Distinguishing Petroleum (Crude Oil and Fuel) From Smoke Exposure within Populations Based on the Relative Blood Levels of Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), Styrene and 2,5-Dimethylfuran by Pattern Recognition Using Artificial Neural Networks
Studies of exposure to petroleum (crude oil/fuel) often involve monitoring benzene, toluene, ethylbenzene, xylenes (BTEX), and styrene (BTEXS) because of their toxicity and gas-phase prevalence, where exposure is typically by inhalation. However, BTEXS levels in the general U.S. population are prima...
Saved in:
Published in: | Environmental science & technology Vol. 52; no. 1; pp. 308 - 316 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
02-01-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Studies of exposure to petroleum (crude oil/fuel) often involve monitoring benzene, toluene, ethylbenzene, xylenes (BTEX), and styrene (BTEXS) because of their toxicity and gas-phase prevalence, where exposure is typically by inhalation. However, BTEXS levels in the general U.S. population are primarily from exposure to tobacco smoke, where smokers have blood levels on average up to eight times higher than nonsmokers. This work describes a method using partition theory and artificial neural network (ANN) pattern recognition to classify exposure source based on relative BTEXS and 2,5-dimethylfuran blood levels. A method using surrogate signatures to train the ANN was validated by comparing blood levels among cigarette smokers from the National Health and Nutrition Examination Survey (NHANES) with BTEXS and 2,5-dimethylfuran signatures derived from the smoke of machine-smoked cigarettes. Classification agreement for an ANN model trained with relative VOC levels was up to 99.8% for nonsmokers and 100.0% for smokers. As such, because there is limited blood level data on individuals exposed to crude oil/fuel, only surrogate signatures derived from crude oil and fuel were used for training the ANN. For the 2007–2008 NHANES data, the ANN model assigned 7 out of 1998 specimens (0.35%) and for the 2013–2014 NHANES data 12 out of 2906 specimens (0.41%) to the crude oil/fuel signature category. |
---|---|
AbstractList | Studies of exposure to petroleum (crude oil/fuel) often involve monitoring benzene, toluene, ethylbenzene, xylenes (BTEX), and styrene (BTEXS) because of their toxicity and gas-phase prevalence, where exposure is typically by inhalation. However, BTEXS levels in the general U.S. population are primarily from exposure to tobacco smoke, where smokers have blood levels on average up to eight times higher than nonsmokers. This work describes a method using partition theory and artificial neural network (ANN) pattern recognition to classify exposure source based on relative BTEXS and 2,5-dimethylfuran blood levels. A method using surrogate signatures to train the ANN was validated by comparing blood levels among cigarette smokers from the National Health and Nutrition Examination Survey (NHANES) with BTEXS and 2,5-dimethylfuran signatures derived from the smoke of machine-smoked cigarettes. Classification agreement for an ANN model trained with relative VOC levels was up to 99.8% for nonsmokers and 100.0% for smokers. As such, because there is limited blood level data on individuals exposed to crude oil/fuel, only surrogate signatures derived from crude oil and fuel were used for training the ANN. For the 2007-2008 NHANES data, the ANN model assigned 7 out of 1998 specimens (0.35%) and for the 2013-2014 NHANES data 12 out of 2906 specimens (0.41%) to the crude oil/fuel signature category. |
Author | Sanchez, E Blount, B. C Ruhl, J. R. E Rafson, J. P De Jesús, V. R Thornburg, L. G Chambers, D. M Reese, C. M |
AuthorAffiliation | Tobacco and Volatiles Branch |
AuthorAffiliation_xml | – name: Tobacco and Volatiles Branch |
Author_xml | – sequence: 1 givenname: D. M orcidid: 0000-0001-9521-2927 surname: Chambers fullname: Chambers, D. M email: mzz7@cdc.gov – sequence: 2 givenname: C. M surname: Reese fullname: Reese, C. M – sequence: 3 givenname: L. G surname: Thornburg fullname: Thornburg, L. G – sequence: 4 givenname: E surname: Sanchez fullname: Sanchez, E – sequence: 5 givenname: J. P surname: Rafson fullname: Rafson, J. P – sequence: 6 givenname: B. C surname: Blount fullname: Blount, B. C – sequence: 7 givenname: J. R. E surname: Ruhl fullname: Ruhl, J. R. E – sequence: 8 givenname: V. R surname: De Jesús fullname: De Jesús, V. R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29216422$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1vEzEQxRcURNPCmRsaiUsrsqnt_coemzQBpIhGNJVyW3l3Z1u3XjvY3pbw1-NtUjhxmtH49-aN9Y6DgdIKg-ADJWNKGD3nlR2jdeOsJAllk9fBkCaMhMkkoYNgSAiNwjxKN0fBsbX3hBAWkcnb4IjljKYxY8NXg0thnVC3nbB3vsAKndESuxZOZ6arEa6EBK5qWHQoz2BhdAvXrX5AmP_aatsZhCfhvBRWettJ7oRWFqbcYg1agbtD-IH9-BFhKrWuYYmPKC3oBqaofqPCEay17J6bubvbyfJl3NtudtL3Fk6n6_nmbATXbmf84PmNjZLwUrTYi5rOcAXlDlbcOTTKu1b6Von-Hrix_dcujBONqASX8B093hf3pM2DfRe8abi0-P5QT4KbxXw9-xour758m10sQx6niQsrwuuSJaTCDHk5wSzLG0ayrImziFZ5GudlGiFpeEw90WRRWqYNLWMel5jUUR2dBJ_2e7dG_-x8bsW97ozylgXNcxJldJImnjrfU5XR1hpsiq0RLTe7gpKiT73wqRe9-pC6V3w87O3KFuu__EvMHvi8B3rlP8__rPsD-Q-9gg |
CitedBy_id | crossref_primary_10_1007_s11356_024_32404_z crossref_primary_10_1016_j_foodchem_2023_136229 crossref_primary_10_2478_aiht_2022_73_3634 crossref_primary_10_3390_chemosensors7010005 crossref_primary_10_1021_acs_estlett_3c00494 crossref_primary_10_1016_j_envres_2019_05_004 crossref_primary_10_1002_advs_202207250 crossref_primary_10_1016_j_jhazmat_2021_126244 crossref_primary_10_1016_j_cej_2020_125566 crossref_primary_10_1007_s12647_022_00588_9 crossref_primary_10_1021_acsomega_1c00854 crossref_primary_10_1016_j_envadv_2021_100043 crossref_primary_10_1186_s12889_024_18115_7 crossref_primary_10_3390_chemosensors9010001 crossref_primary_10_2139_ssrn_4009676 crossref_primary_10_1007_s13399_023_04693_w crossref_primary_10_1016_j_fct_2020_111242 crossref_primary_10_1016_j_scitotenv_2019_134279 crossref_primary_10_1021_acsami_8b13747 crossref_primary_10_1021_acsami_0c21424 crossref_primary_10_1016_j_gene_2021_146114 crossref_primary_10_1016_j_microc_2018_10_038 crossref_primary_10_1007_s11356_023_29125_0 |
Cites_doi | 10.15585/mmwr.mm6444a2 10.1006/taap.2000.8929 10.1152/jappl.1974.36.5.588 10.1007/BF00435512 10.1016/S1474-4422(13)70278-3 10.1007/BF00381629 10.1016/0041-008X(79)90441-1 10.1080/00039899709603796 10.1080/15287390902959706 10.1021/acs.est.5b04064 10.1179/oeh.2009.15.4.385 10.1007/978-1-4684-0823-2_3 10.1088/1752-7155/10/1/017103 10.1021/ac060341g 10.1186/1476-069X-13-82 10.1016/j.scitotenv.2013.01.045 10.1038/jes.2017.16 10.1016/0021-9673(92)85360-6 10.1016/j.envint.2011.05.016 10.15585/mmwr.ss6511a1 10.1021/ac800065d 10.1136/tc.10.2.96 10.1289/ehp.00108333 10.1016/S0021-9673(01)93292-3 10.1016/j.jchromb.2006.01.019 10.1016/j.tox.2011.07.006 10.1093/ntr/ntw118 10.1002/ajim.4700070508 10.1114/1.1630600 10.1021/ac5015518 10.1111/ina.12321 |
ContentType | Journal Article |
Copyright | Copyright © 2017 U.S. Government Copyright American Chemical Society Jan 2, 2018 |
Copyright_xml | – notice: Copyright © 2017 U.S. Government – notice: Copyright American Chemical Society Jan 2, 2018 |
DBID | NPM AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI |
DOI | 10.1021/acs.est.7b05128 |
DatabaseName | PubMed CrossRef Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts |
DatabaseTitle | PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Biotechnology Research Abstracts PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 316 |
ExternalDocumentID | 10_1021_acs_est_7b05128 29216422 f30837314 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: Intramural CDC HHS grantid: CC999999 |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH ABJNI ABQRX ADHLV ADUKH AGXLV AHGAQ CUPRZ GGK MS~ MW2 NPM XSW ZCA AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI |
ID | FETCH-LOGICAL-a465t-c0adb250ce7eab8e779f2077f4731c9649b63e0fa41e7ef736b6f1b4a4be5d3d3 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Thu Oct 10 20:41:23 EDT 2024 Fri Aug 23 00:38:04 EDT 2024 Sat Sep 28 08:38:29 EDT 2024 Thu Aug 27 13:42:51 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a465t-c0adb250ce7eab8e779f2077f4731c9649b63e0fa41e7ef736b6f1b4a4be5d3d3 |
ORCID | 0000-0001-9521-2927 |
OpenAccessLink | https://europepmc.org/articles/pmc5750095?pdf=render |
PMID | 29216422 |
PQID | 1990371865 |
PQPubID | 45412 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1990371865 crossref_primary_10_1021_acs_est_7b05128 pubmed_primary_29216422 acs_journals_10_1021_acs_est_7b05128 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-02 |
PublicationDateYYYYMMDD | 2018-01-02 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Pellizzari E. D. (ref33/cit33) 1992; 2 ref6/cit6 ref3/cit3 Wang Z. (ref13/cit13) 2003 ref27/cit27 ref18/cit18 United States Environmental Protection Agency (ref42/cit42) Wagner P. D. (ref36/cit36) 1974; 36 ref11/cit11 ref25/cit25 Health Canada (ref38/cit38) 1999 ref16/cit16 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 Chawla N. V. (ref29/cit29) 2002; 16 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 Potter T. L. (ref9/cit9) 1998 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 Gotwalt C. (ref28/cit28) 2011 ref12/cit12 ref41/cit41 ref22/cit22 Hoffmann D. (ref15/cit15) 1975 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref20/cit20 – volume: 2 start-page: 341 year: 1992 ident: ref33/cit33 publication-title: J. Expos Anal Environ. Epidemiol contributor: fullname: Pellizzari E. D. – ident: ref34/cit34 doi: 10.15585/mmwr.mm6444a2 – ident: ref25/cit25 doi: 10.1006/taap.2000.8929 – volume: 36 start-page: 588 issue: 5 year: 1974 ident: ref36/cit36 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1974.36.5.588 contributor: fullname: Wagner P. D. – volume: 16 start-page: 321 issue: 1 year: 2002 ident: ref29/cit29 publication-title: J. Artif. Intell. contributor: fullname: Chawla N. V. – ident: ref32/cit32 doi: 10.1007/BF00435512 – ident: ref8/cit8 doi: 10.1016/S1474-4422(13)70278-3 – ident: ref19/cit19 doi: 10.1007/BF00381629 – ident: ref30/cit30 doi: 10.1016/0041-008X(79)90441-1 – ident: ref10/cit10 – volume-title: JMP© 9 Neural Platform Numerics year: 2011 ident: ref28/cit28 contributor: fullname: Gotwalt C. – ident: ref31/cit31 doi: 10.1080/00039899709603796 – ident: ref40/cit40 doi: 10.1080/15287390902959706 – ident: ref43/cit43 doi: 10.1021/acs.est.5b04064 – ident: ref7/cit7 doi: 10.1179/oeh.2009.15.4.385 – start-page: 63 volume-title: Recent Advances in Phytochemistry year: 1975 ident: ref15/cit15 doi: 10.1007/978-1-4684-0823-2_3 contributor: fullname: Hoffmann D. – volume-title: Characteristics of Spilled Oils, Fuels, And Petroleum Products: 1. Composition and Properties of Selected Oils year: 2003 ident: ref13/cit13 contributor: fullname: Wang Z. – ident: ref26/cit26 doi: 10.1088/1752-7155/10/1/017103 – ident: ref17/cit17 doi: 10.1021/ac060341g – ident: ref12/cit12 – ident: ref2/cit2 doi: 10.1186/1476-069X-13-82 – ident: ref3/cit3 doi: 10.1016/j.scitotenv.2013.01.045 – ident: ref1/cit1 doi: 10.1038/jes.2017.16 – ident: ref23/cit23 doi: 10.1016/0021-9673(92)85360-6 – ident: ref11/cit11 doi: 10.1016/j.envint.2011.05.016 – ident: ref16/cit16 doi: 10.15585/mmwr.ss6511a1 – ident: ref22/cit22 doi: 10.1021/ac800065d – ident: ref37/cit37 doi: 10.1136/tc.10.2.96 – ident: ref27/cit27 – ident: ref5/cit5 doi: 10.1289/ehp.00108333 – volume-title: Determination of ″Tar″, Nicotine and Carbon Monoxide in Mainstream Tobacco Smoke year: 1999 ident: ref38/cit38 contributor: fullname: Health Canada – ident: ref18/cit18 doi: 10.1016/S0021-9673(01)93292-3 – ident: ref21/cit21 doi: 10.1016/j.jchromb.2006.01.019 – ident: ref6/cit6 doi: 10.1016/j.tox.2011.07.006 – ident: ref14/cit14 doi: 10.1093/ntr/ntw118 – ident: ref4/cit4 doi: 10.1002/ajim.4700070508 – ident: ref35/cit35 doi: 10.1114/1.1630600 – volume-title: Composition of Petroleum Mixtures year: 1998 ident: ref9/cit9 contributor: fullname: Potter T. L. – ident: ref24/cit24 doi: 10.1021/ac5015518 – ident: ref41/cit41 doi: 10.1111/ina.12321 – volume-title: Volatile Organic Compounds Emissions ident: ref42/cit42 contributor: fullname: United States Environmental Protection Agency |
SSID | ssj0002308 |
Score | 2.4197755 |
Snippet | Studies of exposure to petroleum (crude oil/fuel) often involve monitoring benzene, toluene, ethylbenzene, xylenes (BTEX), and styrene (BTEXS) because of their... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 308 |
SubjectTerms | Artificial neural networks Benzene Blood Blood levels Cigarettes Crude oil Ethylbenzene Exposure Fuels Human exposure Hydrocarbons Inhalation Natural gas Neural networks Nutrition Pattern recognition Petroleum Respiration Signatures Smoke Smoking Styrene Tobacco Tobacco smoke Toluene Toxicity VOCs Volatile organic compounds |
Title | Distinguishing Petroleum (Crude Oil and Fuel) From Smoke Exposure within Populations Based on the Relative Blood Levels of Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), Styrene and 2,5-Dimethylfuran by Pattern Recognition Using Artificial Neural Networks |
URI | http://dx.doi.org/10.1021/acs.est.7b05128 https://www.ncbi.nlm.nih.gov/pubmed/29216422 https://www.proquest.com/docview/1990371865 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFDesXNiBj8FYYaB32KGVmpE4H06Oa5tqBwQTLVJvlR3bqCJNpmZBlL-eZycpQ6gSnBIllmPl_d6nn98j5EJGIZOeEo5E5YgOitCO0K5wMi40MwDyuDmcfD1nH5fxNDVlcoYHdvCp955n1SUKyEsmED80PiKPKHNj42ddTeZ7oYuWdNw1K0j8aLmv4vPXBEYNZdWfauiAbWl1zOzpf6zuGXnSGpJw1VD-OXmoihNyfK-84Ak5TX-fYsOhLRtXLx70poazi691E4AC01arzFW9gcFkW0sFn9Y58ELCrFb5EGbbcgPzTflNQfrjtjQxRTDx23UBN_v-XxWMUSFKKAtAmxKaJLvvCsYmMx4-mNykCkoNY1X8RPk6gkVpuqPgTYpYyUX32Hx2ucuNCIbBeJEuhyOYm1B5oew7Ogqd6do0vt7lukZNC2IHN7ZKaAGfu3QoXIVNhrD_pymSAaYOib3YxPfqJfkySxeTa6dtB-HwIArvnMzlUqDFlimmuIgVY4mmLmM6YL6XJVGQiMhXruaBhyMQaZGItCcCHggVSl_6p6RXlIU6I8A8mQiOmER3NNAyEG7iKqqSSIUBk5nukwsk7Kpl52pld-qptzIPkdqrltp9MuhAtLptioMcHnregezetGgK-GgcRGGfvGqAt5-HJhQ9WUpf_9tS3pDHaMrFNjhEz0nvblurt-SokvU7yyi_ABVUEqw |
link.rule.ids | 315,782,786,2771,27087,27935,27936,56750,56800 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwEDesPAAPfAw2CgPuYQ-d1Ix8O3lc21RFlDHRIvUtimMbVUudqVkQ5a_n7DTdEJoET4kc62LFP9_9fDnfEXLMw4ByRzCLo3HEDQqTFpM2s_KMSaoB5GT6cPJkRs8X0SjRaXLs9iwMDqJCSZX5iX-TXcD5oNtQT55ShjByoz3yIECuq4s1nA1nO92LhDpqaxbEXrjYJfP5S4C2Rnn1pzW6g2IaUzN--v-DfEaebGklnDU4eE7uC7VPHt9KNrhPDpKbM23Ydbuoqxf3OiO9ztX3unFHgS6yVRaiXkFvuK65gC_LAjLFYVyL4gTG63IFs1V5KSD5eVVqDyNob-5SwcWuGlgFAzSPHEoFyDChCbn7IWCg4-RhqiOVKiglDIT6hdq2D_NS10rBmwSRU7C2Wb92sSm0QobeYJ4sTvow045zJcwztx9Yo6Uug70pZI12F9gGLkzOUAVf2-AoHIUJjTDfp0mZAToribmYMPjqJfk2TubDibUtDmFlfhhcW7mdcYb8LRdUZCwSlMbStSmVPvWcPA79mIWesGXmO9gDcReyUDrMz3wmAu5x74B0VKnEKwLU4THLEKG4OfUl95kd28IVcSgCn_JcdskxTmy6XdxVav7bu06qG3G20-1sd0mvxVJ61aQKubvrUYu1W2KRGHhIFcKgSw4b_O3kuLGL-1rXff1vQ3lPHk7mn6fp9OP5pzfkEZK8yLiN3CPSuV7X4i3Zq3j9zqyd3wo8GxE |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwEDesSGg88DEYFAbcwx46qYF82skjbVMNMY2KFqlvURzbqFqaVM2CKH89ZycpQ2gS4imRYzmn-He-ny_nO0JOBQ2YcCS3BBpH3KBwZXFlcytLuWIaQE6qDyefz9nlMpzEOk2O352FQSEqHKkyP_G1Vm-EajMMOO91O66V7xhHKLnhAbkXUCQ8mhCN5_v1F0l12NUtiDy63Cf0-WsAbZGy6k-LdAvNNOZm-uj_BH1MHrb0Ej40eHhC7sriiDy4kXTwiBzHv8-2YddWuaund3oTre_Ft7pxS4EutlXmsl7DYLythYTPqxzSQsC0lvkZTLflGubr8kpC_GNTak8jaK_uqoDZvipYBSM0kwLKApBpQhN6913CSMfLw4WOWKqgVDCSxU9cdYewKHXNFLyJEUE575r1a5e7XC_MMBgt4uXZEObagV5I88wdBtZkpcth73JVo_0FvoOZyR1awJcuSAqlMCES5vs0qTNAZycxFxMOXz0jX6fxYnxutUUirNSnwbWV2angyOMyyWTKQ8lYpFybMeUzz8ki6kecetJWqe9gD8Qf5VQ53E99LgPhCe-Y9IqykC8IMEdEPEWk4ibVV8LndmRLV0ZUBj4TmeqTU5zYpFXyKjH_710n0Y0420k7230y6PCUbJqUIbd3PenwdmNYJAgeUgYa9MnzBoP7cdzIxf2t6778N1HekvuzyTS5-Hj56RU5RK4XGu-Re0J619taviYHlajfGPX5BfAvHYs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinguishing+Petroleum+%28Crude+Oil+and+Fuel%29+From+Smoke+Exposure+within+Populations+Based+on+the+Relative+Blood+Levels+of+Benzene%2C+Toluene%2C+Ethylbenzene%2C+and+Xylenes+%28BTEX%29%2C+Styrene+and+2%2C5-Dimethylfuran+by+Pattern+Recognition+Using+Artificial+Neural+Networks&rft.jtitle=Environmental+science+%26+technology&rft.au=Chambers%2C+D+M&rft.au=Reese%2C+C+M&rft.au=Thornburg%2C+L+G&rft.au=Sanchez%2C+E&rft.date=2018-01-02&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=52&rft.issue=1&rft.spage=308&rft_id=info:doi/10.1021%2Facs.est.7b05128&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |