Static Electricity Powered Copper Oxide Nanowire Microbicidal Electroporation for Water Disinfection
Safe water scarcity occurs mostly in developing regions that also suffer from energy shortages and infrastructure deficiencies. Low-cost and energy-efficient water disinfection methods have the potential to make great impacts on people in these regions. At the present time, most water disinfection m...
Saved in:
Published in: | Nano letters Vol. 14; no. 10; pp. 5603 - 5608 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Chemical Society
08-10-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Safe water scarcity occurs mostly in developing regions that also suffer from energy shortages and infrastructure deficiencies. Low-cost and energy-efficient water disinfection methods have the potential to make great impacts on people in these regions. At the present time, most water disinfection methods being promoted to households in developing countries are aqueous chemical-reaction-based or filtration-based. Incorporating nanomaterials into these existing disinfection methods could improve the performance; however, the high cost of material synthesis and recovery as well as fouling and slow treatment speed is still limiting their application. Here, we demonstrate a novel flow device that enables fast water disinfection using one-dimensional copper oxide nanowire (CuONW) assisted electroporation powered by static electricity. Electroporation relies on a strong electric field to break down microorganism membranes and only consumes a very small amount of energy. Static electricity as the power source can be generated by an individual person’s motion in a facile and low-cost manner, which ensures its application anywhere in the world. The CuONWs used were synthesized through a scalable one-step air oxidation of low-cost copper mesh. With a single filtration, we achieved complete disinfection of bacteria and viruses in both raw tap and lake water with a high flow rate of 3000 L/(h·m2), equivalent to only 1 s of contact time. Copper leaching from the nanowire mesh was minimal. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl5020958 |