Linking Gas-Phase and Solution-Phase Protein Unfolding via Mobile Proton Simulations
Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small...
Saved in:
Published in: | Analytical chemistry (Washington) Vol. 94; no. 46; pp. 16113 - 16121 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
22-11-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between in vacuo and in-solution behavior, we use unbiased molecular dynamics (MD) to create in silico models of in vacuo unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded in silico models for observed charge states of NTL9. The unfolding behavior in silico replicates the behavior in-solution and is in line with the in vacuo observations; however, the theoretical collision cross section (CCS) of the in silico models was lower compared to that of the in vacuo data, which may reflect reduced sampling. |
---|---|
AbstractList | Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between in vacuo and in-solution behavior, we use unbiased molecular dynamics (MD) to create in silico models of in vacuo unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded in silico models for observed charge states of NTL9. The unfolding behavior in silico replicates the behavior in-solution and is in line with the in vacuo observations; however, the theoretical collision cross section (CCS) of the in silico models was lower compared to that of the in vacuo data, which may reflect reduced sampling.Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between in vacuo and in-solution behavior, we use unbiased molecular dynamics (MD) to create in silico models of in vacuo unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded in silico models for observed charge states of NTL9. The unfolding behavior in silico replicates the behavior in-solution and is in line with the in vacuo observations; however, the theoretical collision cross section (CCS) of the in silico models was lower compared to that of the in vacuo data, which may reflect reduced sampling. Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase ( ) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between and behavior, we use unbiased molecular dynamics (MD) to create models of unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded models for observed charge states of NTL9. The unfolding behavior replicates the behavior in-solution and is in line with the observations; however, the theoretical collision cross section (CCS) of the models was lower compared to that of the data, which may reflect reduced sampling. Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between in vacuo and in-solution behavior, we use unbiased molecular dynamics (MD) to create in silico models of in vacuo unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded in silico models for observed charge states of NTL9. The unfolding behavior in silico replicates the behavior in-solution and is in line with the in vacuo observations; however, the theoretical collision cross section (CCS) of the in silico models was lower compared to that of the in vacuo data, which may reflect reduced sampling. Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase ( in vacuo ) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between in vacuo and in-solution behavior, we use unbiased molecular dynamics (MD) to create in silico models of in vacuo unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded in silico models for observed charge states of NTL9. The unfolding behavior in silico replicates the behavior in-solution and is in line with the in vacuo observations; however, the theoretical collision cross section (CCS) of the in silico models was lower compared to that of the in vacuo data, which may reflect reduced sampling. |
Author | Cragnolini, Tristan Thalassinos, Konstantinos Eldrid, Charles Ben-Younis, Aisha Zou, Junjie Raleigh, Daniel P. |
AuthorAffiliation | Department of Chemistry University of London School of Biological Sciences University of Southampton Institute of Structural and Molecular Biology, Birkbeck College Institute of Structural and Molecular Biology, Division of Bioscience |
AuthorAffiliation_xml | – name: University of Southampton – name: Institute of Structural and Molecular Biology, Birkbeck College – name: University of London – name: Department of Chemistry – name: School of Biological Sciences – name: Institute of Structural and Molecular Biology, Division of Bioscience |
Author_xml | – sequence: 1 givenname: Charles orcidid: 0000-0001-5306-3644 surname: Eldrid fullname: Eldrid, Charles organization: Institute of Structural and Molecular Biology, Division of Bioscience – sequence: 2 givenname: Tristan surname: Cragnolini fullname: Cragnolini, Tristan organization: University of London – sequence: 3 givenname: Aisha surname: Ben-Younis fullname: Ben-Younis, Aisha organization: Institute of Structural and Molecular Biology, Division of Bioscience – sequence: 4 givenname: Junjie surname: Zou fullname: Zou, Junjie organization: Department of Chemistry – sequence: 5 givenname: Daniel P. orcidid: 0000-0003-3248-7493 surname: Raleigh fullname: Raleigh, Daniel P. organization: Department of Chemistry – sequence: 6 givenname: Konstantinos orcidid: 0000-0001-5072-8428 surname: Thalassinos fullname: Thalassinos, Konstantinos email: k.thalassinos@ucl.ac.uk organization: University of London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36350278$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9P3DAQxS1EBcufb1BVkbj0ku2MnTjOpRJCBSotYqVdzpbjOKzBsWmcIPXbN-kuq8Khp5E8v_dmPO-EHPrgDSGfEeYIFL8pHefKK6c3pp1TDYzl9IDMMKeQciHoIZkBAEtpAXBMTmJ8AkAE5EfkmHGWAy3EjKwX1j9b_5jcqJguNyqaRPk6WQU39Db43dOyC72xPnnwTXD1hL9aldyFyrptM_hkZdvBqUkUz8inRrloznf1lKyvf6yvbtPF_c3Pq8tFqrKi6NOKU-AmaxTWBRVUiyovM5HV4441ZRTRVFznFSsRhECkqmalZjpvdIG0LNkp-b61fRmq1tTa-L5TTr50tlXdbxmUle873m7kY3iVJRd5XtLR4OvOoAu_BhN72dqojXPKmzBESQuWcWTwF734gD6FoRvPP1HZeHoUBR-pbEvpLsTYmWa_DIKcUpNjavItNblLbZR9-fcje9FbTCMAW2CS7wf_1_MP6BmoLw |
CitedBy_id | crossref_primary_10_1039_D3CP06344E crossref_primary_10_1021_acs_jpcb_3c01581 crossref_primary_10_1039_D2CC06559B |
Cites_doi | 10.1021/j150664a002 10.1126/science.2675315 10.1021/jasms.1c00018 10.1002/pro.2706 10.1021/acs.analchem.8b05641 10.1021/JACSAU.1C00458 10.1021/ac5027435 10.1002/mas.21585 10.1016/J.CHEMBIOL.2006.04.006 10.1063/1.1670391 10.1146/annurev-biophys-070317-032838 10.1073/pnas.1402054111 10.1016/j.cbpa.2017.10.022 10.1128/jb.5.4.373-374.1920 10.1016/j.trac.2019.04.023 10.1074/jbc.M110.157206 10.1146/annurev-biochem-061516-045115 10.1016/j.cbpa.2017.11.010 10.1021/ac801883k 10.1002/jcc.20084 10.1021/jp308650r 10.1016/j.str.2015.02.010 10.1021/cr030403s 10.1021/ja9619059 10.1016/j.jmb.2004.10.023 10.1016/j.ijms.2018.01.008 10.1021/ac801916h 10.1038/nchem.247 10.1016/j.jasms.2006.09.025 10.1002/rcm.8613 10.1016/j.chempr.2019.03.006 10.1021/ja043789c 10.1021/bi952501g 10.1073/pnas.0807005105 10.1016/j.ymeth.2018.04.010 10.1126/science.1120177 10.1021/acscentsci.7b00084 10.1021/ac00024a716 10.1021/ac302789c 10.1021/jacs.6b10731 10.1016/j.chembiol.2013.09.008 10.1063/1.1672733 10.1002/j.1460-2075.1994.tb06250.x 10.1016/s0168-1176(97)00161-4 10.1002/pro.5560071118 10.1021/acs.jpcb.6b03035 10.1021/ct300906a 10.1016/j.sbi.2018.12.011 10.3390/molecules21101270 10.1016/j.jasms.2008.11.014 10.1021/ac1022953 10.1074/jbc.RA119.008300 10.1002/bip.360100506 10.1084/jem.20072080 10.1063/1.2714539 10.1039/C4CP05262E 10.1021/acs.jctc.5b00356 10.1016/j.ijms.2009.10.002 10.1016/S0022-2836(02)00015-3 10.1016/j.bpj.2019.01.002 10.1006/jmbi.1998.2246 10.1021/ja00180a074 10.1021/acs.jpcb.8b03825 10.1002/wcms.1130 10.1016/j.sbi.2011.10.005 10.1021/ja00091a035 10.1016/S0167-4838(96)00190-2 10.1177/1469066718791793 10.1021/bi011194d 10.1021/bi982931h 10.1006/jmbi.1999.2742 10.1006/jmbi.2000.3752 10.1016/0263-7855(96)00018-5 10.1002/anie.201403784 10.1042/BST20190788 10.1002/cbic.200800167 10.1021/acs.analchem.5b03291 10.1021/acs.analchem.0c01426 10.1021/bi972352x 10.1021/acs.jpcb.7b05703 10.1021/ac503720v 10.1021/jp206867a 10.1007/s13361-017-1594-2 10.1016/S0003-2670(99)00601-7 10.1073/pnas.0915087107 10.1021/acs.analchem.8b00912 10.1006/jmbi.1999.2595 10.1039/b705905a |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society Copyright American Chemical Society Nov 22, 2022 2022 The Authors. Published by American Chemical Society 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society – notice: Copyright American Chemical Society Nov 22, 2022 – notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1021/acs.analchem.2c03352 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 16121 |
ExternalDocumentID | 10_1021_acs_analchem_2c03352 36350278 b212576739 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 209250/Z/17/Z – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 107927/Z/15/Z – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L015382/1 – fundername: ; grantid: BB/L015382/1 – fundername: ; grantid: 107927/Z/15/Z – fundername: ; grantid: 209250/Z/17/Z |
GroupedDBID | --- -DZ -~X .DC .K2 23M 4.4 55A 5GY 5RE 5VS 6J9 7~N 85S 8W4 AABXI ABFLS ABFRP ABHFT ABMVS ABOCM ABPPZ ABPTK ABQRX ABUCX ACGFO ACGFS ACGOD ACIWK ACJ ACKOT ACNCT ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L EBS ED~ F5P GGK GNL IH9 IHE JG~ KZ1 LMP P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X6Y XSW YZZ ZCA ~02 53G AAHBH ABHMW ABJNI ACBEA CGR CUPRZ CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-a477t-b6206e4fa1d7282c8b59484d016d23211eb6c5b391088112ad39c3c5fc712993 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Tue Sep 17 21:31:49 EDT 2024 Sat Oct 26 04:05:48 EDT 2024 Thu Oct 10 18:39:48 EDT 2024 Fri Aug 23 01:51:45 EDT 2024 Sat Nov 02 12:23:15 EDT 2024 Thu Nov 24 04:02:03 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
License | Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a477t-b6206e4fa1d7282c8b59484d016d23211eb6c5b391088112ad39c3c5fc712993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3248-7493 0000-0001-5072-8428 0000-0001-5306-3644 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9685592 |
PMID | 36350278 |
PQID | 2743521876 |
PQPubID | 45400 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9685592 proquest_miscellaneous_2734613092 proquest_journals_2743521876 crossref_primary_10_1021_acs_analchem_2c03352 pubmed_primary_36350278 acs_journals_10_1021_acs_analchem_2c03352 |
PublicationCentury | 2000 |
PublicationDate | 2022-11-22 |
PublicationDateYYYYMMDD | 2022-11-22 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref88/cit88 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref89/cit89 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref90/cit90 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref87/cit87 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1021/j150664a002 – ident: ref14/cit14 doi: 10.1126/science.2675315 – ident: ref9/cit9 doi: 10.1021/jasms.1c00018 – ident: ref17/cit17 doi: 10.1002/pro.2706 – ident: ref30/cit30 doi: 10.1021/acs.analchem.8b05641 – ident: ref76/cit76 doi: 10.1021/JACSAU.1C00458 – ident: ref25/cit25 doi: 10.1021/ac5027435 – ident: ref56/cit56 doi: 10.1002/mas.21585 – ident: ref68/cit68 doi: 10.1016/J.CHEMBIOL.2006.04.006 – ident: ref79/cit79 doi: 10.1063/1.1670391 – ident: ref36/cit36 doi: 10.1146/annurev-biophys-070317-032838 – ident: ref55/cit55 doi: 10.1073/pnas.1402054111 – ident: ref20/cit20 doi: 10.1016/j.cbpa.2017.10.022 – ident: ref43/cit43 doi: 10.1128/jb.5.4.373-374.1920 – ident: ref78/cit78 doi: 10.1016/j.trac.2019.04.023 – ident: ref74/cit74 doi: 10.1074/jbc.M110.157206 – ident: ref1/cit1 doi: 10.1146/annurev-biochem-061516-045115 – ident: ref10/cit10 doi: 10.1016/j.cbpa.2017.11.010 – ident: ref69/cit69 doi: 10.1021/ac801883k – ident: ref66/cit66 doi: 10.1002/jcc.20084 – ident: ref7/cit7 doi: 10.1021/jp308650r – ident: ref63/cit63 doi: 10.1016/j.str.2015.02.010 – ident: ref6/cit6 doi: 10.1021/cr030403s – ident: ref22/cit22 doi: 10.1021/ja9619059 – ident: ref53/cit53 doi: 10.1016/j.jmb.2004.10.023 – ident: ref62/cit62 doi: 10.1016/j.ijms.2018.01.008 – ident: ref59/cit59 doi: 10.1021/ac801916h – ident: ref24/cit24 doi: 10.1038/nchem.247 – ident: ref29/cit29 doi: 10.1016/j.jasms.2006.09.025 – ident: ref60/cit60 doi: 10.1002/rcm.8613 – ident: ref19/cit19 doi: 10.1016/j.chempr.2019.03.006 – ident: ref37/cit37 doi: 10.1021/ja043789c – ident: ref3/cit3 doi: 10.1021/bi952501g – ident: ref86/cit86 doi: 10.1073/pnas.0807005105 – ident: ref42/cit42 doi: 10.1016/j.ymeth.2018.04.010 – ident: ref70/cit70 doi: 10.1126/science.1120177 – ident: ref89/cit89 doi: 10.1021/acscentsci.7b00084 – ident: ref15/cit15 doi: 10.1021/ac00024a716 – ident: ref84/cit84 doi: 10.1021/ac302789c – ident: ref88/cit88 doi: 10.1021/jacs.6b10731 – ident: ref18/cit18 doi: 10.1016/j.chembiol.2013.09.008 – ident: ref80/cit80 doi: 10.1063/1.1672733 – ident: ref26/cit26 doi: 10.1021/jasms.1c00018 – ident: ref90/cit90 doi: 10.1016/j.ymeth.2018.04.010 – ident: ref44/cit44 doi: 10.1002/j.1460-2075.1994.tb06250.x – ident: ref82/cit82 doi: 10.1016/s0168-1176(97)00161-4 – ident: ref47/cit47 doi: 10.1002/pro.5560071118 – ident: ref40/cit40 doi: 10.1021/acs.jpcb.6b03035 – ident: ref39/cit39 doi: 10.1021/ct300906a – ident: ref34/cit34 doi: 10.1016/j.sbi.2018.12.011 – ident: ref57/cit57 doi: 10.3390/molecules21101270 – ident: ref8/cit8 doi: 10.1016/j.jasms.2008.11.014 – ident: ref61/cit61 doi: 10.1021/ac1022953 – ident: ref4/cit4 doi: 10.1074/jbc.RA119.008300 – ident: ref81/cit81 doi: 10.1002/bip.360100506 – ident: ref2/cit2 doi: 10.1084/jem.20072080 – ident: ref71/cit71 doi: 10.1063/1.2714539 – ident: ref73/cit73 doi: 10.1039/C4CP05262E – ident: ref58/cit58 doi: 10.1021/acs.jctc.5b00356 – ident: ref87/cit87 doi: 10.1016/j.ijms.2009.10.002 – ident: ref52/cit52 doi: 10.1016/S0022-2836(02)00015-3 – ident: ref54/cit54 doi: 10.1016/j.bpj.2019.01.002 – ident: ref45/cit45 doi: 10.1006/jmbi.1998.2246 – ident: ref16/cit16 doi: 10.1021/ja00180a074 – ident: ref77/cit77 doi: 10.1021/acs.jpcb.8b03825 – ident: ref85/cit85 doi: 10.1002/wcms.1130 – ident: ref35/cit35 doi: 10.1016/j.sbi.2011.10.005 – ident: ref67/cit67 doi: 10.1021/ja00091a035 – ident: ref5/cit5 doi: 10.1016/S0167-4838(96)00190-2 – ident: ref38/cit38 doi: 10.1177/1469066718791793 – ident: ref75/cit75 doi: 10.1021/bi011194d – ident: ref48/cit48 doi: 10.1021/bi982931h – ident: ref50/cit50 doi: 10.1006/jmbi.1999.2742 – ident: ref51/cit51 doi: 10.1006/jmbi.2000.3752 – ident: ref65/cit65 doi: 10.1016/0263-7855(96)00018-5 – ident: ref11/cit11 doi: 10.1002/anie.201403784 – ident: ref21/cit21 doi: 10.1042/BST20190788 – ident: ref32/cit32 doi: 10.1002/cbic.200800167 – ident: ref27/cit27 doi: 10.1021/acs.analchem.5b03291 – ident: ref28/cit28 doi: 10.1021/acs.analchem.0c01426 – ident: ref46/cit46 doi: 10.1021/bi972352x – ident: ref41/cit41 doi: 10.1021/acs.jpcb.7b05703 – ident: ref23/cit23 doi: 10.1021/ac503720v – ident: ref33/cit33 doi: 10.1021/jp206867a – ident: ref64/cit64 doi: 10.1007/s13361-017-1594-2 – ident: ref83/cit83 doi: 10.1016/S0003-2670(99)00601-7 – ident: ref72/cit72 doi: 10.1073/pnas.0915087107 – ident: ref12/cit12 doi: 10.1021/acs.analchem.8b00912 – ident: ref49/cit49 doi: 10.1006/jmbi.1999.2595 – ident: ref31/cit31 doi: 10.1039/b705905a |
SSID | ssj0011016 |
Score | 2.4772964 |
Snippet | Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method... Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase ( ) is an important method for the... Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase ( in vacuo ) is an important method... |
SourceID | pubmedcentral proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 16113 |
SubjectTerms | Algorithms Chemistry Fluorescence Fluorescent indicators Ionic mobility Ions - chemistry Mass spectrometry Mass spectroscopy Molecular dynamics Molecular Dynamics Simulation Protein Conformation Protein folding Protein Unfolding Proteins Proteins - chemistry Protons Vapor phases |
Title | Linking Gas-Phase and Solution-Phase Protein Unfolding via Mobile Proton Simulations |
URI | http://dx.doi.org/10.1021/acs.analchem.2c03352 https://www.ncbi.nlm.nih.gov/pubmed/36350278 https://www.proquest.com/docview/2743521876 https://www.proquest.com/docview/2734613092 https://pubmed.ncbi.nlm.nih.gov/PMC9685592 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYYHIADj_EaDBQkLhwymrRr0yMaGxwATdqQuFVpmmk7rEOU8fuxu3Yw0IR2raOksZ34c13bAFe-GJiwObBcGWO4p6zhOvAdrl3PM80YjbqkfOeHXvD8qu7aVCansSSCL8WNNllDI1NxD-OGNA4lCVVgQwZ4PggKtXrzqAF5omWHPAqolqlyS2Yhg2SyRYP0B2X-_lnyh_Xp7K763nuwU-BMdjtTjH1Ys2kVNltle7cqbP-oRHgA_cdZDwV2rzPeHaJpYzpNWPnRrHjUpaIOo5S9oFbmQSv2OdLsaRLj1ZITJynrjcZFR7DsEPqddr_1wIuGC1x7QfDBY186vvUGWiQBumJGxVTMxUuQrQkiLyFs7KMAXYQYSiFQ04kbGtc0ByZA2BC6R7CeTlJ7AixMpNYEHX1rPamlirWh4Y51fRMqpwbXyJ-oOC9ZlIfCpYjoYcm0qGBaDXgpoOhtVoLjn_H1UorfC6DzjSSBd38NLudkZDnFR3RqJ1Ma43rkToU4xfFM6PMFXQRmFKStQbCgDvMBVKZ7kZKOhnm57tBX6LbJ0xW2fAZbktIshOBS1mH9431qz6GSJdOLXOO_AK_I_2I |
link.rule.ids | 230,315,783,787,888,2772,27088,27936,27937,56751,56801 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD78d4BokLh0CTvtLjNB5DDIS0IXGr0jTTdqBDlPH7sbt2MBBCcI2tJLWT-nNd2wDHgeiZyO9Zrowx3FPWcB0GDteu5xk_QaMuKd-51QnvHtX5BZXJ8atcGNxEjjPlRRD_o7qAOKMxjbLFR3k6lcahXKFZmPMR8NJ9bDQ7k-ABOaRVozyKq1YZcz_MQnbJ5NN26RvY_PrP5CcjdLn8z-2vwFKJOlljfExWYcZmazDfrJq9rcHip7qE69BtjzsqsCud8_s-Gjqms5RVn9DKoXsq8TDI2AOe0SKExd4Gmt0OE3zRFMRhxjqDp7I_WL4B3cuLbrPFy_YLXHth-MqTQDqB9XpapCE6ZkYlVNrFS1G6KeIwIWwSoDpdBBxKIWzTqRsZ1_g9EyKIiNxNqGXDzG4Di1KpNQHJwFpPaqkSbYjdsW5gIuXU4QTlE5e3J4-LwLgUMQ1WQotLodWBV3qKn8cFOX7h36uU-bEAuuJIEmgJ6nA0IaPIKVqiMzscEY_rkXMV4RRbY91PFnQRplHItg7h1KmYMFDR7mlKNugXxbujQKETJ3f-8MiHMN_q3rbj9vXdzS4sSErAEIJLuQe115eR3YfZPB0dFJfgHaCsB9Y |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xIm3wMNh3twFG2sseDLGTOs4j6laKKFOldtLeIsdx1Dw0nci6v393aRJaEJoQr76THd_Zud_lcncAF0pkNupljmtrLQ-0s9yEyuPGDwLbS9CoS8p3Hk7Cmzt9dU1lctpWX_gQJc5UVkF8utX3aVZXGBCfadygfHE780_SepQvtAUvewpfs4SK-pM2gEBOadMsj2KrTdbcX2Yh22TLTdv0B-D8_b_JNUM0ePMfW3gLuzX6ZF9Wx2UPXrhiH3b6TdO3fXi9Vp_wAKajVWcF9tWUfDxDg8dMkbLmU1o9NKZSD3nBbvGsVqEs9pgb9mOR4AunIi4KNsnndZ-w8hCmg-tpf8jrNgzcBGH4wBMlPeWCzIg0RAfN6oRKvAQpSjhFPCaESxSq1UfgoTXCN5P6kfVtL7MhgonIP4JOsSjcCbAolcYQoFTOBdJInRhL7J7zlY2014VLlE9c36IyrgLkUsQ02AgtroXWBd7oKr5fFeZ4hv-8UeivBdAlR5JAi9CFjy0ZRU5RE1O4xZJ4_ICcrAinOF7pv13QR7hGodsuhBsno2Wg4t2blCKfVUW8I6XRmZOn_7DlD7A9vhrEo28338_glaQ8DCG4lOfQefi5dO9gq0yX76t78AQJcQpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+Gas-Phase+and+Solution-Phase+Protein+Unfolding+via+Mobile+Proton+Simulations&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Eldrid%2C+Charles&rft.au=Cragnolini%2C+Tristan&rft.au=Ben-Younis%2C+Aisha&rft.au=Zou%2C+Junjie&rft.date=2022-11-22&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=94&rft.issue=46&rft.spage=16113&rft_id=info:doi/10.1021%2Facs.analchem.2c03352&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |