Using Noble Gases to Assess the Ocean's Carbon Pumps
Natural mechanisms in the ocean, both physical and biological, concentrate carbon in the deep ocean, resulting in lower atmospheric carbon dioxide. The signals of these carbon pumps overlap to create the observed carbon distribution in the ocean, making the individual impact of each pump difficult t...
Saved in:
Published in: | Annual review of marine science Vol. 11; no. 1; pp. 75 - 103 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Annual Reviews
03-01-2019
Annual Reviews, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Natural mechanisms in the ocean, both physical and biological, concentrate carbon in the deep ocean, resulting in lower atmospheric carbon dioxide. The signals of these carbon pumps overlap to create the observed carbon distribution in the ocean, making the individual impact of each pump difficult to disentangle. Noble gases have the potential to directly quantify the physical carbon solubility pump and to indirectly improve estimates of the biological organic carbon pump. Noble gases are biologically inert, can be precisely measured, and span a range of physical properties. We present dissolved neon, argon, and krypton data spanning the Atlantic, Southern, Pacific, and Arctic Oceans. Comparisons between deep-ocean observations and models of varying complexity enable the rates of processes that control the carbon solubility pump to be quantified and thus provide an important metric for ocean model skill. Noble gases also provide a powerful means of assessing air-sea gas exchange parameterizations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-2 |
ISSN: | 1941-1405 1941-0611 |
DOI: | 10.1146/annurev-marine-121916-063604 |