Message Passing Neural Networks Improve Prediction of Metabolite Authenticity
Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with protein and DNA and prompt drug candidate attrition or market withdrawal. Previously developed models help understand how these enzymes modif...
Saved in:
Published in: | Journal of chemical information and modeling Vol. 63; no. 6; pp. 1675 - 1694 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
27-03-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with protein and DNA and prompt drug candidate attrition or market withdrawal. Previously developed models help understand how these enzymes modify molecule structure by predicting sites of metabolism or characterizing formation of metabolite-biomolecule adducts. However, the majority of reactive metabolites are formed by multiple metabolic steps, and understanding the progenitor molecule’s network-level behavior necessitates an integrative approach that blends multiple site of metabolism and structure inference models. Our previously developed tool, XenoNet 1.0, generates metabolic networks, where nodes are molecules and weighted edges are metabolic transformations. We extend XenoNet with a bidirectional message passing neural network that integrates edge feature information and local network structure using edge-conditioned graph convolutions and jumping knowledge to predict the authenticity of inferred Phase I metabolite structures. Our model significantly outperformed prior work and algorithmic baselines on a data set of 311 networks and 6606 intermediates annotated using a chemically diverse set of 20 736 individual in vitro and in vivo reaction records accounting for 92.3% of all human Phase I metabolism in the Accelrys Metabolite Database. Cross-validated predictions resulted in area under the receiver operating characteristic curves of 88.5% and 87.6% for separating experimentally observed and unobserved metabolites at global and network levels, respectively. Further analysis verified robustness to networks of varying depth and breadth, accurate detection of metabolites, such as d,l-methamphetamine, that are experimentally observed or unobserved in different network contexts, extraction of important metabolic subnetworks, and identification of known bioactivation pathways, such as for nimesulide and terbinafine. By exploiting network structures, our approach accurately suggests unreported metabolites for experimental study and may rationalize modifications for avoiding deleterious pathways antecedent to reactive metabolite formation. |
---|---|
AbstractList | Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with protein and DNA and prompt drug candidate attrition or market withdrawal. Previously developed models help understand how these enzymes modify molecule structure by predicting sites of metabolism or characterizing formation of metabolite-biomolecule adducts. However, the majority of reactive metabolites are formed by multiple metabolic steps, and understanding the progenitor molecule's network-level behavior necessitates an integrative approach that blends multiple site of metabolism and structure inference models. Our previously developed tool, XenoNet 1.0, generates metabolic networks, where nodes are molecules and weighted edges are metabolic transformations. We extend XenoNet with a bidirectional message passing neural network that integrates edge feature information and local network structure using edge-conditioned graph convolutions and jumping knowledge to predict the authenticity of inferred Phase I metabolite structures. Our model significantly outperformed prior work and algorithmic baselines on a data set of 311 networks and 6606 intermediates annotated using a chemically diverse set of 20 736 individual in vitro and in vivo reaction records accounting for 92.3% of all human Phase I metabolism in the Accelrys Metabolite Database. Cross-validated predictions resulted in area under the receiver operating characteristic curves of 88.5% and 87.6% for separating experimentally observed and unobserved metabolites at global and network levels, respectively. Further analysis verified robustness to networks of varying depth and breadth, accurate detection of metabolites, such as d,l-methamphetamine, that are experimentally observed or unobserved in different network contexts, extraction of important metabolic subnetworks, and identification of known bioactivation pathways, such as for nimesulide and terbinafine. By exploiting network structures, our approach accurately suggests unreported metabolites for experimental study and may rationalize modifications for avoiding deleterious pathways antecedent to reactive metabolite formation. Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with protein and DNA and prompt drug candidate attrition or market withdrawal. Previously developed models help understand how these enzymes modify molecule structure by predicting sites of metabolism or characterizing formation of metabolite-biomolecule adducts. However, the majority of reactive metabolites are formed by multiple metabolic steps, and understanding the progenitor molecule's network-level behavior necessitates an integrative approach that blends multiple site of metabolism and structure inference models. Our previously developed tool, XenoNet 1.0, generates metabolic networks, where nodes are molecules and weighted edges are metabolic transformations. We extend XenoNet with a bidirectional message passing neural network that integrates edge feature information and local network structure using edge-conditioned graph convolutions and jumping knowledge to predict the authenticity of inferred Phase I metabolite structures. Our model significantly outperformed prior work and algorithmic baselines on a data set of 311 networks and 6606 intermediates annotated using a chemically diverse set of 20 736 individual in vitro and in vivo reaction records accounting for 92.3% of all human Phase I metabolism in the Accelrys Metabolite Database. Cross-validated predictions resulted in area under the receiver operating characteristic curves of 88.5% and 87.6% for separating experimentally observed and unobserved metabolites at global and network levels, respectively. Further analysis verified robustness to networks of varying depth and breadth, accurate detection of metabolites, such as d,l-methamphetamine, that are experimentally observed or unobserved in different network contexts, extraction of important metabolic subnetworks, and identification of known bioactivation pathways, such as for nimesulide and terbinafine. By exploiting network structures, our approach accurately suggests unreported metabolites for experimental study and may rationalize modifications for avoiding deleterious pathways antecedent to reactive metabolite formation.Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with protein and DNA and prompt drug candidate attrition or market withdrawal. Previously developed models help understand how these enzymes modify molecule structure by predicting sites of metabolism or characterizing formation of metabolite-biomolecule adducts. However, the majority of reactive metabolites are formed by multiple metabolic steps, and understanding the progenitor molecule's network-level behavior necessitates an integrative approach that blends multiple site of metabolism and structure inference models. Our previously developed tool, XenoNet 1.0, generates metabolic networks, where nodes are molecules and weighted edges are metabolic transformations. We extend XenoNet with a bidirectional message passing neural network that integrates edge feature information and local network structure using edge-conditioned graph convolutions and jumping knowledge to predict the authenticity of inferred Phase I metabolite structures. Our model significantly outperformed prior work and algorithmic baselines on a data set of 311 networks and 6606 intermediates annotated using a chemically diverse set of 20 736 individual in vitro and in vivo reaction records accounting for 92.3% of all human Phase I metabolism in the Accelrys Metabolite Database. Cross-validated predictions resulted in area under the receiver operating characteristic curves of 88.5% and 87.6% for separating experimentally observed and unobserved metabolites at global and network levels, respectively. Further analysis verified robustness to networks of varying depth and breadth, accurate detection of metabolites, such as d,l-methamphetamine, that are experimentally observed or unobserved in different network contexts, extraction of important metabolic subnetworks, and identification of known bioactivation pathways, such as for nimesulide and terbinafine. By exploiting network structures, our approach accurately suggests unreported metabolites for experimental study and may rationalize modifications for avoiding deleterious pathways antecedent to reactive metabolite formation. |
Author | Swamidass, S. Joshua Flynn, Noah R. |
AuthorAffiliation | Department of Pathology and Immunology |
AuthorAffiliation_xml | – name: Department of Pathology and Immunology |
Author_xml | – sequence: 1 givenname: Noah R. orcidid: 0000-0002-8542-8887 surname: Flynn fullname: Flynn, Noah R. – sequence: 2 givenname: S. Joshua orcidid: 0000-0003-2191-0778 surname: Swamidass fullname: Swamidass, S. Joshua email: swamidass@wustl.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36926871$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1P3DAQxS0E4vveUxWJSw_drcdJHPuEEGoLEttyAImb5TiTxdsk3toOFf99zX6gFonTjDS_92ZG74jsDm5AQj4AnQJl8EWbMF0Y20-ZoZCLfIccQlnIieT0YXfbl5IfkKMQFpTmueRsnxzkXDIuKjgksxmGoOeY3eoQ7DDPfuDodZdK_OP8r5Bd90vvntLcY2NNtG7IXJvNMOradTZidjHGRxyiNTY-n5C9VncBTzf1mNx_-3p3eTW5-fn9-vLiZqILzuKkRl0WqBvBBOSlFFhRrLmoawAmCsloBSiRFoY3rGyMYSVtWSvaAoThDGR-TM7Xvsux7rExaX86Wi297bV_Vk5b9f9ksI9q7p4U0LwQYuXwaePg3e8RQ1S9DQa7Tg_oxqBYJaGiBXCe0LM36MKNfkj_rShelSBpouiaMt6F4LF9vQaoeglLpbDUS1hqE1aSfPz3i1fBNp0EfF4DK-l26bt-fwGw0qLj |
CitedBy_id | crossref_primary_10_1021_acs_jcim_3c01588 |
Cites_doi | 10.1016/j.patrec.2005.10.010 10.1021/acs.jcim.0c00361 10.1021/tx200168d 10.1016/j.drudis.2012.01.017 10.1609/aaai.v33i01.33014602 10.1016/j.ab.2006.01.016 10.1080/0022250X.2001.9990249 10.3389/fchem.2019.00402 10.1016/j.jcss.2020.04.003 10.1002/cmdc.200700312 10.1016/j.socnet.2007.11.001 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.1021/tx1001496 10.2174/138920006778520606 10.1016/B978-0-12-387817-5.00022-4 10.1038/nrd4090 10.1002/jms.1098 10.1021/acs.jcim.9b00836 10.1124/dmd.104.001412 10.1124/dmd.104.003095 10.2174/138620710790596736 10.1021/acs.jcim.0c00360 10.1186/s13321-018-0324-5 10.1021/tx2005212 10.1109/ICDM.2006.70 10.1371/journal.pone.0209264 10.1007/978-3-642-00663-0_7 10.1021/acs.chemrestox.9b00006 10.1046/j.1365-2125.1999.00036.x 10.1016/S0379-0738(02)00190-1 10.2165/00003088-199835040-00001 10.1021/acs.chemrestox.7b00191 10.1021/acscentsci.6b00162 10.1109/CVPR.2017.11 10.1016/j.bcp.2019.113661 10.1093/acprof:oso/9780199206650.001.0001 10.1371/journal.pone.0213857 10.2174/1389200054021799 10.1124/dmd.112.047431 10.1016/j.toxrep.2018.08.017 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society Copyright American Chemical Society Mar 27, 2023 |
Copyright_xml | – notice: 2023 American Chemical Society – notice: Copyright American Chemical Society Mar 27, 2023 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1021/acs.jcim.2c01383 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1549-960X |
EndPage | 1694 |
ExternalDocumentID | 10_1021_acs_jcim_2c01383 36926871 f25642642 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NLM NIH HHS grantid: R01 LM012482 – fundername: NIH HHS grantid: S10 OD018091 – fundername: NIGMS NIH HHS grantid: R01 GM140635 – fundername: NCRR NIH HHS grantid: S10 RR022984 – fundername: NLM NIH HHS grantid: R01 LM012222 |
GroupedDBID | --- -~X 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABQRX ABUCX ACGFS ACIWK ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ D0L DU5 EBS ED~ F5P GGK GNL IH9 JG~ P2P PQEST PQQKQ RNS ROL UI2 VF5 VG9 W1F ABJNI CGR CUPRZ CUY CVF ECM EIF NPM AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-a462t-bea54ead82813598e70eb68bb1128492071e9e04c6d25dcc250f2f8f418c62193 |
IEDL.DBID | ACS |
ISSN | 1549-9596 1549-960X |
IngestDate | Tue Sep 17 21:29:23 EDT 2024 Sat Oct 26 03:55:55 EDT 2024 Thu Oct 10 17:42:00 EDT 2024 Fri Aug 23 01:40:33 EDT 2024 Sat Nov 02 12:21:19 EDT 2024 Wed Mar 29 07:07:46 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a462t-bea54ead82813598e70eb68bb1128492071e9e04c6d25dcc250f2f8f418c62193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2191-0778 0000-0002-8542-8887 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348819 |
PMID | 36926871 |
PQID | 2791675190 |
PQPubID | 28739 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10348819 proquest_miscellaneous_2791704166 proquest_journals_2791675190 crossref_primary_10_1021_acs_jcim_2c01383 pubmed_primary_36926871 acs_journals_10_1021_acs_jcim_2c01383 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-27 |
PublicationDateYYYYMMDD | 2023-03-27 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of chemical information and modeling |
PublicationTitleAlternate | J. Chem. Inf. Model |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 Xu K. (ref27/cit27) 2018 ref16/cit16 ref23/cit23 Maron H. (ref49/cit49) 2019 Wu F. (ref28/cit28) 2019 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 Chen Z. (ref52/cit52) 2020 ref20/cit20 ref48/cit48 ref10/cit10 ref35/cit35 ref21/cit21 ref42/cit42 ref46/cit46 ref13/cit13 Page L. (ref19/cit19) 1998 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 (ref41/cit41) 2016 ref11/cit11 ref32/cit32 ref39/cit39 ref14/cit14 (ref37/cit37) 2021 ref5/cit5 Alon U. (ref30/cit30) 2021 ref51/cit51 ref43/cit43 Cawley G. C. (ref26/cit26) 2010; 11 ref40/cit40 Newman M. (ref18/cit18) 2010 Simonovsky M. (ref24/cit24) 2017 Klicpera J. (ref29/cit29) 2019 ref12/cit12 ref15/cit15 Gilmer J. (ref17/cit17) 2017 ref22/cit22 ref33/cit33 ref4/cit4 ref47/cit47 ref1/cit1 Xu K. (ref25/cit25) 2018 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref31/cit31 doi: 10.1016/j.patrec.2005.10.010 – volume: 11 start-page: 2079 year: 2010 ident: ref26/cit26 publication-title: J. Mach. Learn. Res. contributor: fullname: Cawley G. C. – volume-title: PubChem. Compound LCSS for CID 6407, Chloral year: 2021 ident: ref37/cit37 – ident: ref10/cit10 doi: 10.1021/acs.jcim.0c00361 – start-page: abs/1810.00826 year: 2018 ident: ref27/cit27 publication-title: CoRR contributor: fullname: Xu K. – start-page: 6861 volume-title: Proceedings of the 36th International Conference on Machine Learning year: 2019 ident: ref28/cit28 contributor: fullname: Wu F. – ident: ref5/cit5 doi: 10.1021/tx200168d – ident: ref1/cit1 doi: 10.1016/j.drudis.2012.01.017 – volume-title: On the Bottleneck of Graph Neural Networks and its Practical Implications year: 2021 ident: ref30/cit30 contributor: fullname: Alon U. – ident: ref50/cit50 doi: 10.1609/aaai.v33i01.33014602 – ident: ref48/cit48 doi: 10.1016/j.ab.2006.01.016 – ident: ref22/cit22 doi: 10.1080/0022250X.2001.9990249 – ident: ref33/cit33 doi: 10.3389/fchem.2019.00402 – ident: ref51/cit51 doi: 10.1016/j.jcss.2020.04.003 – ident: ref11/cit11 doi: 10.1002/cmdc.200700312 – ident: ref23/cit23 doi: 10.1016/j.socnet.2007.11.001 – ident: ref38/cit38 doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – ident: ref43/cit43 doi: 10.1021/tx1001496 – ident: ref36/cit36 doi: 10.2174/138920006778520606 – start-page: 10383 volume-title: NIPS’20: Proceedings of the 34th International Conference on Neural Information Processing Systems year: 2020 ident: ref52/cit52 contributor: fullname: Chen Z. – ident: ref40/cit40 doi: 10.1016/B978-0-12-387817-5.00022-4 – start-page: 1263 volume-title: Proceedings of the 34th International Conference on Machine Learning year: 2017 ident: ref17/cit17 contributor: fullname: Gilmer J. – ident: ref4/cit4 doi: 10.1038/nrd4090 – ident: ref47/cit47 doi: 10.1002/jms.1098 – ident: ref13/cit13 doi: 10.1021/acs.jcim.9b00836 – ident: ref9/cit9 doi: 10.1124/dmd.104.001412 – ident: ref16/cit16 doi: 10.1124/dmd.104.003095 – volume-title: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury year: 2016 ident: ref41/cit41 – ident: ref6/cit6 doi: 10.2174/138620710790596736 – volume-title: The PageRank Citation Ranking: Bringing Order to the Web year: 1998 ident: ref19/cit19 contributor: fullname: Page L. – ident: ref14/cit14 doi: 10.1021/acs.jcim.0c00360 – ident: ref12/cit12 doi: 10.1186/s13321-018-0324-5 – ident: ref8/cit8 doi: 10.1021/tx2005212 – ident: ref20/cit20 doi: 10.1109/ICDM.2006.70 – ident: ref39/cit39 doi: 10.1371/journal.pone.0209264 – ident: ref2/cit2 doi: 10.1007/978-3-642-00663-0_7 – ident: ref44/cit44 doi: 10.1021/acs.chemrestox.9b00006 – ident: ref35/cit35 doi: 10.1046/j.1365-2125.1999.00036.x – ident: ref32/cit32 doi: 10.1016/S0379-0738(02)00190-1 – ident: ref42/cit42 doi: 10.2165/00003088-199835040-00001 – ident: ref46/cit46 doi: 10.1021/acs.chemrestox.7b00191 – ident: ref15/cit15 doi: 10.1021/acscentsci.6b00162 – start-page: 29 volume-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2017 ident: ref24/cit24 doi: 10.1109/CVPR.2017.11 contributor: fullname: Simonovsky M. – ident: ref45/cit45 doi: 10.1016/j.bcp.2019.113661 – volume-title: Networks: An Introduction year: 2010 ident: ref18/cit18 doi: 10.1093/acprof:oso/9780199206650.001.0001 contributor: fullname: Newman M. – ident: ref21/cit21 doi: 10.1371/journal.pone.0213857 – start-page: 5453 volume-title: Proceedings of the 35th International Conference on Machine Learning year: 2018 ident: ref25/cit25 contributor: fullname: Xu K. – volume-title: Advances in Neural Information Processing Systems year: 2019 ident: ref49/cit49 contributor: fullname: Maron H. – ident: ref3/cit3 doi: 10.2174/1389200054021799 – ident: ref7/cit7 doi: 10.1124/dmd.112.047431 – volume-title: Advances in Neural Information Processing Systems year: 2019 ident: ref29/cit29 contributor: fullname: Klicpera J. – ident: ref34/cit34 doi: 10.1016/j.toxrep.2018.08.017 |
SSID | ssj0033962 |
Score | 2.4578345 |
Snippet | Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with... |
SourceID | pubmedcentral proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1675 |
SubjectTerms | Adducts Biomolecules Cytochromes P450 Enzymes Humans Machine Learning and Deep Learning Message passing Metabolic Networks and Pathways Metabolism Metabolites Molecular Structure Neural networks Neural Networks, Computer Terbinafine - metabolism |
Title | Message Passing Neural Networks Improve Prediction of Metabolite Authenticity |
URI | http://dx.doi.org/10.1021/acs.jcim.2c01383 https://www.ncbi.nlm.nih.gov/pubmed/36926871 https://www.proquest.com/docview/2791675190 https://www.proquest.com/docview/2791704166 https://pubmed.ncbi.nlm.nih.gov/PMC10348819 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5YPejF9wNfwUQPHlB2WRb2aGqNlzYm1cQbWZbFRyI10v5_Z6DUthqjV_YBzAw73-4M3wCcsoxbKXSIyC1OPYF7EE8bX3g2zNEZIyJHjERHF_2o9xhfd6ZpcuYj-JxdalNevJqXtwtuKKoWtGCJRwgUCAa1-82qGwSqKh5KjGOeClUTkvxpBnJEppx1RN_Q5XyS5JTXuVn7z_Ouw-oYW7pXtTFswIItNmG53ZR024JulwqePFn3DiEz-iyXqDlwRK_OBS_d-ogB2z8ofkM6cwe527VDNBX6WdmlEzXKLzII3rfh4aZz3771xvUUPC0kH3qp1aFAy8FNFiPiPhv5NpVxmjJyUooj2rDK-sLIjIeZMYiOcp7HuWCxkbiyBTuwWAwKuwcufrkZDpA2Z6ngfqgRZ6ahyLnQTKUqd-AM5ZCMv4cyqULdnCXVRRROMhaOA-eNEpL3ml7jl76HjZa-JuYR4tsIYajvwMmkGcVKcQ9d2MGo7hP5iDylA7u1Uic3C6TiEjeNDsQz6p50IPrt2Zbi5bmi4WZ-gKsfU_t_fNcDWKFa9ZTAxqNDWBx-jOwRtMpsdFyZ8ic5g-8_ |
link.rule.ids | 230,315,782,786,887,2769,27085,27933,27934,56748,56798 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HODC-1GeRYIDh0KTpmlzRGMIBJuQNiRuVZumMCQ6RLf_j92uGwOEENe8mtpO_CV2bIBjlnIjRewjcgsTR-AZxIm1KxzjZ6iMEZEjRqKri07QfgwvmxQmh9VvYXASBY5UlEb8SXQBdk5lL7r3esY1Gde8WZj3KVEGoaFGp958PU-VOUQp8JijfFVbJn8agfSRLqb10TeQ-dVX8pPyuVr-x7RXYGmENO2LSjRWYcbka7DQqBO8rUOrRelPnox9jwAaNZhNgTqwR7vyDC_s6sIB69_JmkMctPuZ3TIDFBx6umzT_Rp5G2mE8hvwcNXsNq6dUXYFJxaSD5zExL5AOcIjF6MwfiZwTSLDJGGkshRH7GGUcYWWKfdTrRErZTwLM8FCLXGf8zZhLu_nZhtsXMcpdpAmY4ngrh8j6kx8kXERM5WozIITpEM0Wh1FVBq-OYvKQiRONCKOBac1L6K3KtjGL233amZNBuYBot0AQalrwdG4GslKVpA4N_1h1SZwEYdKC7Yq3o4_5knFJR4hLQinuD5uQMG4p2vy3nMZlJu5Hu6FTO388V8PYeG627qL7m7at7uwSFnsybWNB3swN3gfmn2YLdLhQSndH4rp960 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VKgEXoLwaCm2QyoFDIHZsJz6ihVWrsiskqMQtShwbFoksIrv_vzN5bFlAFerVrzgzY89nz3gG4DsruFUik4jckjwQeAYJMhOKwEqHyhgROWIkurq4ioc3ydk5hcmR3VsYnESFI1W1EZ9W9WPh2ggD7ITK783o4ZgbMrBFC_BRkhWBEFHvqtuAo0jXeUQp-Figpe6sk2-NQDrJVPM66RXQfOkv-UwB9df-c-rrsNoiTv-0EZFP8MGWG7Dc6xK9bcJgQGlQbq1_iUAaNZlPATuwx7DxEK_85uIB65_IqkOc9MfOH9gJChA9Yfbpno28jgxC-i343T-_7v0I2iwLQSYUnwS5zaRAecKjF6NwfjYOba6SPGekujRHDGK1DYVRBZeFMYiZHHeJEywxCve7aBsWy3FpP4OP67nADso6lgseygzRZy6F4yJjOtfOg0OkQ9qukiqtDeCcpXUhEidtiePBUceP9LEJuvGPtnsdw_4OzGNEvTGC09CDg1k1kpWsIVlpx9OmTRwiHlUe7DT8nX0sUporPEp6kMxxftaAgnLP15Sjuzo4Nwsj3BOZ3n3nv36Dpcuzfnrxc_jrC6xQMnvycOPxHixOnqZ2HxaqYvq1FvA_nDb6MA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Message+Passing+Neural+Networks+Improve+Prediction+of+Metabolite+Authenticity&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Flynn%2C+Noah+R&rft.au=Swamidass%2C+S+Joshua&rft.date=2023-03-27&rft.issn=1549-960X&rft.eissn=1549-960X&rft.volume=63&rft.issue=6&rft.spage=1675&rft_id=info:doi/10.1021%2Facs.jcim.2c01383&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon |