and non‐floating plastic Floating plastic transport correlates well with Stokes drift and buoyancy is the only non‐inertial effect Non‐floating particles experience shear forces. Transport varies with particle size and density The transport of plastic particles from inland sources to the oceans garbage patches occurs trough coastal regions where the transport processes depend highly on wave‐induced motions. In this study, experimental measurements of the plastic particles wave‐induced Lagrangian drift in intermediate water depth are presented investigating the influence of the wave conditions, particle size and density on the motion of relatively large plastic particles. A large influence of the particle density is observed causing particles to float or sink for relative densities lower and larger than water respectively. The measured net drift of the floating particles correlates well with theoretical solutions for particle Stokes drift, where the net drift is proportional to the square of the wave steepness. Floating particles remain at the free water surface because of buoyancy and no evidence of any other influence of particle inertia on the net drift is observed. Nonfloating particles move close to the bed with lower velocity magnitudes than the floating particles’ motion at the free surface. The drift of nonfloating particles reduces with decreasing wave number, and therefore wave steepness. Plain Language Summary Marine plastic pollution attracts significant attention from scientists and the general public. Most focus is on the floating plastic that accumulates in the centers of the ocean basin. However, for plastic originating from land to end up in these open‐ocean regions, it first needs to be transported through the coastal zone. Little is known how coastal waves transport plastic. Here, we use a 16 m‐long wave‐flume to measure how waves transport both floating and nonfloating plastic particles in the laboratory. The floating particles move with the waves as predicted by the so‐called Stokes drift, while nonfloating particles feel the effect of the bottom shear. These results improve our understanding of how plastics move from the coast to the open ocean and vice versa, thereby supporting improvements in our modeling capacity of the transport of marine plastic litter. Key Points A 16 m wave flume is used to measure wave transport of floating and non‐floating plastic Floating plastic transport correlates well with Stokes drift and buoyancy is the only non‐inertial effect Non‐floating particles experience shear forces. Transport varies with particle size and density The transport of plastic particles from inland sources to the oceans garbage patches occurs trough coastal regions where the transport processes depend highly on wave‐induced motions. In this study, experimental measurements of the plastic particles wave‐induced Lagrangian drift in intermediate water depth are presented investigating the influence of the wave conditions, particle size and density on the motion of relatively large plastic particles. A large influence of the particle density is observed causing particles to float or sink for relative densities lower and larger than water respectively. The measured net drift of the floating particles correlates well with theoretical solutions for particle Stokes drift, where the net drift is proportional to the square of the wave steepness. Floating particles remain at the free water surface because of buoyancy and no evidence of any other influence of particle inertia on the net drift is observed. Nonfloating particles move close to the bed with lower velocity magnitudes than the floating particles’ motion at the free surface. The drift of nonfloating particles reduces with decreasing wave number, and therefore wave steepness. A 16 m wave flume is used to measure wave transport of floating and non‐floating plastic Floating plastic transport correlates well with Stokes drift and buoyancy is the only non‐inertial effect Non‐floating particles experience shear forces. Transport varies with particle size and density |
Author | Alsina, José M. van Sebille, Erik Jongedijk, Cleo E. |
AuthorAffiliation | 3 Institute for Marine and Atmospheric Research Utrecht University Utrecht The Netherlands 1 Laboratory of Maritime Engineering Department of Civil and Environmental Engineering Universitat Politècnica de Catalunya Barcelona Spain 2 Department of Civil and Environmental Engineering Imperial College London London UK |
AuthorAffiliation_xml | – name: 2 Department of Civil and Environmental Engineering Imperial College London London UK – name: 1 Laboratory of Maritime Engineering Department of Civil and Environmental Engineering Universitat Politècnica de Catalunya Barcelona Spain – name: 3 Institute for Marine and Atmospheric Research Utrecht University Utrecht The Netherlands |
Author_xml | – sequence: 1 givenname: José M. orcidid: 0000-0002-3055-5379 surname: Alsina fullname: Alsina, José M. organization: Universitat Politècnica de Catalunya – sequence: 2 givenname: Cleo E. orcidid: 0000-0001-9847-5212 surname: Jongedijk fullname: Jongedijk, Cleo E. organization: Imperial College London – sequence: 3 givenname: Erik orcidid: 0000-0003-2041-0704 surname: van Sebille fullname: van Sebille, Erik email: e.vansebille@uu.nl organization: Utrecht University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33717775$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1UREvpjTOKxIVDF-xxEsccKqGFtlttxYo_4mg5zoS6ytrFToqWUy_c-Yz9JDjaEhUO-PIsz89v5mkekx3nHRLylNGXjIJ8BRTo2ZyyEmT-gOwBK-VMgmQ7010Uu-QgxkuaTsWqPJePyC7nggkhij3yc6lrH3TvwyY7Rx2HgGt0fcx8m_UXmH3R13h782vhmsFgk5373no3Fledjr012UqHJB3G19nCtd2AzuBYHz9mKwzWN4cT_NH-wEy7Znp4iy7afvOEPGx1F_HgTvfJ5-N3n-ans-X7k8X8zXKmcyHLGfC6KVgKRrlomla0mqFkHGs0stU18NaIXBiTRAvEHGguRAkCOJTYyJLvk6Ot79VQr7ExKWnQnboKdq3DRnlt1d8VZy_UV3-thGRSQpEMXtwZBP9twNirtY0Gu0479ENUUFCWelYVJPT5P-ilH4JL8RTkAqpCcjZOdLilTPAxBmynYRhV44rV_RUn_Nn9ABP8Z6EJ4Fvgu-1w818zdXbyYQ45iJL_BlI4s8s |
CitedBy_id | crossref_primary_10_1016_j_envres_2023_115783 crossref_primary_10_3390_jmse10121934 crossref_primary_10_59887_2073_6673_2023_16_4__3 crossref_primary_10_1016_j_watres_2023_119970 crossref_primary_10_1016_j_marpolbul_2023_114610 crossref_primary_10_1016_j_dsr_2024_104266 crossref_primary_10_1017_jfm_2022_95 crossref_primary_10_1111_jiec_13349 crossref_primary_10_1016_j_marpolbul_2022_113902 crossref_primary_10_5194_os_18_269_2022 crossref_primary_10_1016_j_marpolbul_2024_116191 crossref_primary_10_1109_JOE_2023_3274176 crossref_primary_10_1021_acs_est_2c03363 crossref_primary_10_3390_jmse11122317 crossref_primary_10_1016_j_marpolbul_2024_116493 crossref_primary_10_1017_jfm_2023_671 crossref_primary_10_1103_PhysRevFluids_8_070701 crossref_primary_10_5194_gmd_17_2221_2024 crossref_primary_10_1016_j_marpolbul_2024_116248 crossref_primary_10_3390_jmse11081599 crossref_primary_10_1016_j_cageo_2023_105322 crossref_primary_10_3389_fmars_2023_1213333 crossref_primary_10_1016_j_oceaneng_2022_110932 crossref_primary_10_1016_j_marpolbul_2022_114561 crossref_primary_10_3390_w13233432 |
Cites_doi | 10.1175/JPO-D-18-0227.1 10.1017/jfm.2016.726 10.1017/S0022112070002306 10.3354/meps11223 10.1016/j.marpolbul.2014.09.041 10.1063/1.864230 10.1016/S0378-3839(98)00019-2 10.1017/S0022112006003594 10.5334/jors.101 10.1103/PhysRevFluids.4.114801 10.1007/978-3-642-85567-2 10.1088/1748-9326/ab7836 10.1017/jfm.2019.584 10.1175/2008JPO3793.1 10.1038/s41598-019-49413-5 10.1371/journal.pone.0111913 10.1017/jfm.2019.544 10.1017/S0022112004003283 10.1080/00221686.2016.1168490 10.1016/0378-3839(84)90030-9 10.1016/j.marpolbul.2014.07.016 10.1002/2017JC012703 10.1142/1269 10.1029/JC089iC05p07999 10.1103/PhysRevFluids.4.034301 10.1017/S0022112006002965 10.1080/00221689009499069 10.1007/s00348-009-0715-5 10.1017/jfm.2017.548 10.1088/1748-9326/ab6d7d 10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2 10.1029/2018JC014547 10.1038/s41558-018-0209-7 10.1016/j.jhazmat.2019.02.067 10.1209/0295-5075/102/14003 10.1175/JTECH-D-11-00128.1 10.1098/rsta.1953.0006 10.1029/2011JF002070 |
ContentType | Journal Article |
Copyright | 2020. The Authors. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. The Authors. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 7TG 7TN F1W H96 KL. L.G 7X8 5PM |
DOI | 10.1029/2020JC016294 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley-Blackwell Open Access Backfiles (Open Access) PubMed CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography |
DocumentTitleAlternate | Alsina et al |
EISSN | 2169-9291 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2020JC016294 33717775 JGRC24276 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) funderid: 715386 – fundername: ; grantid: 715386 |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 3V. 50Y 52M 702 7XC 8-1 88I 8CJ 8FE 8FH A00 AAESR AAHHS AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ABPVW ABUWG ACAHQ ACCFJ ACCZN ACGFS ACGOD ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU D1J D1K DPXWK DRFUL DRSTM DWQXO EBS EJD FEDTE G-S GNUQQ GODZA HCIFZ HGLYW HVGLF HZ~ K6- LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2P M7R MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P-X P2W PATMY PCBAR PQQKQ PROAC PYCSY R.K RJQFR RNS ROL SUPJJ WBKPD WIN WXSBR WYJ ~OA NPM AAMNL AAYXX CITATION 7TG 7TN F1W H96 KL. L.G 7X8 5PM |
ID | FETCH-LOGICAL-a4796-23bd51216037ddf7fa1e913ebec9fab23fc747ccfc7a7ee4204776272326ed963 |
IEDL.DBID | 33P |
ISSN | 2169-9275 |
IngestDate | Tue Sep 17 21:15:24 EDT 2024 Sat Aug 17 05:44:54 EDT 2024 Tue Nov 19 06:19:55 EST 2024 Thu Nov 21 23:44:58 EST 2024 Sat Nov 02 12:22:31 EDT 2024 Sat Aug 24 01:07:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | marine plastic coastal waves wave flume experiment |
Language | English |
License | Attribution 2020. The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4796-23bd51216037ddf7fa1e913ebec9fab23fc747ccfc7a7ee4204776272326ed963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2041-0704 0000-0002-3055-5379 0000-0001-9847-5212 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020JC016294 |
PMID | 33717775 |
PQID | 2472859316 |
PQPubID | 54728 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7919925 proquest_miscellaneous_2501477882 proquest_journals_2472859316 crossref_primary_10_1029_2020JC016294 pubmed_primary_33717775 wiley_primary_10_1029_2020JC016294_JGRC24276 |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-Dec 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: Hoboken |
PublicationTitle | Journal of geophysical research. Oceans |
PublicationTitleAlternate | J Geophys Res Oceans |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 2019; 9 2019; 4 1999; 29 2008; 38 1984; 89 1976 2016; 54 2019; 369 2019; 124 2020; 15 2013; 102 2015; 528 2020; 123 2003 2017; 376 2014; 89 2017; 810 2014; 86 1933 2016; 4 2018; 8 2010; 48 2017; 829 1990 1990; 28 2020 1984; 8 2007; 573 2007; 571 2019; 49 1970; 43 2005; 528 2012; 29 1953; 245 2019; 879 2019; 876 2014; 9 2017; 122 1983; 26 2012; 117 1998; 34 1992; 3 1992; 4 1847; 8 e_1_2_9_30_1 Shields A. (e_1_2_9_37_1) 1933 Meller Y. (e_1_2_9_24_1) 2016; 4 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_33_1 Padilla E. M. (e_1_2_9_31_1) 2020; 123 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 Stokes G. G. (e_1_2_9_38_1) 1847; 8 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 van den Bremer T. S. (e_1_2_9_42_1) 2017; 376 e_1_2_9_4_1 e_1_2_9_3_1 Hwung H. H. (e_1_2_9_12_1) 1990 e_1_2_9_2_1 Fredsøe J. (e_1_2_9_9_1) 1992 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 89 start-page: 7999 issue: C5 year: 1984 end-page: 8007 article-title: Turbulent wave boundary layers. 2. Second–order theory and mass transport publication-title: Journal of Geophysical Research – volume: 34 start-page: 197 year: 1998 end-page: 219 article-title: The motion of large bottom particles (cobbles) in a wave‐induced oscillatory flow publication-title: Coastal Engineering – volume: 124 start-page: 1474 year: 2019 end-page: 1490 article-title: The role of Ekman currents, geostrophy, and stokes drift in the accumulation of floating microplastic publication-title: Journal of Geophysical Research: Oceans – volume: 102 year: 2013 article-title: Stokes drift for inertial particles transported by water waves publication-title: Europhysics Letters – volume: 571 start-page: 265 year: 2007 end-page: 280 article-title: Steady streaming in a turbulent oscillating boundary layer publication-title: Journal of Fluid Mechanics – year: 1933 – volume: 4 year: 2019 article-title: Laboratory study of the wave‐induced mean flow and set‐down in unidirectional surface gravity wave packets on finite water depth publication-title: Physical Review Fluids – volume: 26 start-page: 883 year: 1983 end-page: 889 article-title: Equation of motion for a small rigid sphere in a nonuniform flow publication-title: Physics of Fluids – volume: 9 issue: 12 year: 2014 article-title: Plastic pollution in the worlds oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea publication-title: PloS One – volume: 4 year: 1992 – start-page: 129 year: 2003 – volume: 876 start-page: R1 year: 2019 article-title: Laboratory studies of Lagrangian transport by breaking surface waves publication-title: Journal of Fluid Mechanics – volume: 8 start-page: 17 year: 2018 article-title: Antarcticas ecological isolation will be broken by storm driven dispersal and warming publication-title: Nature Climate Change – volume: 829 start-page: 364 year: 2017 end-page: 391 article-title: Lagrangian transport by breaking surface waves publication-title: Journal of Fluid Mechanics – year: 1990 – volume: 29 start-page: 2523 year: 1999 end-page: 2540 article-title: The wave–driven ocean circulation publication-title: Journal of Physical Oceanography – volume: 8 year: 1847 article-title: On the theory of oscillatory waves publication-title: Transactions of the Cambridge Philosophical Society – volume: 28 start-page: 273 issue: 3 year: 1990 end-page: 282 article-title: Convection within an experimental wave flume publication-title: Journal of Hydraulic Research – volume: 49 issue: 4 year: 2019 article-title: Lagrangian transport by non–breaking and breaking deep–water waves at the ocean surface publication-title: Journal of Physical Oceanography – volume: 54 start-page: 423 year: 2016 end-page: 434 article-title: Experimental study of wave‐induced mass transport publication-title: Journal of Hydraulic Research – volume: 123 start-page: 8921 year: 2020 end-page: 8940 article-title: A general framework for wave separation in the frequency domain publication-title: Coastal Engineering – volume: 528 start-page: 87 year: 2005 end-page: 118 article-title: Lagrangian measurement of vorticity dynamics in turbulent flow publication-title: Journal of Fluid Mechanics – volume: 4 issue: 1 year: 2016 article-title: Particle data management software for 3DParticle tracking velocimetry and related applications the flowtracks package publication-title: Journal of Open Research Software – volume: 810 start-page: R1 year: 2017 article-title: Experimental particle paths and drift velocity in steep waves at finite water depth publication-title: Journal of Fluid Mechanics – volume: 573 start-page: 131 year: 2007 end-page: 147 article-title: Laboratory observations of mean flows under surface gravity waves publication-title: Journal of Fluid Mechanics – volume: 528 start-page: 71 year: 2015 end-page: 86 article-title: Transport of larvae and detritus across the surf zone of a steep reflective pocket beach publication-title: Marine Ecology Progress Series – volume: 4 year: 2019 article-title: Orientation dynamics of nonspherical particles under surface gravity waves publication-title: Physical Review. Fluids – volume: 38 start-page: 2846 year: 2008 end-page: 2853 article-title: Settling of particles beneath water waves publication-title: Journal of Physical Oceanography – volume: 122 start-page: 6773 issue: 8 year: 2017 end-page: 6794 article-title: Transfer and dissipation of energy during wave group propagation on a gentle beach slope publication-title: Journal of Geophysical Research: Oceans – volume: 89 start-page: 324 year: 2014 end-page: 330 article-title: Selective transport of microplastics and mesoplastics by drifting in coastal waters publication-title: Marine Pollution Bulletin – volume: 48 start-page: 105 issue: 1 year: 2010 end-page: 110 article-title: Real–time image processing for particle tracking velocimetry publication-title: Experiments in Fluids – volume: 29 start-page: 944 year: 2012 end-page: 959 article-title: Observing ocean surface waves with GPS‐tracked buoys publication-title: Journal of Atmospheric and Oceanic Technology – year: 2020 article-title: Coastal margins and backshores represent a major sink for marine debris: Insights from a continental‐scale analysis publication-title: Environmental Research Letter – volume: 8 year: 1984 article-title: Mass flux and undertow in a surf zone publication-title: Coastal Engineering – volume: 369 start-page: 691 year: 2019 end-page: 698 article-title: Distribution of plastic polymer types in the marine environment; A meta‐analysis publication-title: Journal of Hazardous Materials – volume: 9 year: 2019 article-title: A global mass budget for positively buoyant macroplastic debris in the ocean publication-title: Scientific Reports – volume: 3 year: 1992 – volume: 43 start-page: 177 year: 1970 end-page: 185 article-title: On the mass transport induced by oscillatory flow in a turbulent boundary layer publication-title: Journal of Fluid Mechanics – volume: 245 start-page: 535 year: 1953 end-page: 581 article-title: Mass transport in water waves publication-title: Philosophical Transactions of the Royal Society of London ‐ A – volume: 376 year: 2017 article-title: Stokes drift publication-title: Philosophical Transactions of the Royal Society of London ‐ A – volume: 117 year: 2012 article-title: Net currents in the wave bottom boundary layer: On waveshape streaming and progressive wave streaming publication-title: Journal of Geophysical Research – year: 1976 – volume: 15 year: 2020 article-title: The physical oceanography of the transport of floating marine debris publication-title: Environmental Research Letters – volume: 879 year: 2019 article-title: Experimental study of particle trajectories below deep‐water surface gravity wave groups publication-title: Journal of Fluid Mechanics – volume: 86 start-page: 219 year: 2014 end-page: 228 article-title: Marine litter ensemble transport simulations in the southern North Sea publication-title: Marine Pollution Bulletin – ident: e_1_2_9_33_1 doi: 10.1175/JPO-D-18-0227.1 – ident: e_1_2_9_10_1 doi: 10.1017/jfm.2016.726 – ident: e_1_2_9_14_1 doi: 10.1017/S0022112070002306 – ident: e_1_2_9_36_1 doi: 10.3354/meps11223 – ident: e_1_2_9_13_1 doi: 10.1016/j.marpolbul.2014.09.041 – ident: e_1_2_9_22_1 doi: 10.1063/1.864230 – ident: e_1_2_9_45_1 doi: 10.1016/S0378-3839(98)00019-2 – year: 1992 ident: e_1_2_9_9_1 contributor: fullname: Fredsøe J. – ident: e_1_2_9_25_1 doi: 10.1017/S0022112006003594 – volume: 4 start-page: e23 issue: 1 year: 2016 ident: e_1_2_9_24_1 article-title: Particle data management software for 3DParticle tracking velocimetry and related applications the flowtracks package publication-title: Journal of Open Research Software doi: 10.5334/jors.101 contributor: fullname: Meller Y. – ident: e_1_2_9_2_1 doi: 10.1103/PhysRevFluids.4.114801 – ident: e_1_2_9_16_1 doi: 10.1007/978-3-642-85567-2 – ident: e_1_2_9_28_1 doi: 10.1088/1748-9326/ab7836 – ident: e_1_2_9_43_1 doi: 10.1017/jfm.2019.584 – ident: e_1_2_9_5_1 doi: 10.1175/2008JPO3793.1 – ident: e_1_2_9_17_1 doi: 10.1038/s41598-019-49413-5 – volume: 123 start-page: 8921 year: 2020 ident: e_1_2_9_31_1 article-title: A general framework for wave separation in the frequency domain publication-title: Coastal Engineering contributor: fullname: Padilla E. M. – ident: e_1_2_9_6_1 doi: 10.1371/journal.pone.0111913 – ident: e_1_2_9_18_1 doi: 10.1017/jfm.2019.544 – ident: e_1_2_9_20_1 doi: 10.1017/S0022112004003283 – ident: e_1_2_9_32_1 doi: 10.1080/00221686.2016.1168490 – ident: e_1_2_9_39_1 doi: 10.1016/0378-3839(84)90030-9 – ident: e_1_2_9_26_1 doi: 10.1016/j.marpolbul.2014.07.016 – ident: e_1_2_9_30_1 doi: 10.1002/2017JC012703 – ident: e_1_2_9_27_1 doi: 10.1142/1269 – ident: e_1_2_9_41_1 doi: 10.1029/JC089iC05p07999 – ident: e_1_2_9_4_1 doi: 10.1103/PhysRevFluids.4.034301 – ident: e_1_2_9_35_1 doi: 10.1017/S0022112006002965 – ident: e_1_2_9_40_1 doi: 10.1080/00221689009499069 – ident: e_1_2_9_21_1 doi: 10.1007/s00348-009-0715-5 – ident: e_1_2_9_3_1 doi: 10.1017/jfm.2017.548 – ident: e_1_2_9_46_1 – ident: e_1_2_9_44_1 doi: 10.1088/1748-9326/ab6d7d – year: 1933 ident: e_1_2_9_37_1 contributor: fullname: Shields A. – ident: e_1_2_9_23_1 doi: 10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2 – ident: e_1_2_9_29_1 doi: 10.1029/2018JC014547 – volume: 376 year: 2017 ident: e_1_2_9_42_1 article-title: Stokes drift publication-title: Philosophical Transactions of the Royal Society of London ‐ A contributor: fullname: van den Bremer T. S. – ident: e_1_2_9_8_1 doi: 10.1038/s41558-018-0209-7 – ident: e_1_2_9_7_1 doi: 10.1016/j.jhazmat.2019.02.067 – start-page: 544556 volume-title: Proc. 22nd Int. Conf. Coastal engineering, ASCE year: 1990 ident: e_1_2_9_12_1 contributor: fullname: Hwung H. H. – ident: e_1_2_9_34_1 doi: 10.1209/0295-5075/102/14003 – ident: e_1_2_9_11_1 doi: 10.1175/JTECH-D-11-00128.1 – ident: e_1_2_9_19_1 doi: 10.1098/rsta.1953.0006 – ident: e_1_2_9_15_1 doi: 10.1029/2011JF002070 – volume: 8 start-page: 441455 year: 1847 ident: e_1_2_9_38_1 article-title: On the theory of oscillatory waves publication-title: Transactions of the Cambridge Philosophical Society contributor: fullname: Stokes G. G. |
SSID | ssj0000818449 |
Score | 2.3480093 |
Snippet | The transport of plastic particles from inland sources to the oceans garbage patches occurs trough coastal regions where the transport processes depend highly... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2020JC016294 |
SubjectTerms | Abrupt/Rapid Climate Change Aerosols Aerosols and Particles Air/Sea Constituent Fluxes Air/Sea Interactions Atmospheric Atmospheric Composition and Structure Atmospheric Processes Avalanches Benefit‐cost Analysis Biogeosciences Climate and Interannual Variability Climate Change and Variability Climate Dynamics Climate Impact Climate Impacts Climate Variability Climatology Coastal waves Coastal zone Coastal zones Computational Geophysics Cryosphere Decadal Ocean Variability Density Disaster Risk Analysis and Assessment Drift Earth System Modeling Earthquake Ground Motions and Engineering Seismology Effusive Volcanism Explosive Volcanism Floating Flumes Free surfaces Garbage General Circulation Geodesy and Gravity Geological Geophysics Global Change Global Change from Geodesy Gravity and Isostasy Hydrological Cycles and Budgets Hydrology Impacts of Global Change Inertia Informatics Intermediate water Intermediate water masses Laboratories Land/Atmosphere Interactions Marine Geology and Geophysics marine plastic Marine Pollution Mass Balance Megacities and Urban Environment Modeling Movement Mud Volcanism Natural Hazards Nearshore Processes Numerical Modeling Numerical Solutions Ocean basins Ocean influence of Earth rotation Ocean models Ocean Monitoring with Geodetic Techniques Ocean/Atmosphere Interactions Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions Oceanic Oceanography: Biological and Chemical Oceanography: General Oceanography: Physical Oceans Paleoceanography Particle density (concentration) Particle inertia Physical Modeling Plastic pollution Plastics Policy Sciences Pollution: Urban and Regional Pollution: Urban, Regional and Global Polymers Radio Oceanography Radio Science Regional Climate Change Regional Modeling Regions Risk Sea Level Change Sea Level: Variations and Mean Seismology Slopes Solid Earth Stokes drift Surface Waves and Tides Theoretical Modeling Transport processes Tsunamis and Storm Surges Urban Systems Volcanic Hazards and Risks Volcano Monitoring Volcano Seismology Volcano/Climate Interactions Volcanology Water Cycles Water depth Water pollution wave flume experiment Wave number Wave period Wave slope |
Title | Laboratory Measurements of the Wave‐Induced Motion of Plastic Particles: Influence of Wave Period, Plastic Size and Plastic Density |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020JC016294 https://www.ncbi.nlm.nih.gov/pubmed/33717775 https://www.proquest.com/docview/2472859316 https://search.proquest.com/docview/2501477882 https://pubmed.ncbi.nlm.nih.gov/PMC7919925 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VniokSssrUCojwa0RG9vNxD0goW1LqSisKAhukRM7opek6naRyolL7_zG_pLOOA92VakS4hQpYzsPz9jf2ONvAF7SJFSMlFIxVuSb6MyZOLOJiYu0ctYVRWnC-YqDY_z4PdvdY5qcN_1ZmJYfYlhwY8sI4zUbuC2mHdkAc2SS1z46HBNikYbpQMlRCCc41GRYYmG2Nh0AsExSExuJ213oO7Xwer7-4qR0A2neDJicB7JhJtpf_d9vuA_3Ogwq3rZKswZLvl6Hu59Kb-uOwPoBXH5otaM5uxBHf9cRp6KpBGFG8c3-9Fe__3Dmj9I7cRSSAbFwQnCc2hWTPuRuR7zvE6GwnCuKCel947aGwscnv7ywtRtu7HJc_fnFQ_i6v_dlfBB3KRtiq9GksVSFIwjBuavRuQorm3iTKNYUU9lCqqok_6Us6WLRey1HGmk4RsJ1qXc0GDyC5bqp_RMQHPfqRqmRznpNTqTFVGelpuac9llWRvCq77P8tGXmyMOOujT5_H-NYKPv0Lyzz2kuNTJzn0rSCF4MYrIs3i6xtW9mVIa3XBHJBYngcdv_w4OUIjcYcTsCXNCMoQCzdi9K6pMfgb0bDUf8Us2toBm3vnt--O7zmEAUpk__rfgzWGFBG3ezAcvnZzP_HO5M3Wwz2Mg1FNcRFw |
link.rule.ids | 230,315,782,786,887,1408,27934,27935,46065,46489 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcgAhlTcEChgJbo3Y2G4m5oLQtmVbdsuKFpVb5MSO6CVB3W6lcuqld34jv4SZvNhVJSTEKVI8dh6esb-xx98AvKJJKBsopUIsyDfRiTNhYiMTZnHhrMuy3NTnK0YHuP812dpmmpx33VmYhh-iX3Bjy6jHazZwXpBu2QaYJJPc9sHekCCLNHoFrutYJ6zWSk37RRbma9M1BJZRbEIjcbMNfqcm3iw2sDwtXcGaV0MmF6FsPRft3P7vr7gDay0MFe8bvbkL13x5D259yr0tWw7r-3A5bhSkOjkXkz9LiTNRFYJgoziyZ_7XxU9O_pF7JyZ1PiAunBIip3bFtIu6eyt2u1woXM4VxZRUv3IbvfDB8Q8vbOn6G1scWn96_gC-7GwfDkdhm7UhtBpNHEqVOUIRnL4anSuwsJE3kWJlMYXNpCpycmHynC4WvddyoJFGZCRoF3tH48FDWC2r0j8GwaGvbhAb6azX5EdapD7ONTXntE-SPIDXXael3xtyjrTeVJcmXfyvAax3PZq2JjpLpUYm71NRHMDLvpiMi3dMbOmrOcnwrisieSEBPGoUoH-QUuQJI24GgEuq0QswcfdySXn8rSbwRsNBv1Rzo1aNv757uvfh85BwFMZP_k38BdwYHU7G6Xh3_-NTuMlCTRjOOqyensz9M1iZufnz2mB-A06WFUA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiGEVN40UMBIcGvExnYzMQcktNulLW2JKKjcIid2RC9J1e0ilRMX7vxGfgkzebGrSkiIU6R47Dw8Y39jj78BeE6TUD5SSoVYkm-iE2fCxEYmzOPSWZfnhWnOV-wc4eHnZLLNNDmv-7MwLT_EsODGltGM12zgp67syAaYI5O89tHemBCLNHoFrmpC4hzSp1Q6rLEwXZtuELCMYhMaiVtd7Ds18XKxgeVZ6RLUvBwxuYhkm6loevN_P-IWrHUgVLxpteY2XPHVHbjxvvC26his78KP_VY96rMLcfBnIXEm6lIQaBTH9qv_9f0np_4ovBMHTTYgLkwJj1O7Iu1j7l6J3T4TCpdzRZGS4tducxA-Ovnmha3ccGPCgfXnF_fg03T743gn7HI2hFajiUOpckcYgpNXo3MlljbyJlKsKqa0uVRlQQ5MUdDFovdajjTSeIwE7GLvaDS4D6tVXfl1EBz46kaxkc56TV6kxVgnhabmnPZJUgTwou-z7LSl5siaLXVpssX_GsBG36FZZ6CzTGpk6j4VxQE8G4rJtHi_xFa-npMM77kikg8SwIO2_4cHKUV-MOJWALikGYMA03Yvl1QnXxr6bjQc8ks1NxvN-Ou7Z3tvP4wJRWH88N_En8K1dDLN9ncP3z2C6yzTxuBswOr52dw_hpWZmz9pzOU32x0T5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laboratory+Measurements+of+the+Wave%E2%80%90Induced+Motion+of+Plastic+Particles%3A+Influence+of+Wave+Period%2C+Plastic+Size+and+Plastic+Density&rft.jtitle=Journal+of+geophysical+research.+Oceans&rft.au=Alsina%2C+Jos%C3%A9+M.&rft.au=Jongedijk%2C+Cleo+E.&rft.au=van+Sebille%2C+Erik&rft.date=2020-12-01&rft.issn=2169-9275&rft.eissn=2169-9291&rft.volume=125&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020JC016294&rft.externalDBID=10.1029%252F2020JC016294&rft.externalDocID=JGRC24276 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9275&client=summon |