Message Passing Neural Networks Improve Prediction of Metabolite Authenticity

Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with protein and DNA and prompt drug candidate attrition or market withdrawal. Previously developed models help understand how these enzymes modif...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical information and modeling Vol. 63; no. 6; pp. 1675 - 1694
Main Authors: Flynn, Noah R., Swamidass, S. Joshua
Format: Journal Article
Language:English
Published: United States American Chemical Society 27-03-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with protein and DNA and prompt drug candidate attrition or market withdrawal. Previously developed models help understand how these enzymes modify molecule structure by predicting sites of metabolism or characterizing formation of metabolite-biomolecule adducts. However, the majority of reactive metabolites are formed by multiple metabolic steps, and understanding the progenitor molecule’s network-level behavior necessitates an integrative approach that blends multiple site of metabolism and structure inference models. Our previously developed tool, XenoNet 1.0, generates metabolic networks, where nodes are molecules and weighted edges are metabolic transformations. We extend XenoNet with a bidirectional message passing neural network that integrates edge feature information and local network structure using edge-conditioned graph convolutions and jumping knowledge to predict the authenticity of inferred Phase I metabolite structures. Our model significantly outperformed prior work and algorithmic baselines on a data set of 311 networks and 6606 intermediates annotated using a chemically diverse set of 20 736 individual in vitro and in vivo reaction records accounting for 92.3% of all human Phase I metabolism in the Accelrys Metabolite Database. Cross-validated predictions resulted in area under the receiver operating characteristic curves of 88.5% and 87.6% for separating experimentally observed and unobserved metabolites at global and network levels, respectively. Further analysis verified robustness to networks of varying depth and breadth, accurate detection of metabolites, such as d,l-methamphetamine, that are experimentally observed or unobserved in different network contexts, extraction of important metabolic subnetworks, and identification of known bioactivation pathways, such as for nimesulide and terbinafine. By exploiting network structures, our approach accurately suggests unreported metabolites for experimental study and may rationalize modifications for avoiding deleterious pathways antecedent to reactive metabolite formation.
AbstractList Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with protein and DNA and prompt drug candidate attrition or market withdrawal. Previously developed models help understand how these enzymes modify molecule structure by predicting sites of metabolism or characterizing formation of metabolite-biomolecule adducts. However, the majority of reactive metabolites are formed by multiple metabolic steps, and understanding the progenitor molecule's network-level behavior necessitates an integrative approach that blends multiple site of metabolism and structure inference models. Our previously developed tool, XenoNet 1.0, generates metabolic networks, where nodes are molecules and weighted edges are metabolic transformations. We extend XenoNet with a bidirectional message passing neural network that integrates edge feature information and local network structure using edge-conditioned graph convolutions and jumping knowledge to predict the authenticity of inferred Phase I metabolite structures. Our model significantly outperformed prior work and algorithmic baselines on a data set of 311 networks and 6606 intermediates annotated using a chemically diverse set of 20 736 individual in vitro and in vivo reaction records accounting for 92.3% of all human Phase I metabolism in the Accelrys Metabolite Database. Cross-validated predictions resulted in area under the receiver operating characteristic curves of 88.5% and 87.6% for separating experimentally observed and unobserved metabolites at global and network levels, respectively. Further analysis verified robustness to networks of varying depth and breadth, accurate detection of metabolites, such as d,l-methamphetamine, that are experimentally observed or unobserved in different network contexts, extraction of important metabolic subnetworks, and identification of known bioactivation pathways, such as for nimesulide and terbinafine. By exploiting network structures, our approach accurately suggests unreported metabolites for experimental study and may rationalize modifications for avoiding deleterious pathways antecedent to reactive metabolite formation.
Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with protein and DNA and prompt drug candidate attrition or market withdrawal. Previously developed models help understand how these enzymes modify molecule structure by predicting sites of metabolism or characterizing formation of metabolite-biomolecule adducts. However, the majority of reactive metabolites are formed by multiple metabolic steps, and understanding the progenitor molecule's network-level behavior necessitates an integrative approach that blends multiple site of metabolism and structure inference models. Our previously developed tool, XenoNet 1.0, generates metabolic networks, where nodes are molecules and weighted edges are metabolic transformations. We extend XenoNet with a bidirectional message passing neural network that integrates edge feature information and local network structure using edge-conditioned graph convolutions and jumping knowledge to predict the authenticity of inferred Phase I metabolite structures. Our model significantly outperformed prior work and algorithmic baselines on a data set of 311 networks and 6606 intermediates annotated using a chemically diverse set of 20 736 individual in vitro and in vivo reaction records accounting for 92.3% of all human Phase I metabolism in the Accelrys Metabolite Database. Cross-validated predictions resulted in area under the receiver operating characteristic curves of 88.5% and 87.6% for separating experimentally observed and unobserved metabolites at global and network levels, respectively. Further analysis verified robustness to networks of varying depth and breadth, accurate detection of metabolites, such as d,l-methamphetamine, that are experimentally observed or unobserved in different network contexts, extraction of important metabolic subnetworks, and identification of known bioactivation pathways, such as for nimesulide and terbinafine. By exploiting network structures, our approach accurately suggests unreported metabolites for experimental study and may rationalize modifications for avoiding deleterious pathways antecedent to reactive metabolite formation.Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with protein and DNA and prompt drug candidate attrition or market withdrawal. Previously developed models help understand how these enzymes modify molecule structure by predicting sites of metabolism or characterizing formation of metabolite-biomolecule adducts. However, the majority of reactive metabolites are formed by multiple metabolic steps, and understanding the progenitor molecule's network-level behavior necessitates an integrative approach that blends multiple site of metabolism and structure inference models. Our previously developed tool, XenoNet 1.0, generates metabolic networks, where nodes are molecules and weighted edges are metabolic transformations. We extend XenoNet with a bidirectional message passing neural network that integrates edge feature information and local network structure using edge-conditioned graph convolutions and jumping knowledge to predict the authenticity of inferred Phase I metabolite structures. Our model significantly outperformed prior work and algorithmic baselines on a data set of 311 networks and 6606 intermediates annotated using a chemically diverse set of 20 736 individual in vitro and in vivo reaction records accounting for 92.3% of all human Phase I metabolism in the Accelrys Metabolite Database. Cross-validated predictions resulted in area under the receiver operating characteristic curves of 88.5% and 87.6% for separating experimentally observed and unobserved metabolites at global and network levels, respectively. Further analysis verified robustness to networks of varying depth and breadth, accurate detection of metabolites, such as d,l-methamphetamine, that are experimentally observed or unobserved in different network contexts, extraction of important metabolic subnetworks, and identification of known bioactivation pathways, such as for nimesulide and terbinafine. By exploiting network structures, our approach accurately suggests unreported metabolites for experimental study and may rationalize modifications for avoiding deleterious pathways antecedent to reactive metabolite formation.
Author Swamidass, S. Joshua
Flynn, Noah R.
AuthorAffiliation Department of Pathology and Immunology
AuthorAffiliation_xml – name: Department of Pathology and Immunology
Author_xml – sequence: 1
  givenname: Noah R.
  orcidid: 0000-0002-8542-8887
  surname: Flynn
  fullname: Flynn, Noah R.
– sequence: 2
  givenname: S. Joshua
  orcidid: 0000-0003-2191-0778
  surname: Swamidass
  fullname: Swamidass, S. Joshua
  email: swamidass@wustl.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36926871$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1P3DAQxS0E4vveUxWJSw_drcdJHPuEEGoLEttyAImb5TiTxdsk3toOFf99zX6gFonTjDS_92ZG74jsDm5AQj4AnQJl8EWbMF0Y20-ZoZCLfIccQlnIieT0YXfbl5IfkKMQFpTmueRsnxzkXDIuKjgksxmGoOeY3eoQ7DDPfuDodZdK_OP8r5Bd90vvntLcY2NNtG7IXJvNMOradTZidjHGRxyiNTY-n5C9VncBTzf1mNx_-3p3eTW5-fn9-vLiZqILzuKkRl0WqBvBBOSlFFhRrLmoawAmCsloBSiRFoY3rGyMYSVtWSvaAoThDGR-TM7Xvsux7rExaX86Wi297bV_Vk5b9f9ksI9q7p4U0LwQYuXwaePg3e8RQ1S9DQa7Tg_oxqBYJaGiBXCe0LM36MKNfkj_rShelSBpouiaMt6F4LF9vQaoeglLpbDUS1hqE1aSfPz3i1fBNp0EfF4DK-l26bt-fwGw0qLj
CitedBy_id crossref_primary_10_1021_acs_jcim_3c01588
Cites_doi 10.1016/j.patrec.2005.10.010
10.1021/acs.jcim.0c00361
10.1021/tx200168d
10.1016/j.drudis.2012.01.017
10.1609/aaai.v33i01.33014602
10.1016/j.ab.2006.01.016
10.1080/0022250X.2001.9990249
10.3389/fchem.2019.00402
10.1016/j.jcss.2020.04.003
10.1002/cmdc.200700312
10.1016/j.socnet.2007.11.001
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1021/tx1001496
10.2174/138920006778520606
10.1016/B978-0-12-387817-5.00022-4
10.1038/nrd4090
10.1002/jms.1098
10.1021/acs.jcim.9b00836
10.1124/dmd.104.001412
10.1124/dmd.104.003095
10.2174/138620710790596736
10.1021/acs.jcim.0c00360
10.1186/s13321-018-0324-5
10.1021/tx2005212
10.1109/ICDM.2006.70
10.1371/journal.pone.0209264
10.1007/978-3-642-00663-0_7
10.1021/acs.chemrestox.9b00006
10.1046/j.1365-2125.1999.00036.x
10.1016/S0379-0738(02)00190-1
10.2165/00003088-199835040-00001
10.1021/acs.chemrestox.7b00191
10.1021/acscentsci.6b00162
10.1109/CVPR.2017.11
10.1016/j.bcp.2019.113661
10.1093/acprof:oso/9780199206650.001.0001
10.1371/journal.pone.0213857
10.2174/1389200054021799
10.1124/dmd.112.047431
10.1016/j.toxrep.2018.08.017
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright American Chemical Society Mar 27, 2023
Copyright_xml – notice: 2023 American Chemical Society
– notice: Copyright American Chemical Society Mar 27, 2023
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1021/acs.jcim.2c01383
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE


Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-960X
EndPage 1694
ExternalDocumentID 10_1021_acs_jcim_2c01383
36926871
f25642642
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01 LM012482
– fundername: NIH HHS
  grantid: S10 OD018091
– fundername: NIGMS NIH HHS
  grantid: R01 GM140635
– fundername: NCRR NIH HHS
  grantid: S10 RR022984
– fundername: NLM NIH HHS
  grantid: R01 LM012222
GroupedDBID ---
-~X
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
PQEST
PQQKQ
RNS
ROL
UI2
VF5
VG9
W1F
ABJNI
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-a462t-bea54ead82813598e70eb68bb1128492071e9e04c6d25dcc250f2f8f418c62193
IEDL.DBID ACS
ISSN 1549-9596
1549-960X
IngestDate Tue Sep 17 21:29:23 EDT 2024
Sat Oct 26 03:55:55 EDT 2024
Thu Oct 10 17:42:00 EDT 2024
Fri Aug 23 01:40:33 EDT 2024
Sat Nov 02 12:21:19 EDT 2024
Wed Mar 29 07:07:46 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a462t-bea54ead82813598e70eb68bb1128492071e9e04c6d25dcc250f2f8f418c62193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2191-0778
0000-0002-8542-8887
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348819
PMID 36926871
PQID 2791675190
PQPubID 28739
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10348819
proquest_miscellaneous_2791704166
proquest_journals_2791675190
crossref_primary_10_1021_acs_jcim_2c01383
pubmed_primary_36926871
acs_journals_10_1021_acs_jcim_2c01383
PublicationCentury 2000
PublicationDate 2023-03-27
PublicationDateYYYYMMDD 2023-03-27
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical information and modeling
PublicationTitleAlternate J. Chem. Inf. Model
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
Xu K. (ref27/cit27) 2018
ref16/cit16
ref23/cit23
Maron H. (ref49/cit49) 2019
Wu F. (ref28/cit28) 2019
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
Chen Z. (ref52/cit52) 2020
ref20/cit20
ref48/cit48
ref10/cit10
ref35/cit35
ref21/cit21
ref42/cit42
ref46/cit46
ref13/cit13
Page L. (ref19/cit19) 1998
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
(ref41/cit41) 2016
ref11/cit11
ref32/cit32
ref39/cit39
ref14/cit14
(ref37/cit37) 2021
ref5/cit5
Alon U. (ref30/cit30) 2021
ref51/cit51
ref43/cit43
Cawley G. C. (ref26/cit26) 2010; 11
ref40/cit40
Newman M. (ref18/cit18) 2010
Simonovsky M. (ref24/cit24) 2017
Klicpera J. (ref29/cit29) 2019
ref12/cit12
ref15/cit15
Gilmer J. (ref17/cit17) 2017
ref22/cit22
ref33/cit33
ref4/cit4
ref47/cit47
ref1/cit1
Xu K. (ref25/cit25) 2018
ref44/cit44
ref7/cit7
References_xml – ident: ref31/cit31
  doi: 10.1016/j.patrec.2005.10.010
– volume: 11
  start-page: 2079
  year: 2010
  ident: ref26/cit26
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Cawley G. C.
– volume-title: PubChem. Compound LCSS for CID 6407, Chloral
  year: 2021
  ident: ref37/cit37
– ident: ref10/cit10
  doi: 10.1021/acs.jcim.0c00361
– start-page: abs/1810.00826
  year: 2018
  ident: ref27/cit27
  publication-title: CoRR
  contributor:
    fullname: Xu K.
– start-page: 6861
  volume-title: Proceedings of the 36th International Conference on Machine Learning
  year: 2019
  ident: ref28/cit28
  contributor:
    fullname: Wu F.
– ident: ref5/cit5
  doi: 10.1021/tx200168d
– ident: ref1/cit1
  doi: 10.1016/j.drudis.2012.01.017
– volume-title: On the Bottleneck of Graph Neural Networks and its Practical Implications
  year: 2021
  ident: ref30/cit30
  contributor:
    fullname: Alon U.
– ident: ref50/cit50
  doi: 10.1609/aaai.v33i01.33014602
– ident: ref48/cit48
  doi: 10.1016/j.ab.2006.01.016
– ident: ref22/cit22
  doi: 10.1080/0022250X.2001.9990249
– ident: ref33/cit33
  doi: 10.3389/fchem.2019.00402
– ident: ref51/cit51
  doi: 10.1016/j.jcss.2020.04.003
– ident: ref11/cit11
  doi: 10.1002/cmdc.200700312
– ident: ref23/cit23
  doi: 10.1016/j.socnet.2007.11.001
– ident: ref38/cit38
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– ident: ref43/cit43
  doi: 10.1021/tx1001496
– ident: ref36/cit36
  doi: 10.2174/138920006778520606
– start-page: 10383
  volume-title: NIPS’20: Proceedings of the 34th International Conference on Neural Information Processing Systems
  year: 2020
  ident: ref52/cit52
  contributor:
    fullname: Chen Z.
– ident: ref40/cit40
  doi: 10.1016/B978-0-12-387817-5.00022-4
– start-page: 1263
  volume-title: Proceedings of the 34th International Conference on Machine Learning
  year: 2017
  ident: ref17/cit17
  contributor:
    fullname: Gilmer J.
– ident: ref4/cit4
  doi: 10.1038/nrd4090
– ident: ref47/cit47
  doi: 10.1002/jms.1098
– ident: ref13/cit13
  doi: 10.1021/acs.jcim.9b00836
– ident: ref9/cit9
  doi: 10.1124/dmd.104.001412
– ident: ref16/cit16
  doi: 10.1124/dmd.104.003095
– volume-title: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury
  year: 2016
  ident: ref41/cit41
– ident: ref6/cit6
  doi: 10.2174/138620710790596736
– volume-title: The PageRank Citation Ranking: Bringing Order to the Web
  year: 1998
  ident: ref19/cit19
  contributor:
    fullname: Page L.
– ident: ref14/cit14
  doi: 10.1021/acs.jcim.0c00360
– ident: ref12/cit12
  doi: 10.1186/s13321-018-0324-5
– ident: ref8/cit8
  doi: 10.1021/tx2005212
– ident: ref20/cit20
  doi: 10.1109/ICDM.2006.70
– ident: ref39/cit39
  doi: 10.1371/journal.pone.0209264
– ident: ref2/cit2
  doi: 10.1007/978-3-642-00663-0_7
– ident: ref44/cit44
  doi: 10.1021/acs.chemrestox.9b00006
– ident: ref35/cit35
  doi: 10.1046/j.1365-2125.1999.00036.x
– ident: ref32/cit32
  doi: 10.1016/S0379-0738(02)00190-1
– ident: ref42/cit42
  doi: 10.2165/00003088-199835040-00001
– ident: ref46/cit46
  doi: 10.1021/acs.chemrestox.7b00191
– ident: ref15/cit15
  doi: 10.1021/acscentsci.6b00162
– start-page: 29
  volume-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2017
  ident: ref24/cit24
  doi: 10.1109/CVPR.2017.11
  contributor:
    fullname: Simonovsky M.
– ident: ref45/cit45
  doi: 10.1016/j.bcp.2019.113661
– volume-title: Networks: An Introduction
  year: 2010
  ident: ref18/cit18
  doi: 10.1093/acprof:oso/9780199206650.001.0001
  contributor:
    fullname: Newman M.
– ident: ref21/cit21
  doi: 10.1371/journal.pone.0213857
– start-page: 5453
  volume-title: Proceedings of the 35th International Conference on Machine Learning
  year: 2018
  ident: ref25/cit25
  contributor:
    fullname: Xu K.
– volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: ref49/cit49
  contributor:
    fullname: Maron H.
– ident: ref3/cit3
  doi: 10.2174/1389200054021799
– ident: ref7/cit7
  doi: 10.1124/dmd.112.047431
– volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: ref29/cit29
  contributor:
    fullname: Klicpera J.
– ident: ref34/cit34
  doi: 10.1016/j.toxrep.2018.08.017
SSID ssj0033962
Score 2.4578345
Snippet Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1675
SubjectTerms Adducts
Biomolecules
Cytochromes P450
Enzymes
Humans
Machine Learning and Deep Learning
Message passing
Metabolic Networks and Pathways
Metabolism
Metabolites
Molecular Structure
Neural networks
Neural Networks, Computer
Terbinafine - metabolism
Title Message Passing Neural Networks Improve Prediction of Metabolite Authenticity
URI http://dx.doi.org/10.1021/acs.jcim.2c01383
https://www.ncbi.nlm.nih.gov/pubmed/36926871
https://www.proquest.com/docview/2791675190
https://www.proquest.com/docview/2791704166
https://pubmed.ncbi.nlm.nih.gov/PMC10348819
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5YPejF9wNfwUQPHlB2WRb2aGqNlzYm1cQbWZbFRyI10v5_Z6DUthqjV_YBzAw73-4M3wCcsoxbKXSIyC1OPYF7EE8bX3g2zNEZIyJHjERHF_2o9xhfd6ZpcuYj-JxdalNevJqXtwtuKKoWtGCJRwgUCAa1-82qGwSqKh5KjGOeClUTkvxpBnJEppx1RN_Q5XyS5JTXuVn7z_Ouw-oYW7pXtTFswIItNmG53ZR024JulwqePFn3DiEz-iyXqDlwRK_OBS_d-ogB2z8ofkM6cwe527VDNBX6WdmlEzXKLzII3rfh4aZz3771xvUUPC0kH3qp1aFAy8FNFiPiPhv5NpVxmjJyUooj2rDK-sLIjIeZMYiOcp7HuWCxkbiyBTuwWAwKuwcufrkZDpA2Z6ngfqgRZ6ahyLnQTKUqd-AM5ZCMv4cyqULdnCXVRRROMhaOA-eNEpL3ml7jl76HjZa-JuYR4tsIYajvwMmkGcVKcQ9d2MGo7hP5iDylA7u1Uic3C6TiEjeNDsQz6p50IPrt2Zbi5bmi4WZ-gKsfU_t_fNcDWKFa9ZTAxqNDWBx-jOwRtMpsdFyZ8ic5g-8_
link.rule.ids 230,315,782,786,887,2769,27085,27933,27934,56748,56798
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HODC-1GeRYIDh0KTpmlzRGMIBJuQNiRuVZumMCQ6RLf_j92uGwOEENe8mtpO_CV2bIBjlnIjRewjcgsTR-AZxIm1KxzjZ6iMEZEjRqKri07QfgwvmxQmh9VvYXASBY5UlEb8SXQBdk5lL7r3esY1Gde8WZj3KVEGoaFGp958PU-VOUQp8JijfFVbJn8agfSRLqb10TeQ-dVX8pPyuVr-x7RXYGmENO2LSjRWYcbka7DQqBO8rUOrRelPnox9jwAaNZhNgTqwR7vyDC_s6sIB69_JmkMctPuZ3TIDFBx6umzT_Rp5G2mE8hvwcNXsNq6dUXYFJxaSD5zExL5AOcIjF6MwfiZwTSLDJGGkshRH7GGUcYWWKfdTrRErZTwLM8FCLXGf8zZhLu_nZhtsXMcpdpAmY4ngrh8j6kx8kXERM5WozIITpEM0Wh1FVBq-OYvKQiRONCKOBac1L6K3KtjGL233amZNBuYBot0AQalrwdG4GslKVpA4N_1h1SZwEYdKC7Yq3o4_5knFJR4hLQinuD5uQMG4p2vy3nMZlJu5Hu6FTO388V8PYeG627qL7m7at7uwSFnsybWNB3swN3gfmn2YLdLhQSndH4rp960
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VKgEXoLwaCm2QyoFDIHZsJz6ihVWrsiskqMQtShwbFoksIrv_vzN5bFlAFerVrzgzY89nz3gG4DsruFUik4jckjwQeAYJMhOKwEqHyhgROWIkurq4ioc3ydk5hcmR3VsYnESFI1W1EZ9W9WPh2ggD7ITK783o4ZgbMrBFC_BRkhWBEFHvqtuAo0jXeUQp-Figpe6sk2-NQDrJVPM66RXQfOkv-UwB9df-c-rrsNoiTv-0EZFP8MGWG7Dc6xK9bcJgQGlQbq1_iUAaNZlPATuwx7DxEK_85uIB65_IqkOc9MfOH9gJChA9Yfbpno28jgxC-i343T-_7v0I2iwLQSYUnwS5zaRAecKjF6NwfjYOba6SPGekujRHDGK1DYVRBZeFMYiZHHeJEywxCve7aBsWy3FpP4OP67nADso6lgseygzRZy6F4yJjOtfOg0OkQ9qukiqtDeCcpXUhEidtiePBUceP9LEJuvGPtnsdw_4OzGNEvTGC09CDg1k1kpWsIVlpx9OmTRwiHlUe7DT8nX0sUporPEp6kMxxftaAgnLP15Sjuzo4Nwsj3BOZ3n3nv36Dpcuzfnrxc_jrC6xQMnvycOPxHixOnqZ2HxaqYvq1FvA_nDb6MA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Message+Passing+Neural+Networks+Improve+Prediction+of+Metabolite+Authenticity&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Flynn%2C+Noah+R&rft.au=Swamidass%2C+S+Joshua&rft.date=2023-03-27&rft.issn=1549-960X&rft.eissn=1549-960X&rft.volume=63&rft.issue=6&rft.spage=1675&rft_id=info:doi/10.1021%2Facs.jcim.2c01383&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon