Linking Gas-Phase and Solution-Phase Protein Unfolding via Mobile Proton Simulations

Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) Vol. 94; no. 46; pp. 16113 - 16121
Main Authors: Eldrid, Charles, Cragnolini, Tristan, Ben-Younis, Aisha, Zou, Junjie, Raleigh, Daniel P., Thalassinos, Konstantinos
Format: Journal Article
Language:English
Published: United States American Chemical Society 22-11-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between in vacuo and in-solution behavior, we use unbiased molecular dynamics (MD) to create in silico models of in vacuo unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded in silico models for observed charge states of NTL9. The unfolding behavior in silico replicates the behavior in-solution and is in line with the in vacuo observations; however, the theoretical collision cross section (CCS) of the in silico models was lower compared to that of the in vacuo data, which may reflect reduced sampling.
AbstractList Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between in vacuo and in-solution behavior, we use unbiased molecular dynamics (MD) to create in silico models of in vacuo unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded in silico models for observed charge states of NTL9. The unfolding behavior in silico replicates the behavior in-solution and is in line with the in vacuo observations; however, the theoretical collision cross section (CCS) of the in silico models was lower compared to that of the in vacuo data, which may reflect reduced sampling.Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between in vacuo and in-solution behavior, we use unbiased molecular dynamics (MD) to create in silico models of in vacuo unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded in silico models for observed charge states of NTL9. The unfolding behavior in silico replicates the behavior in-solution and is in line with the in vacuo observations; however, the theoretical collision cross section (CCS) of the in silico models was lower compared to that of the in vacuo data, which may reflect reduced sampling.
Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase ( ) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between and behavior, we use unbiased molecular dynamics (MD) to create models of unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded models for observed charge states of NTL9. The unfolding behavior replicates the behavior in-solution and is in line with the observations; however, the theoretical collision cross section (CCS) of the models was lower compared to that of the data, which may reflect reduced sampling.
Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between in vacuo and in-solution behavior, we use unbiased molecular dynamics (MD) to create in silico models of in vacuo unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded in silico models for observed charge states of NTL9. The unfolding behavior in silico replicates the behavior in-solution and is in line with the in vacuo observations; however, the theoretical collision cross section (CCS) of the in silico models was lower compared to that of the in vacuo data, which may reflect reduced sampling.
Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase ( in vacuo ) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between in vacuo and in-solution behavior, we use unbiased molecular dynamics (MD) to create in silico models of in vacuo unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded in silico models for observed charge states of NTL9. The unfolding behavior in silico replicates the behavior in-solution and is in line with the in vacuo observations; however, the theoretical collision cross section (CCS) of the in silico models was lower compared to that of the in vacuo data, which may reflect reduced sampling.
Author Cragnolini, Tristan
Thalassinos, Konstantinos
Eldrid, Charles
Ben-Younis, Aisha
Zou, Junjie
Raleigh, Daniel P.
AuthorAffiliation Department of Chemistry
University of London
School of Biological Sciences
University of Southampton
Institute of Structural and Molecular Biology, Birkbeck College
Institute of Structural and Molecular Biology, Division of Bioscience
AuthorAffiliation_xml – name: University of Southampton
– name: Institute of Structural and Molecular Biology, Birkbeck College
– name: University of London
– name: Department of Chemistry
– name: School of Biological Sciences
– name: Institute of Structural and Molecular Biology, Division of Bioscience
Author_xml – sequence: 1
  givenname: Charles
  orcidid: 0000-0001-5306-3644
  surname: Eldrid
  fullname: Eldrid, Charles
  organization: Institute of Structural and Molecular Biology, Division of Bioscience
– sequence: 2
  givenname: Tristan
  surname: Cragnolini
  fullname: Cragnolini, Tristan
  organization: University of London
– sequence: 3
  givenname: Aisha
  surname: Ben-Younis
  fullname: Ben-Younis, Aisha
  organization: Institute of Structural and Molecular Biology, Division of Bioscience
– sequence: 4
  givenname: Junjie
  surname: Zou
  fullname: Zou, Junjie
  organization: Department of Chemistry
– sequence: 5
  givenname: Daniel P.
  orcidid: 0000-0003-3248-7493
  surname: Raleigh
  fullname: Raleigh, Daniel P.
  organization: Department of Chemistry
– sequence: 6
  givenname: Konstantinos
  orcidid: 0000-0001-5072-8428
  surname: Thalassinos
  fullname: Thalassinos, Konstantinos
  email: k.thalassinos@ucl.ac.uk
  organization: University of London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36350278$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9P3DAQxS1EBcufb1BVkbj0ku2MnTjOpRJCBSotYqVdzpbjOKzBsWmcIPXbN-kuq8Khp5E8v_dmPO-EHPrgDSGfEeYIFL8pHefKK6c3pp1TDYzl9IDMMKeQciHoIZkBAEtpAXBMTmJ8AkAE5EfkmHGWAy3EjKwX1j9b_5jcqJguNyqaRPk6WQU39Db43dOyC72xPnnwTXD1hL9aldyFyrptM_hkZdvBqUkUz8inRrloznf1lKyvf6yvbtPF_c3Pq8tFqrKi6NOKU-AmaxTWBRVUiyovM5HV4441ZRTRVFznFSsRhECkqmalZjpvdIG0LNkp-b61fRmq1tTa-L5TTr50tlXdbxmUle873m7kY3iVJRd5XtLR4OvOoAu_BhN72dqojXPKmzBESQuWcWTwF734gD6FoRvPP1HZeHoUBR-pbEvpLsTYmWa_DIKcUpNjavItNblLbZR9-fcje9FbTCMAW2CS7wf_1_MP6BmoLw
CitedBy_id crossref_primary_10_1039_D3CP06344E
crossref_primary_10_1021_acs_jpcb_3c01581
crossref_primary_10_1039_D2CC06559B
Cites_doi 10.1021/j150664a002
10.1126/science.2675315
10.1021/jasms.1c00018
10.1002/pro.2706
10.1021/acs.analchem.8b05641
10.1021/JACSAU.1C00458
10.1021/ac5027435
10.1002/mas.21585
10.1016/J.CHEMBIOL.2006.04.006
10.1063/1.1670391
10.1146/annurev-biophys-070317-032838
10.1073/pnas.1402054111
10.1016/j.cbpa.2017.10.022
10.1128/jb.5.4.373-374.1920
10.1016/j.trac.2019.04.023
10.1074/jbc.M110.157206
10.1146/annurev-biochem-061516-045115
10.1016/j.cbpa.2017.11.010
10.1021/ac801883k
10.1002/jcc.20084
10.1021/jp308650r
10.1016/j.str.2015.02.010
10.1021/cr030403s
10.1021/ja9619059
10.1016/j.jmb.2004.10.023
10.1016/j.ijms.2018.01.008
10.1021/ac801916h
10.1038/nchem.247
10.1016/j.jasms.2006.09.025
10.1002/rcm.8613
10.1016/j.chempr.2019.03.006
10.1021/ja043789c
10.1021/bi952501g
10.1073/pnas.0807005105
10.1016/j.ymeth.2018.04.010
10.1126/science.1120177
10.1021/acscentsci.7b00084
10.1021/ac00024a716
10.1021/ac302789c
10.1021/jacs.6b10731
10.1016/j.chembiol.2013.09.008
10.1063/1.1672733
10.1002/j.1460-2075.1994.tb06250.x
10.1016/s0168-1176(97)00161-4
10.1002/pro.5560071118
10.1021/acs.jpcb.6b03035
10.1021/ct300906a
10.1016/j.sbi.2018.12.011
10.3390/molecules21101270
10.1016/j.jasms.2008.11.014
10.1021/ac1022953
10.1074/jbc.RA119.008300
10.1002/bip.360100506
10.1084/jem.20072080
10.1063/1.2714539
10.1039/C4CP05262E
10.1021/acs.jctc.5b00356
10.1016/j.ijms.2009.10.002
10.1016/S0022-2836(02)00015-3
10.1016/j.bpj.2019.01.002
10.1006/jmbi.1998.2246
10.1021/ja00180a074
10.1021/acs.jpcb.8b03825
10.1002/wcms.1130
10.1016/j.sbi.2011.10.005
10.1021/ja00091a035
10.1016/S0167-4838(96)00190-2
10.1177/1469066718791793
10.1021/bi011194d
10.1021/bi982931h
10.1006/jmbi.1999.2742
10.1006/jmbi.2000.3752
10.1016/0263-7855(96)00018-5
10.1002/anie.201403784
10.1042/BST20190788
10.1002/cbic.200800167
10.1021/acs.analchem.5b03291
10.1021/acs.analchem.0c01426
10.1021/bi972352x
10.1021/acs.jpcb.7b05703
10.1021/ac503720v
10.1021/jp206867a
10.1007/s13361-017-1594-2
10.1016/S0003-2670(99)00601-7
10.1073/pnas.0915087107
10.1021/acs.analchem.8b00912
10.1006/jmbi.1999.2595
10.1039/b705905a
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
Copyright American Chemical Society Nov 22, 2022
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: Copyright American Chemical Society Nov 22, 2022
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1021/acs.analchem.2c03352
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Materials Research Database
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 16121
ExternalDocumentID 10_1021_acs_analchem_2c03352
36350278
b212576739
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 209250/Z/17/Z
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 107927/Z/15/Z
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L015382/1
– fundername: ;
  grantid: BB/L015382/1
– fundername: ;
  grantid: 107927/Z/15/Z
– fundername: ;
  grantid: 209250/Z/17/Z
GroupedDBID ---
-DZ
-~X
.DC
.K2
23M
4.4
55A
5GY
5RE
5VS
6J9
7~N
85S
8W4
AABXI
ABFLS
ABFRP
ABHFT
ABMVS
ABOCM
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACKOT
ACNCT
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
KZ1
LMP
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X6Y
XSW
YZZ
ZCA
~02
53G
AAHBH
ABHMW
ABJNI
ACBEA
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-a477t-b6206e4fa1d7282c8b59484d016d23211eb6c5b391088112ad39c3c5fc712993
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Tue Sep 17 21:31:49 EDT 2024
Sat Oct 26 04:05:48 EDT 2024
Thu Oct 10 18:39:48 EDT 2024
Fri Aug 23 01:51:45 EDT 2024
Sat Nov 02 12:23:15 EDT 2024
Thu Nov 24 04:02:03 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
License Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a477t-b6206e4fa1d7282c8b59484d016d23211eb6c5b391088112ad39c3c5fc712993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3248-7493
0000-0001-5072-8428
0000-0001-5306-3644
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9685592
PMID 36350278
PQID 2743521876
PQPubID 45400
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9685592
proquest_miscellaneous_2734613092
proquest_journals_2743521876
crossref_primary_10_1021_acs_analchem_2c03352
pubmed_primary_36350278
acs_journals_10_1021_acs_analchem_2c03352
PublicationCentury 2000
PublicationDate 2022-11-22
PublicationDateYYYYMMDD 2022-11-22
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref88/cit88
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref89/cit89
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref90/cit90
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1021/j150664a002
– ident: ref14/cit14
  doi: 10.1126/science.2675315
– ident: ref9/cit9
  doi: 10.1021/jasms.1c00018
– ident: ref17/cit17
  doi: 10.1002/pro.2706
– ident: ref30/cit30
  doi: 10.1021/acs.analchem.8b05641
– ident: ref76/cit76
  doi: 10.1021/JACSAU.1C00458
– ident: ref25/cit25
  doi: 10.1021/ac5027435
– ident: ref56/cit56
  doi: 10.1002/mas.21585
– ident: ref68/cit68
  doi: 10.1016/J.CHEMBIOL.2006.04.006
– ident: ref79/cit79
  doi: 10.1063/1.1670391
– ident: ref36/cit36
  doi: 10.1146/annurev-biophys-070317-032838
– ident: ref55/cit55
  doi: 10.1073/pnas.1402054111
– ident: ref20/cit20
  doi: 10.1016/j.cbpa.2017.10.022
– ident: ref43/cit43
  doi: 10.1128/jb.5.4.373-374.1920
– ident: ref78/cit78
  doi: 10.1016/j.trac.2019.04.023
– ident: ref74/cit74
  doi: 10.1074/jbc.M110.157206
– ident: ref1/cit1
  doi: 10.1146/annurev-biochem-061516-045115
– ident: ref10/cit10
  doi: 10.1016/j.cbpa.2017.11.010
– ident: ref69/cit69
  doi: 10.1021/ac801883k
– ident: ref66/cit66
  doi: 10.1002/jcc.20084
– ident: ref7/cit7
  doi: 10.1021/jp308650r
– ident: ref63/cit63
  doi: 10.1016/j.str.2015.02.010
– ident: ref6/cit6
  doi: 10.1021/cr030403s
– ident: ref22/cit22
  doi: 10.1021/ja9619059
– ident: ref53/cit53
  doi: 10.1016/j.jmb.2004.10.023
– ident: ref62/cit62
  doi: 10.1016/j.ijms.2018.01.008
– ident: ref59/cit59
  doi: 10.1021/ac801916h
– ident: ref24/cit24
  doi: 10.1038/nchem.247
– ident: ref29/cit29
  doi: 10.1016/j.jasms.2006.09.025
– ident: ref60/cit60
  doi: 10.1002/rcm.8613
– ident: ref19/cit19
  doi: 10.1016/j.chempr.2019.03.006
– ident: ref37/cit37
  doi: 10.1021/ja043789c
– ident: ref3/cit3
  doi: 10.1021/bi952501g
– ident: ref86/cit86
  doi: 10.1073/pnas.0807005105
– ident: ref42/cit42
  doi: 10.1016/j.ymeth.2018.04.010
– ident: ref70/cit70
  doi: 10.1126/science.1120177
– ident: ref89/cit89
  doi: 10.1021/acscentsci.7b00084
– ident: ref15/cit15
  doi: 10.1021/ac00024a716
– ident: ref84/cit84
  doi: 10.1021/ac302789c
– ident: ref88/cit88
  doi: 10.1021/jacs.6b10731
– ident: ref18/cit18
  doi: 10.1016/j.chembiol.2013.09.008
– ident: ref80/cit80
  doi: 10.1063/1.1672733
– ident: ref26/cit26
  doi: 10.1021/jasms.1c00018
– ident: ref90/cit90
  doi: 10.1016/j.ymeth.2018.04.010
– ident: ref44/cit44
  doi: 10.1002/j.1460-2075.1994.tb06250.x
– ident: ref82/cit82
  doi: 10.1016/s0168-1176(97)00161-4
– ident: ref47/cit47
  doi: 10.1002/pro.5560071118
– ident: ref40/cit40
  doi: 10.1021/acs.jpcb.6b03035
– ident: ref39/cit39
  doi: 10.1021/ct300906a
– ident: ref34/cit34
  doi: 10.1016/j.sbi.2018.12.011
– ident: ref57/cit57
  doi: 10.3390/molecules21101270
– ident: ref8/cit8
  doi: 10.1016/j.jasms.2008.11.014
– ident: ref61/cit61
  doi: 10.1021/ac1022953
– ident: ref4/cit4
  doi: 10.1074/jbc.RA119.008300
– ident: ref81/cit81
  doi: 10.1002/bip.360100506
– ident: ref2/cit2
  doi: 10.1084/jem.20072080
– ident: ref71/cit71
  doi: 10.1063/1.2714539
– ident: ref73/cit73
  doi: 10.1039/C4CP05262E
– ident: ref58/cit58
  doi: 10.1021/acs.jctc.5b00356
– ident: ref87/cit87
  doi: 10.1016/j.ijms.2009.10.002
– ident: ref52/cit52
  doi: 10.1016/S0022-2836(02)00015-3
– ident: ref54/cit54
  doi: 10.1016/j.bpj.2019.01.002
– ident: ref45/cit45
  doi: 10.1006/jmbi.1998.2246
– ident: ref16/cit16
  doi: 10.1021/ja00180a074
– ident: ref77/cit77
  doi: 10.1021/acs.jpcb.8b03825
– ident: ref85/cit85
  doi: 10.1002/wcms.1130
– ident: ref35/cit35
  doi: 10.1016/j.sbi.2011.10.005
– ident: ref67/cit67
  doi: 10.1021/ja00091a035
– ident: ref5/cit5
  doi: 10.1016/S0167-4838(96)00190-2
– ident: ref38/cit38
  doi: 10.1177/1469066718791793
– ident: ref75/cit75
  doi: 10.1021/bi011194d
– ident: ref48/cit48
  doi: 10.1021/bi982931h
– ident: ref50/cit50
  doi: 10.1006/jmbi.1999.2742
– ident: ref51/cit51
  doi: 10.1006/jmbi.2000.3752
– ident: ref65/cit65
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref11/cit11
  doi: 10.1002/anie.201403784
– ident: ref21/cit21
  doi: 10.1042/BST20190788
– ident: ref32/cit32
  doi: 10.1002/cbic.200800167
– ident: ref27/cit27
  doi: 10.1021/acs.analchem.5b03291
– ident: ref28/cit28
  doi: 10.1021/acs.analchem.0c01426
– ident: ref46/cit46
  doi: 10.1021/bi972352x
– ident: ref41/cit41
  doi: 10.1021/acs.jpcb.7b05703
– ident: ref23/cit23
  doi: 10.1021/ac503720v
– ident: ref33/cit33
  doi: 10.1021/jp206867a
– ident: ref64/cit64
  doi: 10.1007/s13361-017-1594-2
– ident: ref83/cit83
  doi: 10.1016/S0003-2670(99)00601-7
– ident: ref72/cit72
  doi: 10.1073/pnas.0915087107
– ident: ref12/cit12
  doi: 10.1021/acs.analchem.8b00912
– ident: ref49/cit49
  doi: 10.1006/jmbi.1999.2595
– ident: ref31/cit31
  doi: 10.1039/b705905a
SSID ssj0011016
Score 2.4772964
Snippet Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method...
Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase ( ) is an important method for the...
Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase ( in vacuo ) is an important method...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 16113
SubjectTerms Algorithms
Chemistry
Fluorescence
Fluorescent indicators
Ionic mobility
Ions - chemistry
Mass spectrometry
Mass spectroscopy
Molecular dynamics
Molecular Dynamics Simulation
Protein Conformation
Protein folding
Protein Unfolding
Proteins
Proteins - chemistry
Protons
Vapor phases
Title Linking Gas-Phase and Solution-Phase Protein Unfolding via Mobile Proton Simulations
URI http://dx.doi.org/10.1021/acs.analchem.2c03352
https://www.ncbi.nlm.nih.gov/pubmed/36350278
https://www.proquest.com/docview/2743521876
https://www.proquest.com/docview/2734613092
https://pubmed.ncbi.nlm.nih.gov/PMC9685592
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYYHIADj_EaDBQkLhwymrRr0yMaGxwATdqQuFVpmmk7rEOU8fuxu3Yw0IR2raOksZ34c13bAFe-GJiwObBcGWO4p6zhOvAdrl3PM80YjbqkfOeHXvD8qu7aVCansSSCL8WNNllDI1NxD-OGNA4lCVVgQwZ4PggKtXrzqAF5omWHPAqolqlyS2Yhg2SyRYP0B2X-_lnyh_Xp7K763nuwU-BMdjtTjH1Ys2kVNltle7cqbP-oRHgA_cdZDwV2rzPeHaJpYzpNWPnRrHjUpaIOo5S9oFbmQSv2OdLsaRLj1ZITJynrjcZFR7DsEPqddr_1wIuGC1x7QfDBY186vvUGWiQBumJGxVTMxUuQrQkiLyFs7KMAXYQYSiFQ04kbGtc0ByZA2BC6R7CeTlJ7AixMpNYEHX1rPamlirWh4Y51fRMqpwbXyJ-oOC9ZlIfCpYjoYcm0qGBaDXgpoOhtVoLjn_H1UorfC6DzjSSBd38NLudkZDnFR3RqJ1Ma43rkToU4xfFM6PMFXQRmFKStQbCgDvMBVKZ7kZKOhnm57tBX6LbJ0xW2fAZbktIshOBS1mH9431qz6GSJdOLXOO_AK_I_2I
link.rule.ids 230,315,783,787,888,2772,27088,27936,27937,56751,56801
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD78d4BokLh0CTvtLjNB5DDIS0IXGr0jTTdqBDlPH7sbt2MBBCcI2tJLWT-nNd2wDHgeiZyO9Zrowx3FPWcB0GDteu5xk_QaMuKd-51QnvHtX5BZXJ8atcGNxEjjPlRRD_o7qAOKMxjbLFR3k6lcahXKFZmPMR8NJ9bDQ7k-ABOaRVozyKq1YZcz_MQnbJ5NN26RvY_PrP5CcjdLn8z-2vwFKJOlljfExWYcZmazDfrJq9rcHip7qE69BtjzsqsCud8_s-Gjqms5RVn9DKoXsq8TDI2AOe0SKExd4Gmt0OE3zRFMRhxjqDp7I_WL4B3cuLbrPFy_YLXHth-MqTQDqB9XpapCE6ZkYlVNrFS1G6KeIwIWwSoDpdBBxKIWzTqRsZ1_g9EyKIiNxNqGXDzG4Di1KpNQHJwFpPaqkSbYjdsW5gIuXU4QTlE5e3J4-LwLgUMQ1WQotLodWBV3qKn8cFOX7h36uU-bEAuuJIEmgJ6nA0IaPIKVqiMzscEY_rkXMV4RRbY91PFnQRplHItg7h1KmYMFDR7mlKNugXxbujQKETJ3f-8MiHMN_q3rbj9vXdzS4sSErAEIJLuQe115eR3YfZPB0dFJfgHaCsB9Y
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xIm3wMNh3twFG2sseDLGTOs4j6laKKFOldtLeIsdx1Dw0nci6v393aRJaEJoQr76THd_Zud_lcncAF0pkNupljmtrLQ-0s9yEyuPGDwLbS9CoS8p3Hk7Cmzt9dU1lctpWX_gQJc5UVkF8utX3aVZXGBCfadygfHE780_SepQvtAUvewpfs4SK-pM2gEBOadMsj2KrTdbcX2Yh22TLTdv0B-D8_b_JNUM0ePMfW3gLuzX6ZF9Wx2UPXrhiH3b6TdO3fXi9Vp_wAKajVWcF9tWUfDxDg8dMkbLmU1o9NKZSD3nBbvGsVqEs9pgb9mOR4AunIi4KNsnndZ-w8hCmg-tpf8jrNgzcBGH4wBMlPeWCzIg0RAfN6oRKvAQpSjhFPCaESxSq1UfgoTXCN5P6kfVtL7MhgonIP4JOsSjcCbAolcYQoFTOBdJInRhL7J7zlY2014VLlE9c36IyrgLkUsQ02AgtroXWBd7oKr5fFeZ4hv-8UeivBdAlR5JAi9CFjy0ZRU5RE1O4xZJ4_ICcrAinOF7pv13QR7hGodsuhBsno2Wg4t2blCKfVUW8I6XRmZOn_7DlD7A9vhrEo28338_glaQ8DCG4lOfQefi5dO9gq0yX76t78AQJcQpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+Gas-Phase+and+Solution-Phase+Protein+Unfolding+via+Mobile+Proton+Simulations&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Eldrid%2C+Charles&rft.au=Cragnolini%2C+Tristan&rft.au=Ben-Younis%2C+Aisha&rft.au=Zou%2C+Junjie&rft.date=2022-11-22&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=94&rft.issue=46&rft.spage=16113&rft_id=info:doi/10.1021%2Facs.analchem.2c03352&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon