G-Protein-Coupled Receptor Affinity Prediction Based on the Use of a Profiling Dataset:  QSAR Design, Synthesis, and Experimental Validation

A QSAR model accounting for “average” G-protein-coupled receptor (GPCR) binding was built from a large set of experimental standardized binding data (1939 compounds systematically tested over 40 different GPCRs) and applied to the design of a library of “GPCR-predicted” compounds. Three hundred and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry Vol. 48; no. 21; pp. 6563 - 6574
Main Authors: Rolland, Catherine, Gozalbes, Rafael, Nicolaï, Eric, Paugam, Marie-France, Coussy, Laurent, Barbosa, Frédérique, Horvath, Dragos, Revah, Frédéric
Format: Journal Article
Language:English
Published: Washington, DC American Chemical Society 20-10-2005
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A QSAR model accounting for “average” G-protein-coupled receptor (GPCR) binding was built from a large set of experimental standardized binding data (1939 compounds systematically tested over 40 different GPCRs) and applied to the design of a library of “GPCR-predicted” compounds. Three hundred and sixty of these compounds were randomly selected and tested in 21 GPCR binding assays. Positives were defined by their ability to inhibit by more than 70% the binding of reference compounds at 10 μM. A 5.5-fold enrichment in positives was observed when comparing the “GPCR-predicted” compounds with 600 randomly selected compounds predicted as “non-GPCR” from a general collection. The model was efficient in predicting strongest binders, since enrichment was greater for higher cutoffs. Significant enrichment was also observed for peptidic GPCRs and receptors not included to develop the QSAR model, suggesting the usefulness of the model to design ligands binding with newly identified GPCRs, including orphan ones.
AbstractList A QSAR model accounting for "average" G-protein-coupled receptor (GPCR) binding was built from a large set of experimental standardized binding data (1939 compounds systematically tested over 40 different GPCRs) and applied to the design of a library of "GPCR-predicted" compounds. Three hundred and sixty of these compounds were randomly selected and tested in 21 GPCR binding assays. Positives were defined by their ability to inhibit by more than 70% the binding of reference compounds at 10 microM. A 5.5-fold enrichment in positives was observed when comparing the "GPCR-predicted" compounds with 600 randomly selected compounds predicted as "non-GPCR" from a general collection. The model was efficient in predicting strongest binders, since enrichment was greater for higher cutoffs. Significant enrichment was also observed for peptidic GPCRs and receptors not included to develop the QSAR model, suggesting the usefulness of the model to design ligands binding with newly identified GPCRs, including orphan ones.
A QSAR model accounting for “average” G-protein-coupled receptor (GPCR) binding was built from a large set of experimental standardized binding data (1939 compounds systematically tested over 40 different GPCRs) and applied to the design of a library of “GPCR-predicted” compounds. Three hundred and sixty of these compounds were randomly selected and tested in 21 GPCR binding assays. Positives were defined by their ability to inhibit by more than 70% the binding of reference compounds at 10 μM. A 5.5-fold enrichment in positives was observed when comparing the “GPCR-predicted” compounds with 600 randomly selected compounds predicted as “non-GPCR” from a general collection. The model was efficient in predicting strongest binders, since enrichment was greater for higher cutoffs. Significant enrichment was also observed for peptidic GPCRs and receptors not included to develop the QSAR model, suggesting the usefulness of the model to design ligands binding with newly identified GPCRs, including orphan ones.
A QSAR model accounting for "average" G-protein-coupled receptor (GPCR) binding was built from a large set of experimental standardized binding data (1939 compounds systematically tested over 40 different GPCRs) and applied to the design of a library of "GPCR-predicted" compounds. Three hundred and sixty of these compounds were randomly selected and tested in 21 GPCR binding assays. Positives were defined by their ability to inhibit by more than 70% the binding of reference compounds at 10 mu M. A 5.5-fold enrichment in positives was observed when comparing the "GPCR-predicted" compounds with 600 randomly selected compounds predicted as "non-GPCR" from a general collection. The model was efficient in predicting strongest binders, since enrichment was greater for higher cutoffs. Significant enrichment was also observed for peptidic GPCRs and receptors not included to develop the QSAR model, suggesting the usefulness of the model to design ligands binding with newly identified GPCRs, including orphan ones.
Author Coussy, Laurent
Barbosa, Frédérique
Nicolaï, Eric
Horvath, Dragos
Revah, Frédéric
Paugam, Marie-France
Gozalbes, Rafael
Rolland, Catherine
Author_xml – sequence: 1
  givenname: Catherine
  surname: Rolland
  fullname: Rolland, Catherine
– sequence: 2
  givenname: Rafael
  surname: Gozalbes
  fullname: Gozalbes, Rafael
– sequence: 3
  givenname: Eric
  surname: Nicolaï
  fullname: Nicolaï, Eric
– sequence: 4
  givenname: Marie-France
  surname: Paugam
  fullname: Paugam, Marie-France
– sequence: 5
  givenname: Laurent
  surname: Coussy
  fullname: Coussy, Laurent
– sequence: 6
  givenname: Frédérique
  surname: Barbosa
  fullname: Barbosa, Frédérique
– sequence: 7
  givenname: Dragos
  surname: Horvath
  fullname: Horvath, Dragos
– sequence: 8
  givenname: Frédéric
  surname: Revah
  fullname: Revah, Frédéric
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17241729$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16220973$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1v0zAYB3ALDbFucOALIF9AQlrAL0mccGu7MUATlHZD3CzXeTJcUjvYjrTedt2FD8knwVOr9YLEwbJl__z3y3OEDqyzgNBzSt5Qwujb1ZoUhJSCP0IjWjCS5RXJD9CIEMYyVjJ-iI5CWBFCOGX8CTqkJWOkFnyEfp9nM-8iGJtN3dB30OA5aOij83jctsaauMEzD43R0TiLJyokkgbxB-CrANi1WCXgWtMZe41PVUwivvtze4e_LsZzfArBXNsTvNjYtCWYcIKVbfDZTQ_erMFG1eFvqjONus9_ih63qgvwbNcfo6v3Z5fTD9nFl_OP0_FFpnJRxWzZCEqasuK5WBYECCjKKWX1cskE1bzWouGV0LQSvM1LSDNCaV0XlWKaKV3xY_Rqm9t792uAEOXaBA1dpyy4IciyKqucif9DWuckOZbg6y3U3oXgoZV9ep_yG0mJvK-SfKhSsi92ocNyDc1e7sqSwMsdUEGrrvXKahP2TrA8tTq5bOtMiHDzsK78T5nOEYW8nC3kRMy_Tz5PpvLTPlfpIFdu8DZ98j8u-Bd8u7ak
CODEN JMCMAR
CitedBy_id crossref_primary_10_1021_ci7003237
crossref_primary_10_1021_jo0622882
crossref_primary_10_1371_journal_pone_0032864
crossref_primary_10_1021_jo400961x
crossref_primary_10_1111_cbdd_12128
crossref_primary_10_1186_1471_2105_9_363
crossref_primary_10_1021_ci6002416
crossref_primary_10_1007_s10822_015_9882_z
crossref_primary_10_1111_j_1747_0285_2011_01095_x
crossref_primary_10_1007_s10822_006_9076_9
crossref_primary_10_1007_s10822_010_9384_y
crossref_primary_10_5012_bkcs_2013_34_11_3429
crossref_primary_10_1021_ci600476r
crossref_primary_10_1002_cmdc_200700036
crossref_primary_10_1021_ci800356a
crossref_primary_10_1021_ci700368p
crossref_primary_10_1246_cl_140415
crossref_primary_10_13160_ricns_2013_6_3_163
crossref_primary_10_1021_jm1008456
crossref_primary_10_1016_j_bbapap_2009_12_002
crossref_primary_10_1177_1087057113499631
crossref_primary_10_1016_j_ddtec_2006_12_006
crossref_primary_10_1007_s11030_016_9722_7
crossref_primary_10_1002_cmdc_200800282
crossref_primary_10_1016_j_jprot_2011_05_011
crossref_primary_10_1124_pr_112_007336
crossref_primary_10_5059_yukigoseikyokaishi_73_483
Cites_doi 10.1126/science.287.5460.1960
10.1016/S1367-5931(02)00329-0
10.1046/j.1365-2796.2001.00867.x
10.1021/jm049615n
10.1023/A:1020220306702
10.1021/jm049662f
10.2174/0929867013371798
10.1021/jm960290n
10.1021/jm970512x
10.1016/S0165-6147(03)00033-6
10.1021/jm0311487
10.1089/dna.1992.11.1
10.1016/S0165-6147(02)00009-3
10.1186/gb-2002-3-11-research0063
10.1002/9783527613106
10.1021/jm0309452
10.1126/science.289.5480.739
10.1002/prot.10237
ContentType Journal Article
Copyright Copyright © 2005 American Chemical Society
2006 INIST-CNRS
Copyright_xml – notice: Copyright © 2005 American Chemical Society
– notice: 2006 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
DOI 10.1021/jm0500673
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Engineering Research Database
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1520-4804
EndPage 6574
ExternalDocumentID 10_1021_jm0500673
16220973
17241729
ark_67375_TPS_B7RXBNBC_J
c833505741
Genre Journal Article
GroupedDBID -
.K2
4.4
53G
55A
5GY
5RE
5VS
7~N
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GJ
GNL
IH9
IHE
JG
JG~
K2
L7B
LG6
NHB
P2P
ROL
TN5
UI2
VF5
VG9
W1F
WH7
X
XFK
YZZ
ZY4
---
-~X
.GJ
AAHBH
AAYOK
ABJNI
ABQRX
ABTAH
ACGFO
ADHLV
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
IH2
XSW
YQT
.55
.HR
08R
1KJ
1WB
3EH
3O-
6P2
6TJ
9M8
AAUGY
ABFRP
ABHMW
IQODW
MVM
OHT
RNS
UBC
X7M
ZE2
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-a478t-bd710d68347b50e0ea131129bb271c39c7d387c1873f46ec397acc958a2c2ac83
IEDL.DBID ACS
ISSN 0022-2623
IngestDate Fri Aug 16 22:37:18 EDT 2024
Fri Aug 16 09:46:32 EDT 2024
Fri Aug 23 02:53:51 EDT 2024
Sat Sep 28 07:52:14 EDT 2024
Sun Oct 22 16:05:08 EDT 2023
Wed Oct 30 10:00:20 EDT 2024
Thu Aug 27 13:41:57 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Transmembrane protein
Signal transduction
Biological fixation
Structure activity relation
Ligand
Chemical compound library
Molecular model
Prediction
Affinity
Modeling
G protein
Biological receptor
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a478t-bd710d68347b50e0ea131129bb271c39c7d387c1873f46ec397acc958a2c2ac83
Notes istex:AD249B2589E9E348DD39B99B12E15532F0B9C5B0
ark:/67375/TPS-B7RXBNBC-J
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 16220973
PQID 19402782
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_68684278
proquest_miscellaneous_19402782
crossref_primary_10_1021_jm0500673
pubmed_primary_16220973
pascalfrancis_primary_17241729
istex_primary_ark_67375_TPS_B7RXBNBC_J
acs_journals_10_1021_jm0500673
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2005-10-20
PublicationDateYYYYMMDD 2005-10-20
PublicationDate_xml – month: 10
  year: 2005
  text: 2005-10-20
  day: 20
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Journal of medicinal chemistry
PublicationTitleAlternate J. Med. Chem
PublicationYear 2005
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Oprea TI (jm0500673b00015/jm0500673b00015_1) 2002; 6
Patterson D. E. (jm0500673b00016/jm0500673b00016_1) 1996; 39
Palczewski K. (jm0500673b00005/jm0500673b00005_1) 2000; 289
Klabunde T. (jm0500673b00002/jm0500673b00002_1) 2002; 3
Holenz J. (jm0500673b00017/jm0500673b00017_1) 2005; 48
Moro S. (jm0500673b00018/jm0500673b00018_1) 2005; 48
Lindow M. (jm0500673b00025/jm0500673b00025_1) 2003; 24
Evers A. (jm0500673b00019/jm0500673b00019_1) 2004; 47
Probst W. C. (jm0500673b00003/jm0500673b00003_1) 1992; 11
Krejsa C. M. (jm0500673b00009/jm0500673b00009_1) 2003; 6
Bondensgaard K. (jm0500673b00021/jm0500673b00021_1) 2004; 47
Gozalbes R. (jm0500673b00010/jm0500673b00010_1) 2004
Todeschini R. (jm0500673b00014/jm0500673b00014_1) 2000
Becker O. M. (jm0500673b00006/jm0500673b00006_1) 2003; 6
Bissantz C. (jm0500673b00007/jm0500673b00007_1) 2003; 50
Horvath D. (jm0500673b00011/jm0500673b00011_1)
Poulsen A. (jm0500673b00026/jm0500673b00026_1) 2002; 16
Drews J. (jm0500673b00001/jm0500673b00001_1) 2000; 287
Baggiolini M (jm0500673b00024/jm0500673b00024_1) 2001; 250
Sun H. (jm0500673b00020/jm0500673b00020_1) 2004; 12
Joost P. (jm0500673b00004/jm0500673b00004_1) 2002; 3
Horvath D. (jm0500673b00012/jm0500673b00012_1) 2003; 43
Gurrath M. (jm0500673b00023/jm0500673b00023_1) 2001; 8
Archer E. (jm0500673b00008/jm0500673b00008_1) 2003; 24
Horvath D. (jm0500673b00013/jm0500673b00013_1) 2003; 43
Hipskind P. A. (jm0500673b00022/jm0500673b00022_1) 1997; 40
References_xml – volume: 287
  start-page: 1964
  year: 2000
  ident: jm0500673b00001/jm0500673b00001_1
  publication-title: Science
  doi: 10.1126/science.287.5460.1960
  contributor:
    fullname: Drews J.
– volume: 6
  start-page: 389
  issue: 3
  year: 2002
  ident: jm0500673b00015/jm0500673b00015_1
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/S1367-5931(02)00329-0
  contributor:
    fullname: Oprea TI
– volume: 250
  start-page: 104
  issue: 2
  year: 2001
  ident: jm0500673b00024/jm0500673b00024_1
  publication-title: J. Intern. Med.
  doi: 10.1046/j.1365-2796.2001.00867.x
  contributor:
    fullname: Baggiolini M
– volume: 6
  start-page: 361
  issue: 3
  year: 2003
  ident: jm0500673b00006/jm0500673b00006_1
  publication-title: Curr. Opin. Drug Discov. Devel.
  contributor:
    fullname: Becker O. M.
– volume: 48
  start-page: 1795
  issue: 6
  year: 2005
  ident: jm0500673b00017/jm0500673b00017_1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm049615n
  contributor:
    fullname: Holenz J.
– volume: 3
  start-page: 944
  issue: 10
  year: 2002
  ident: jm0500673b00002/jm0500673b00002_1
  publication-title: ChemBioChem
  contributor:
    fullname: Klabunde T.
– volume: 16
  start-page: 286
  year: 2002
  ident: jm0500673b00026/jm0500673b00026_1
  publication-title: J. Comput.-Aided Mol. Des.
  doi: 10.1023/A:1020220306702
  contributor:
    fullname: Poulsen A.
– volume: 48
  start-page: 162
  issue: 1
  year: 2005
  ident: jm0500673b00018/jm0500673b00018_1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm049662f
  contributor:
    fullname: Moro S.
– volume: 8
  start-page: 1648
  issue: 13
  year: 2001
  ident: jm0500673b00023/jm0500673b00023_1
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867013371798
  contributor:
    fullname: Gurrath M.
– volume: 12
  start-page: 2677
  issue: 10
  year: 2004
  ident: jm0500673b00020/jm0500673b00020_1
  publication-title: Bioorg. Med. Chem.
  contributor:
    fullname: Sun H.
– volume-title: Proceedings of the LogP symposium
  year: 2004
  ident: jm0500673b00010/jm0500673b00010_1
  contributor:
    fullname: Gozalbes R.
– volume: 39
  start-page: 9
  year: 1996
  ident: jm0500673b00016/jm0500673b00016_1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm960290n
  contributor:
    fullname: Patterson D. E.
– volume: 40
  start-page: 3714
  year: 1997
  ident: jm0500673b00022/jm0500673b00022_1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm970512x
  contributor:
    fullname: Hipskind P. A.
– volume: 43
  start-page: 698
  issue: 2
  year: 2003
  ident: jm0500673b00013/jm0500673b00013_1
  publication-title: J. Chem. Inf. Comput. Sci.
  contributor:
    fullname: Horvath D.
– volume: 24
  start-page: 130
  issue: 3
  year: 2003
  ident: jm0500673b00025/jm0500673b00025_1
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/S0165-6147(03)00033-6
  contributor:
    fullname: Lindow M.
– volume: 6
  start-page: 480
  issue: 4
  year: 2003
  ident: jm0500673b00009/jm0500673b00009_1
  publication-title: Curr. Opin. Drug Discovery Dev.
  contributor:
    fullname: Krejsa C. M.
– volume: 47
  start-page: 5392
  issue: 22
  year: 2004
  ident: jm0500673b00019/jm0500673b00019_1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm0311487
  contributor:
    fullname: Evers A.
– volume-title: High throughput conformational sampling and fuzzy similarity metrics:  a novel approach to similarity searching and focused combinatorial library design and its role in the drug discovery laboratory
  ident: jm0500673b00011/jm0500673b00011_1
  contributor:
    fullname: Horvath D.
– volume: 11
  start-page: 20
  issue: 1
  year: 1992
  ident: jm0500673b00003/jm0500673b00003_1
  publication-title: DNA Cell. Biol.
  doi: 10.1089/dna.1992.11.1
  contributor:
    fullname: Probst W. C.
– volume: 24
  start-page: 40
  issue: 1
  year: 2003
  ident: jm0500673b00008/jm0500673b00008_1
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/S0165-6147(02)00009-3
  contributor:
    fullname: Archer E.
– volume: 3
  start-page: 0063
  issue: 11
  year: 2002
  ident: jm0500673b00004/jm0500673b00004_1
  publication-title: Genome Biol.
  doi: 10.1186/gb-2002-3-11-research0063
  contributor:
    fullname: Joost P.
– volume-title: Handbook of Molecular Descriptors
  year: 2000
  ident: jm0500673b00014/jm0500673b00014_1
  doi: 10.1002/9783527613106
  contributor:
    fullname: Todeschini R.
– volume: 47
  start-page: 899
  issue: 4
  year: 2004
  ident: jm0500673b00021/jm0500673b00021_1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm0309452
  contributor:
    fullname: Bondensgaard K.
– volume: 289
  start-page: 745
  issue: 5480
  year: 2000
  ident: jm0500673b00005/jm0500673b00005_1
  publication-title: Science
  doi: 10.1126/science.289.5480.739
  contributor:
    fullname: Palczewski K.
– volume: 43
  start-page: 690
  issue: 2
  year: 2003
  ident: jm0500673b00012/jm0500673b00012_1
  publication-title: J. Chem. Inf. Comput. Sci.
  contributor:
    fullname: Horvath D.
– volume: 50
  start-page: 25
  issue: 1
  year: 2003
  ident: jm0500673b00007/jm0500673b00007_1
  publication-title: Proteins
  doi: 10.1002/prot.10237
  contributor:
    fullname: Bissantz C.
SSID ssj0003123
Score 2.0307038
Snippet A QSAR model accounting for “average” G-protein-coupled receptor (GPCR) binding was built from a large set of experimental standardized binding data (1939...
A QSAR model accounting for "average" G-protein-coupled receptor (GPCR) binding was built from a large set of experimental standardized binding data (1939...
SourceID proquest
crossref
pubmed
pascalfrancis
istex
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 6563
SubjectTerms Biological and medical sciences
Combinatorial Chemistry Techniques
Drug Design
Ligands
Medical sciences
Miscellaneous
Models, Molecular
Pharmacology. Drug treatments
Quantitative Structure-Activity Relationship
Radioligand Assay
Receptors, Chemokine - chemistry
Receptors, Chemokine - metabolism
Receptors, G-Protein-Coupled - chemistry
Receptors, G-Protein-Coupled - metabolism
Receptors, Peptide - chemistry
Receptors, Peptide - metabolism
Title G-Protein-Coupled Receptor Affinity Prediction Based on the Use of a Profiling Dataset:  QSAR Design, Synthesis, and Experimental Validation
URI http://dx.doi.org/10.1021/jm0500673
https://api.istex.fr/ark:/67375/TPS-B7RXBNBC-J/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/16220973
https://search.proquest.com/docview/19402782
https://search.proquest.com/docview/68684278
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swECaaZGiXpk1f7iM9tIUnC5FISaS62bLToEOgRk6RTaBICnAfsmHZQLx17dIfmV-So2TFCVCj3QThSJG8o747HPkdIR8Q811PqdwJpWCOZX9xIimVExjph25kWCjt5eSTlJ9eiOHI0uS835LBp97Rt59uUJdT2SF7lLvCRlj9OL353TKPspYSnCKYt_RBt5ta6FHVHejZs6t4aY9CygpXo2jKWGz3M2u8Od7_r5E-Ig_X7iT0G_0_JvdMeUDux20VtwPSTRpu6lUPxpurVlUPupBsWKtXT8ifT05iORsmpRNPl7MfRgO6lGaGMTn0i2KCW38FydzmdawuYYDwpwEf0IOE88rAtACJArYEOMIhDOUCJRYfr379hi9p_wyG9VmRHqSrEptUExyDLDWMbpUYgK8YFTRFnp6S8-PROD5x1sUaHIkaXji5Rl9Fh4L5PA9c4xppiXxolOeUe4pFimsmuPIEZ4UfGnzDpVJRICRVVCrBnpHdclqaFwS8PDQ0oFxHvvZdn8uIUlXUxDeco3_VIYeozWy92aqszqNTjGPa9e-Qd62is1lD2vE3oW5tAjcScv7dnnLjQTZO0mzAzy4Gp4M4-4yfu2Mjmy45uj8YnHTI29ZoMtSuzbjI0kyXOLLIt5ldul0iFDYRykWHPG-sbdN7SKnlUnr5r9m-Ig9aPlnqvia7i_nSvCE7lV4e1jvlGlU0Caw
link.rule.ids 315,782,786,2771,27087,27935,27936,56750,56800
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7R9lAuPAqU8GhHCOUUC3v9WJtb4qQEKJFpUtSbtV6vpbTgRHEikRtXLvxIfgmzdhy3EhXiZlmz6_HM7M6MZvcbgNfk801LysTwhG8bGv3FCISQhquE45mBsj2hLycPx3x04fcHW5gcfReGmChopqIs4jfoAtaby2-mW3ZV2YE9l6Jc3aahG463u65tMbtGBmfk02sUoetDtQeSxQ0PtKeF-V2fiBQFCSWrulncHm6Wbufk_v8w_ADubYJL7FbW8BDuqPwA9sO6p9sBtKMKqXrdwUlz8aroYBujBsN6_Qh-vTMijeAwzY1wtpp_VSlSgKnmlKFjN8umtBGsMVroKo_WLPbIGaZIDxRP4nmhcJahIALdEJycI_bFkiiWb3__-Imfx90z7JcnRzo4Xuc0pJgSDyJPcXCt4QB-oRyhavn0GM5PBpNwaGxaNxiC9L00kpQil9TzbYcnrqlMJTSsDwuShHFL2oHkqe1zafnczhxP0RsupAxcXzDJhPTtJ7Cbz3L1FNBKPMVcxtPASR3T4SJgTGYlDA7nFG214IjEH2-WXhGXVXVGWU0t_xa8qvUdzysIj78RtUtL2FKIxZU-88bdeBKN4x4_u-iNemH8gT53w1SaKTkFQ5SqtOC4tp2YtKvrLyJXsxVxFji6zstup_B8XRblfgsOK6NrZvcY08hKz_71t8ewP5x8Oo1P348-Poe7NdIsM1_A7nKxUi9hp0hXR-Xi-QOsyhIR
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RVgIuPMorPNoRQjnFYK8fa3NLnITyUGSaFPVmrXfXUlpwojiRyI0rF34kv4RZO25aiQpxs6zZ9Xpnducbze43AK_I59uOlJkViNC1DPuLFQkhLV8LL7Aj7QbCXE4-GvPRadgfGJqc181dGBpEST2VVRLfrOq5yjcMA86bs2-2X1VW2YE9PyCoY6BQPL7YeV2HuQ07OCO_3jAJXW5qvJAsr3ihPTOh382pSFHSxOR1RYvrIWfleoZ3_3fQ9-DOBmRit7aK-3BDF_twK25qu-1DO6kZq9cdnGwvYJUdbGOy5bJeP4Bf76zEMDlMCyuereZftUICmnpOkTp283xKG8Iak4XJ9hgNY4-cokJ6IFyJJ6XGWY6CBExhcHKS2BdLkli-_f3jJ34ed4-xX50g6eB4XVCTckpjEIXCwaXCA_iFYoW69NNDOBkOJvGRtSnhYAnS-9LKFCEYFYSuxzPf1rYWht6HRVnGuCPdSHLlhlw6IXdzL9D0hgspIz8UTDIhQ_cR7BazQj8BdLJAM59xFXnKsz0uIsZkXtHhcE6oqwUHpIJ0swTLtMquM4pumvlvwctG5-m8pvL4m1C7soYLCbE4N2ffuJ9OknHa48envVEvTj_Q566Yy7ZLTqCIQpYWHDb2k5J2TR5GFHq2opFFnsn3suslgtCkR3nYgse14W17DxgzDEtP__W3h3Az6Q_TT-9HH5_B7YZwltnPYXe5WOkXsFOq1UG1fv4Agp4Uiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=G-protein-coupled+receptor+affinity+prediction+based+on+the+use+of+a+profiling+dataset%3A+QSAR+design%2C+synthesis%2C+and+experimental+validation&rft.jtitle=Journal+of+medicinal+chemistry&rft.au=Rolland%2C+Catherine&rft.au=Gozalbes%2C+Rafael&rft.au=Nicola%C3%AF%2C+Eric&rft.au=Paugam%2C+Marie-France&rft.date=2005-10-20&rft.issn=0022-2623&rft.volume=48&rft.issue=21&rft.spage=6563&rft.epage=6574&rft_id=info:doi/10.1021%2Fjm0500673&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2623&client=summon