Independent Control of Bulk and Interfacial Morphologies of Small Molecular Weight Organic Heterojunction Solar Cells

We demonstrate that solvent vapor annealing of small molecular weight organic heterojunctions can be used to independently control the interface and bulk thin-film morphologies, thereby modifying charge transport and exciton dissociation in these structures. As an example, we anneal diphenyl-functio...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters Vol. 12; no. 8; pp. 4366 - 4371
Main Authors: Zimmerman, Jeramy D, Xiao, Xin, Renshaw, Christopher Kyle, Wang, Siyi, Diev, Vyacheslav V, Thompson, Mark E, Forrest, Stephen R
Format: Journal Article
Language:English
Published: Washington, DC American Chemical Society 08-08-2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We demonstrate that solvent vapor annealing of small molecular weight organic heterojunctions can be used to independently control the interface and bulk thin-film morphologies, thereby modifying charge transport and exciton dissociation in these structures. As an example, we anneal diphenyl-functionalized squaraine (DPSQ)/C60 heterojunctions before or after the deposition of C60. Solvent vapor annealing of DPSQ before C60 deposition results in molecular order at the heterointerface. Organic photovoltaics based on this process have reduced open circuit voltages and power conversion efficiencies relative to as-cast devices. In contrast, annealing following C60 deposition locks in interface disorder found in unannealed junctions while improving order in the thin-film bulk. This results in an increase in short circuit current by >30% while maintaining the open circuit voltage of the as-cast heterojunction device. These results are analyzed in terms of recombination dynamics at excitonic heterojunctions and demonstrate that the optimal organic photovoltaic morphology is characterized by interfacial disorder to minimize polaron-pair recombination, while improved crystallinity in the bulk increases exciton and charge transport efficiency in the active region.
AbstractList We demonstrate that solvent vapor annealing of small molecular weight organic heterojunctions can be used to independently control the interface and bulk thin-film morphologies, thereby modifying charge transport and exciton dissociation in these structures. As an example, we anneal diphenyl-functionalized squaraine (DPSQ)/C60 heterojunctions before or after the deposition of C60. Solvent vapor annealing of DPSQ before C60 deposition results in molecular order at the heterointerface. Organic photovoltaics based on this process have reduced open circuit voltages and power conversion efficiencies relative to as-cast devices. In contrast, annealing following C60 deposition locks in interface disorder found in unannealed junctions while improving order in the thin-film bulk. This results in an increase in short circuit current by >30% while maintaining the open circuit voltage of the as-cast heterojunction device. These results are analyzed in terms of recombination dynamics at excitonic heterojunctions and demonstrate that the optimal organic photovoltaic morphology is characterized by interfacial disorder to minimize polaron-pair recombination, while improved crystallinity in the bulk increases exciton and charge transport efficiency in the active region.
We demonstrate that solvent vapor annealing of small molecular weight organic heterojunctions can be used to independently control the interface and bulk thin-film morphologies, thereby modifying charge transport and exciton dissociation in these structures. As an example, we anneal diphenyl-functionalized squaraine (DPSQ)/C(60) heterojunctions before or after the deposition of C(60). Solvent vapor annealing of DPSQ before C(60) deposition results in molecular order at the heterointerface. Organic photovoltaics based on this process have reduced open circuit voltages and power conversion efficiencies relative to as-cast devices. In contrast, annealing following C(60) deposition locks in interface disorder found in unannealed junctions while improving order in the thin-film bulk. This results in an increase in short circuit current by >30% while maintaining the open circuit voltage of the as-cast heterojunction device. These results are analyzed in terms of recombination dynamics at excitonic heterojunctions and demonstrate that the optimal organic photovoltaic morphology is characterized by interfacial disorder to minimize polaron-pair recombination, while improved crystallinity in the bulk increases exciton and charge transport efficiency in the active region.
We demonstrate that solvent vapor annealing of small molecular weight organic heterojunctions can be used to independently control the interface and bulk thin-film morphologies, thereby modifying charge transport and exciton dissociation in these structures. As an example, we anneal diphenyl-functionalized squaraine (DPSQ)/C sub(60) heterojunctions before or after the deposition of C sub(60). Solvent vapor annealing of DPSQ before C sub(60) deposition results in molecular order at the heterointerface. Organic photovoltaics based on this process have reduced open circuit voltages and power conversion efficiencies relative to as-cast devices. In contrast, annealing following C sub(60) deposition locks in interface disorder found in unannealed junctions while improving order in the thin-film bulk. This results in an increase in short circuit current by >30% while maintaining the open circuit voltage of the as-cast heterojunction device. These results are analyzed in terms of recombination dynamics at excitonic heterojunctions and demonstrate that the optimal organic photovoltaic morphology is characterized by interfacial disorder to minimize polaron-pair recombination, while improved crystallinity in the bulk increases exciton and charge transport efficiency in the active region.
Author Renshaw, Christopher Kyle
Forrest, Stephen R
Zimmerman, Jeramy D
Diev, Vyacheslav V
Xiao, Xin
Wang, Siyi
Thompson, Mark E
AuthorAffiliation University of Michigan
University of Southern California
AuthorAffiliation_xml – name: University of Michigan
– name: University of Southern California
Author_xml – sequence: 1
  givenname: Jeramy D
  surname: Zimmerman
  fullname: Zimmerman, Jeramy D
– sequence: 2
  givenname: Xin
  surname: Xiao
  fullname: Xiao, Xin
– sequence: 3
  givenname: Christopher Kyle
  surname: Renshaw
  fullname: Renshaw, Christopher Kyle
– sequence: 4
  givenname: Siyi
  surname: Wang
  fullname: Wang, Siyi
– sequence: 5
  givenname: Vyacheslav V
  surname: Diev
  fullname: Diev, Vyacheslav V
– sequence: 6
  givenname: Mark E
  surname: Thompson
  fullname: Thompson, Mark E
– sequence: 7
  givenname: Stephen R
  surname: Forrest
  fullname: Forrest, Stephen R
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26224832$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22809215$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1O4zAQAGBrBdpC2QMvgHxZaTkUbCeO4-NS8VMJxAHQHqOJM2nTde2unWjF2-OqpVyQuHgs6_PMaOaYHDjvkJBTzi44E_zS2SwFJf5_I0dcZmxSaC0O9vcyH5HjGJeMMZ1J9p2MhCiZFlwekWHmGlxjOlxPp971wVvqW3o12L8UXENnrsfQgunA0gcf1gtv_bzDuEFPK7CbV4tmsBDoH-zmi54-hjm4ztA7TF_9cnCm77yjT35jpmhtPCGHLdiIP3ZxTF5urp-nd5P7x9vZ9Pf9BHLF-wk2qlFFarqVABLqAmreQtmiVrmoQTAua10a0ShjlFS5EpyVaRBGY14q1WRj8mubdx38vwFjX626aFIH4NAPseKqECzXudJfU5aJUkteyETPt9QEH2PAtlqHbgXhNaFqs5Bqv5Bkz3Zph3qFzV6-byCBnzsA0YBtAzjTxQ9XCJGXmfhwYGK19ENwaXCfFHwDqQ6g3Q
CitedBy_id crossref_primary_10_1039_c3ee41773e
crossref_primary_10_1021_acs_chemmater_0c03271
crossref_primary_10_1021_acs_jpcc_7b05514
crossref_primary_10_1021_ja310694t
crossref_primary_10_1002_adma_201203412
crossref_primary_10_1002_macp_201900334
crossref_primary_10_1021_jp4067372
crossref_primary_10_1039_C9SE01095E
crossref_primary_10_1039_C5CP04110D
crossref_primary_10_1039_C5TC00679A
crossref_primary_10_1021_ar300300m
crossref_primary_10_1038_s41467_017_00107_4
crossref_primary_10_1002_admi_201500329
crossref_primary_10_1002_advs_202001117
crossref_primary_10_1039_C5TA00367A
crossref_primary_10_1002_marc_202100903
crossref_primary_10_1038_s41598_019_40541_6
crossref_primary_10_1021_acs_jpcc_7b09213
crossref_primary_10_1016_j_trechm_2019_08_001
crossref_primary_10_1002_adfm_201500468
crossref_primary_10_1002_adma_202107659
crossref_primary_10_1002_aenm_201702232
crossref_primary_10_1021_acs_jctc_2c00470
crossref_primary_10_1063_1_4789622
crossref_primary_10_1021_acs_jpcb_5b05138
crossref_primary_10_1002_adma_201603269
crossref_primary_10_1063_1_5102179
crossref_primary_10_1002_adfm_202101892
crossref_primary_10_1016_j_nanoen_2017_12_050
crossref_primary_10_1021_cr500225d
crossref_primary_10_1021_acsami_8b03468
crossref_primary_10_1088_1361_648X_aa5a6c
crossref_primary_10_1039_C5RA24610E
crossref_primary_10_1016_j_jphotochem_2019_01_017
crossref_primary_10_1021_jp506180k
crossref_primary_10_1021_jp5022906
crossref_primary_10_1021_ph500282z
crossref_primary_10_1039_c3ta12297b
crossref_primary_10_1039_C5NR03332B
crossref_primary_10_1016_j_nanoen_2016_10_031
crossref_primary_10_1021_jacs_6b11612
crossref_primary_10_1021_nn403897d
crossref_primary_10_1146_annurev_chembioeng_061312_103356
crossref_primary_10_1002_aenm_201500877
crossref_primary_10_1039_C8CP05294H
crossref_primary_10_1063_1_4844795
crossref_primary_10_1002_aenm_201602242
crossref_primary_10_1039_C3EE42444H
crossref_primary_10_1039_C4TC00187G
crossref_primary_10_1021_acs_macromol_5b00112
crossref_primary_10_1063_1_4896502
crossref_primary_10_1021_ja4043356
crossref_primary_10_1016_j_orgel_2016_10_013
crossref_primary_10_1039_C5TA01879J
crossref_primary_10_1002_adfm_201900467
crossref_primary_10_1002_adma_201403198
crossref_primary_10_1021_acs_jpcc_8b08120
crossref_primary_10_1016_j_nanoen_2015_04_035
crossref_primary_10_1039_C5CP05037E
crossref_primary_10_1039_C6TA01368F
crossref_primary_10_1002_polb_23757
crossref_primary_10_1021_acs_jpcc_9b01413
crossref_primary_10_1021_nl401531t
crossref_primary_10_1063_1_4821112
crossref_primary_10_1007_s11426_014_5184_x
crossref_primary_10_1021_acs_jpclett_9b02866
crossref_primary_10_1002_adma_201302934
crossref_primary_10_1039_C4CP00077C
crossref_primary_10_1021_am5021759
crossref_primary_10_1039_C4TA03745F
crossref_primary_10_1016_j_cclet_2016_05_030
crossref_primary_10_1002_adma_201303170
crossref_primary_10_1038_ncomms6204
crossref_primary_10_1002_ijch_201400057
crossref_primary_10_1002_adfm_201303941
crossref_primary_10_1021_acs_chemmater_6b02930
crossref_primary_10_1016_j_orgel_2019_05_053
crossref_primary_10_1007_s11706_020_0490_z
crossref_primary_10_1021_acs_jpclett_6b02178
crossref_primary_10_1016_j_orgel_2014_09_021
crossref_primary_10_1002_adts_201900230
crossref_primary_10_1002_asia_201402223
crossref_primary_10_1021_acsami_5b08523
crossref_primary_10_1021_acsami_5b01723
crossref_primary_10_1103_PhysRevB_92_035408
crossref_primary_10_1021_acsami_1c15570
crossref_primary_10_1039_c4tc00183d
crossref_primary_10_1039_C5TA02806J
crossref_primary_10_1002_adma_201305099
crossref_primary_10_1039_c3ee42828a
crossref_primary_10_1039_C5TA06820G
crossref_primary_10_1016_j_nantod_2014_10_004
crossref_primary_10_1021_acs_chemmater_5b02641
crossref_primary_10_1021_jp5074076
crossref_primary_10_1002_aenm_201700237
crossref_primary_10_1038_ncomms4119
crossref_primary_10_1039_C6CP00184J
crossref_primary_10_1039_C4RA03972F
crossref_primary_10_1021_jacs_9b09012
crossref_primary_10_1063_1_4807910
crossref_primary_10_1002_aenm_201900814
crossref_primary_10_1021_acs_jpcc_9b06814
crossref_primary_10_1039_C4RA10923F
crossref_primary_10_1016_j_mattod_2014_10_004
crossref_primary_10_1021_acsami_6b15661
Cites_doi 10.1021/nn204676j
10.1364/OE.18.00A444
10.1063/1.333944
10.1021/jp980969y
10.1016/j.solmat.2010.09.004
10.1038/nature01949
10.1063/1.91479
10.1021/nn100195j
10.1063/1.3027061
10.1021/jp952557k
10.1063/1.3595679
10.1016/S0927-0248(99)00096-3
10.1021/ja9007722
10.1103/PhysRevB.82.155305
10.1021/nl080200p
10.1038/nmat1500
10.1002/adfm.200801723
10.1021/cm200525h
10.1007/BF00624938
10.1016/0038-092X(82)90244-4
10.1021/cm2020803
10.1016/0301-0104(92)85020-U
10.1002/adma.200902827
10.1063/1.3415497
10.1116/1.585390
10.1002/adma.201104261
10.1063/1.3598426
10.1063/1.1534621
10.1002/aenm.201100045
10.1103/PhysRevLett.71.133
10.1103/PhysRevB.82.155306
10.1021/nl1018194
10.1002/adfm.201001769
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 American Chemical Society
– notice: 2015 INIST-CNRS
DBID IQODW
NPM
AAYXX
CITATION
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nl302172w
DatabaseName Pascal-Francis
PubMed
CrossRef
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
PubMed
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1530-6992
EndPage 4371
ExternalDocumentID 10_1021_nl302172w
22809215
26224832
a18919863
Genre Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
53G
6P2
AAYOK
ABFRP
ABQRX
ACBEA
ADHLV
AFFNX
AHGAQ
GGK
IQODW
AAHBH
ABJNI
CUPRZ
NPM
AAYXX
CITATION
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a471t-ed7d76093f5aa5ab6ab1fa8fe9742ba2015b98c2d7cc757472108217c9e4877d3
IEDL.DBID ACS
ISSN 1530-6984
IngestDate Sat Aug 17 03:31:47 EDT 2024
Fri Oct 25 07:47:08 EDT 2024
Fri Aug 23 00:53:07 EDT 2024
Sat Sep 28 07:52:26 EDT 2024
Sun Oct 29 17:06:45 EDT 2023
Thu Aug 27 13:42:22 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords polaron-pair recombination
squaraine
annealing
Organic photovoltaic
fullerene
small-molecule organic semiconductor
Solar cells
Annealing
Charge transport
Crystallinity
Molecular weight
AND circuit
Photovoltaic cell
Thin films
Interfaces
Molecular electronics
Excitons
Morphology
Fullerenes
Heterojunctions
Heterointerface
Polarons
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a471t-ed7d76093f5aa5ab6ab1fa8fe9742ba2015b98c2d7cc757472108217c9e4877d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22809215
PQID 1032895165
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1762049479
proquest_miscellaneous_1032895165
crossref_primary_10_1021_nl302172w
pubmed_primary_22809215
pascalfrancis_primary_26224832
acs_journals_10_1021_nl302172w
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2012-08-08
PublicationDateYYYYMMDD 2012-08-08
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-08
  day: 08
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Xiao X. (ref25/cit25) 2012; 24
Lassiter B. E. (ref31/cit31) 2011; 98
Peumans P. (ref19/cit19) 2003; 425
Wei G. D. (ref17/cit17) 2010; 4
Sato N. (ref33/cit33) 1992; 162
Potscavage J. W. J. (ref11/cit11) 2008; 93
ref29/cit29
Marsh R. A. (ref12/cit12) 2008; 8
Placencia D. (ref23/cit23) 2009; 19
Seaman C. H. (ref32/cit32) 1982; 29
Perez M. D. (ref10/cit10) 2009; 131
Dittmer J. J. (ref20/cit20) 2000; 61
Chen F. C. (ref16/cit16) 2010; 94
Forrest S. R. (ref7/cit7) 1984; 56
Erwin P. (ref13/cit13) 2011; 98
Li G. (ref15/cit15) 2005; 4
Warta W. (ref8/cit8) 1985; 36
Lassiter B. E. (ref26/cit26) 2010; 18
Kazmerski L. L. (ref27/cit27) 1980; 36
De Luca G. (ref14/cit14) 2011; 21
Sherman R. (ref30/cit30) 1991; 9
Giebink N. C. (ref1/cit1) 2010; 82
Lunt R. R. (ref3/cit3) 2010; 22
Wei G. (ref6/cit6) 2011; 6
Conboy J. C. (ref22/cit22) 1998; 102
Giebink N. C. (ref2/cit2) 2010; 82
Gregg B. A. (ref24/cit24) 1996; 100
Wang S. (ref5/cit5) 2011; 23
Wei G. D. (ref21/cit21) 2010; 10
Peumans P. (ref9/cit9) 2003; 93
Shirley E. L. (ref34/cit34) 1993; 71
Schlenker C. W. (ref4/cit4) 2011; 23
Wei G. D. (ref18/cit18) 2011; 1
Zhang M. (ref28/cit28) 2010; 96
References_xml – volume: 6
  start-page: 972
  year: 2011
  ident: ref6/cit6
  publication-title: ACS Nano
  doi: 10.1021/nn204676j
  contributor:
    fullname: Wei G.
– volume: 18
  start-page: A444
  year: 2010
  ident: ref26/cit26
  publication-title: Opt. Express
  doi: 10.1364/OE.18.00A444
  contributor:
    fullname: Lassiter B. E.
– volume: 56
  start-page: 543
  year: 1984
  ident: ref7/cit7
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.333944
  contributor:
    fullname: Forrest S. R.
– volume: 102
  start-page: 4516
  year: 1998
  ident: ref22/cit22
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp980969y
  contributor:
    fullname: Conboy J. C.
– volume: 94
  start-page: 2426
  year: 2010
  ident: ref16/cit16
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.09.004
  contributor:
    fullname: Chen F. C.
– volume: 425
  start-page: 158
  year: 2003
  ident: ref19/cit19
  publication-title: Nature
  doi: 10.1038/nature01949
  contributor:
    fullname: Peumans P.
– volume: 36
  start-page: 323
  year: 1980
  ident: ref27/cit27
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.91479
  contributor:
    fullname: Kazmerski L. L.
– volume: 4
  start-page: 1927
  year: 2010
  ident: ref17/cit17
  publication-title: ACS Nano
  doi: 10.1021/nn100195j
  contributor:
    fullname: Wei G. D.
– volume: 93
  start-page: 193308
  year: 2008
  ident: ref11/cit11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3027061
  contributor:
    fullname: Potscavage J. W. J.
– volume: 100
  start-page: 852
  year: 1996
  ident: ref24/cit24
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952557k
  contributor:
    fullname: Gregg B. A.
– volume: 98
  start-page: 223305
  year: 2011
  ident: ref13/cit13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3595679
  contributor:
    fullname: Erwin P.
– volume: 61
  start-page: 53
  year: 2000
  ident: ref20/cit20
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(99)00096-3
  contributor:
    fullname: Dittmer J. J.
– volume: 131
  start-page: 9281
  year: 2009
  ident: ref10/cit10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9007722
  contributor:
    fullname: Perez M. D.
– ident: ref29/cit29
– volume: 82
  start-page: 155305
  year: 2010
  ident: ref1/cit1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.155305
  contributor:
    fullname: Giebink N. C.
– volume: 8
  start-page: 1393
  year: 2008
  ident: ref12/cit12
  publication-title: Nano Lett.
  doi: 10.1021/nl080200p
  contributor:
    fullname: Marsh R. A.
– volume: 4
  start-page: 864
  year: 2005
  ident: ref15/cit15
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1500
  contributor:
    fullname: Li G.
– volume: 19
  start-page: 1913
  year: 2009
  ident: ref23/cit23
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200801723
  contributor:
    fullname: Placencia D.
– volume: 23
  start-page: 4132
  year: 2011
  ident: ref4/cit4
  publication-title: Chem. Mater.
  doi: 10.1021/cm200525h
  contributor:
    fullname: Schlenker C. W.
– volume: 36
  start-page: 163
  year: 1985
  ident: ref8/cit8
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/BF00624938
  contributor:
    fullname: Warta W.
– volume: 29
  start-page: 291
  year: 1982
  ident: ref32/cit32
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(82)90244-4
  contributor:
    fullname: Seaman C. H.
– volume: 23
  start-page: 4789
  year: 2011
  ident: ref5/cit5
  publication-title: Chem. Mater.
  doi: 10.1021/cm2020803
  contributor:
    fullname: Wang S.
– volume: 162
  start-page: 433
  year: 1992
  ident: ref33/cit33
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(92)85020-U
  contributor:
    fullname: Sato N.
– volume: 22
  start-page: 1233
  year: 2010
  ident: ref3/cit3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902827
  contributor:
    fullname: Lunt R. R.
– volume: 96
  start-page: 183301
  year: 2010
  ident: ref28/cit28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3415497
  contributor:
    fullname: Zhang M.
– volume: 9
  start-page: 1970
  year: 1991
  ident: ref30/cit30
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.585390
  contributor:
    fullname: Sherman R.
– volume: 24
  start-page: 1956
  year: 2012
  ident: ref25/cit25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104261
  contributor:
    fullname: Xiao X.
– volume: 98
  start-page: 243307
  year: 2011
  ident: ref31/cit31
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3598426
  contributor:
    fullname: Lassiter B. E.
– volume: 93
  start-page: 3693
  year: 2003
  ident: ref9/cit9
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1534621
  contributor:
    fullname: Peumans P.
– volume: 1
  start-page: 184
  year: 2011
  ident: ref18/cit18
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100045
  contributor:
    fullname: Wei G. D.
– volume: 71
  start-page: 133
  year: 1993
  ident: ref34/cit34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.133
  contributor:
    fullname: Shirley E. L.
– volume: 82
  start-page: 155306
  year: 2010
  ident: ref2/cit2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.155306
  contributor:
    fullname: Giebink N. C.
– volume: 10
  start-page: 3555
  year: 2010
  ident: ref21/cit21
  publication-title: Nano Lett.
  doi: 10.1021/nl1018194
  contributor:
    fullname: Wei G. D.
– volume: 21
  start-page: 1279
  year: 2011
  ident: ref14/cit14
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201001769
  contributor:
    fullname: De Luca G.
SSID ssj0009350
Score 2.5067093
Snippet We demonstrate that solvent vapor annealing of small molecular weight organic heterojunctions can be used to independently control the interface and bulk...
SourceID proquest
crossref
pubmed
pascalfrancis
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 4366
SubjectTerms Annealing
Applied sciences
Buckminsterfullerene
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Deposition
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in multilayers, nanoscale materials and structures
Electronics
Energy
Exact sciences and technology
Excitation
Fullerenes
Heterojunctions
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Molecular electronics, nanoelectronics
Morphology
Natural energy
Photovoltaic cells
Photovoltaic conversion
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)
Title Independent Control of Bulk and Interfacial Morphologies of Small Molecular Weight Organic Heterojunction Solar Cells
URI http://dx.doi.org/10.1021/nl302172w
https://www.ncbi.nlm.nih.gov/pubmed/22809215
https://search.proquest.com/docview/1032895165
https://search.proquest.com/docview/1762049479
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYYXECI92M8pvC4VrRp06RHGKBxgMtAcKvSJj1AaSe6ir-Pk25jkxhwrdymsZP4-5zEBjhPkHEFgkWOj-DWCVjiOVIEJsxBU1chgOCZiUP2-vzhRVzfmDQ5Z3N28Kl3UeS-raL02YIlyhEhGPzT7X9n1vVtGVacuciDIhGM0wdNv2pcT1rNuJ7VgaxQC1lTvmI-vrR-5nb9X3-4AWsjGEkuG7tvwoIutmBlKrngNtR3kwq3Q9JtTqSTMiNXdf5GZKGIDQZm0sTMyX2J-rbroK6MUP9d5ubpqHYuebYRVNLc3ExJzxyiKV_RJxq7kr7hx6Sr87zagafbm8duzxkVWXAk-qWhoxVXPEQtZkxKJpNQJl4mRaaRaNBEIj5gSSRSqniacobkAzmiwN6mkUauw5W_C4tFWeh9ICadWKJSL0x8GbgKv8UpUwwJiXJdHbE2dNAK8WiSVLHd_6ZePNFfG07HBooHTbKNn4Q6M6abSNIQ4QguUG04GdsyxrliNkBkocvaNOgjv2ReyH6R4SZDfxTwqA17zUD4boEKN0KMdPBXRw5hGRVH7UFBcQSLw49aH0OrUnXHDt4vCWfmPA
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1ROABC7EtZikFcI7I5do5QioqgXAqCW-TEzgFCUpFG_D5jpwuVWMQ1crzM2J55Y_sNwFmMiMvnNLQ8dG4tn8aOJbivwxxuYkt0IFiq45DdPrt_5ledCU2OfguDnSixptIc4k_ZBZzzPPNMMqWPBixgDb4GWhft_pRg1zPZWHEBIxwKuT9mEfr6q7ZASTljgVYGokRhpHUWi5_dTGNurtf-09F1WB05leSingUbMKfyTVj-QjW4BdXNJN_tkLTr--mkSMlllb0SkUtiQoOp0BF00itQ-mZXVKUu1H8Tmf46yqRLnkw8ldTvOBPS1Vdqihe0kFrLpK_RMmmrLCu34fG689DuWqOUC5ZAKzW0lGSSBSjMlApBRRyI2EkFTxXCDjcW6C3QOOSJK1mSMIpaQMTIcbRJqBD5MOntwHxe5GoPiCYXi2XiBLEnfFtiXcylkiI8kbatQtqEFoovGi2ZMjKn4a4TTeTXhNOxnqJBTb3xXaHWjAYnJd0AnRPcrppwMlZphCtHH4eIXBWVbtBDtEmdgP5Shmm-_tBnYRN26_kwbcHldoge0_5fAzmGxe5D7y66u7m_PYAlFKJrrhDyQ5gfvlfqCBqlrFpmPn8CdBHuqQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BkaYhNPbBRwZ03rTXbPlybD-W0qpoWzWpm7a3yImdBwhJRRrx73N20pZKY4jX6OKPO5_vfmf7DuBziogr4lS4ITq3bkRT35U8MmGOIPMUOhAsN3HIyYxN__KLkUmT82X5FgYHUWNLtT3EN1o9V3mXYcD_WhahLah0tw072IowYGswnK2T7Ia2IisqMUIiwaNlJqGHvxorlNUbVmhvLmtkSN5Wsnjc1bQmZ7z_3MG-hledc0kG7Wp4A1u6fAu7D1IOvoPmclX3dkGG7T11UuXkvCmuiSwVsSHCXJpIOvlRoRTs7qhrQzS7kYX52lXUJX9sXJW07zkzMjFXa6ortJRG2mRmUDMZ6qKoD-D3ePRrOHG70guuRGu1cLViisXI0JxKSWUay9TPJc81wo8gleg10FTwLFAsyxhFSILIkeNsM6ERATEVHkKvrEp9DMQkGUtV5sdpKCNPYVssoIoiTFGepwV1oI8sTDrVqRN7Kh74yYp_DnxayiqZtyk4_kXU35DiijKI0UnBbcuBj0uxJqhB5lhElrpqTIchok7qx_Q_NMzk7RcREw4ctWti3UPAPYGe0_unJvIBXvy8GCffL6ffTuAl8jCwNwn5KfQWt40-g-1aNX27pO8BTfbxLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+Control+of+Bulk+and+Interfacial+Morphologies+of+Small+Molecular+Weight+Organic+Heterojunction+Solar+Cells&rft.jtitle=Nano+letters&rft.au=Zimmerman%2C+Jeramy+D&rft.au=Xiao%2C+Xin&rft.au=Renshaw%2C+Christopher+Kyle&rft.au=Wang%2C+Siyi&rft.date=2012-08-08&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=12&rft.issue=8&rft.spage=4366&rft.epage=4371-4366-4371&rft_id=info:doi/10.1021%2Fnl302172w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon