Statistical tests of simple earthquake cycle models

A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters Vol. 43; no. 23; pp. 12,036 - 12,045
Main Authors: DeVries, Phoebe M. R., Evans, Eileen L.
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 16-12-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike‐slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike‐slip faults worldwide. Here we use the Kolmogorov‐Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike‐slip faults. We reject a large subset of two‐layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long‐term Maxwell viscosities ηM <~ 4.0 × 1019 Pa s and ηM >~ 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record. Key Points We test viscoelastic earthquake cycle models for consistency with 15 sets of observations across major strike‐slip faults Kolmogorov‐Smirnov hypothesis tests allow the rejection of a large subset of viscoelastic models at a significance level of 0.05 Model predictions of earthquake cycle timing are consistent with geologic and historical records on the Owens Valley and Altyn Tagh faults
AbstractList A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of [alpha]=0.05 (those with long-term Maxwell viscosities ηM<~4.0×1019Pas and ηM>~4.6×1020Pas) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.
A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike‐slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike‐slip faults worldwide. Here we use the Kolmogorov‐Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike‐slip faults. We reject a large subset of two‐layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long‐term Maxwell viscosities ηM <~ 4.0 × 1019 Pa s and ηM >~ 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record. Key Points We test viscoelastic earthquake cycle models for consistency with 15 sets of observations across major strike‐slip faults Kolmogorov‐Smirnov hypothesis tests allow the rejection of a large subset of viscoelastic models at a significance level of 0.05 Model predictions of earthquake cycle timing are consistent with geologic and historical records on the Owens Valley and Altyn Tagh faults
A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of alpha =0.05 (those with long-term Maxwell viscosities eta sub(M)<~4.010 super(19)Pas and eta sub(M)>~4.610 super(20)Pas) but cannot reject models on the basis of transient Kelvin viscosity eta sub(K). Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record. Key Points * We test viscoelastic earthquake cycle models for consistency with 15 sets of observations across major strike-slip faults * Kolmogorov-Smirnov hypothesis tests allow the rejection of a large subset of viscoelastic models at a significance level of 0.05 * Model predictions of earthquake cycle timing are consistent with geologic and historical records on the Owens Valley and Altyn Tagh faults
A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike‐slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike‐slip faults worldwide. Here we use the Kolmogorov‐Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike‐slip faults. We reject a large subset of two‐layer models incorporating Burgers rheologies at a significance level of α  = 0.05 (those with long‐term Maxwell viscosities η M  <~ 4.0 × 10 19  Pa s and η M  >~ 4.6 × 10 20  Pa s) but cannot reject models on the basis of transient Kelvin viscosity η K . Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record. We test viscoelastic earthquake cycle models for consistency with 15 sets of observations across major strike‐slip faults Kolmogorov‐Smirnov hypothesis tests allow the rejection of a large subset of viscoelastic models at a significance level of 0.05 Model predictions of earthquake cycle timing are consistent with geologic and historical records on the Owens Valley and Altyn Tagh faults
Author Evans, Eileen L.
DeVries, Phoebe M. R.
Author_xml – sequence: 1
  givenname: Phoebe M. R.
  surname: DeVries
  fullname: DeVries, Phoebe M. R.
  email: phoeberobinson@fas.harvard.edu
  organization: Harvard University
– sequence: 2
  givenname: Eileen L.
  surname: Evans
  fullname: Evans, Eileen L.
  organization: U.S. Geological Survey
BookMark eNqN0UtLw0AQAOBFKthWb_6AgBcPRmffu0cpWoWA4OO8bDYbTM2jzSZI_3231IN4KJ5mGD6GeczQpO1aj9AlhlsMQO4IYLHMQIJQ-ARNsWYsVQBygqYAOuZEijM0C2EFABQoniL6NtihCkPlbJ0MPgwh6cokVM269om3_fC5Ge2XT9zWxULTFb4O5-i0tHXwFz9xjj4eH94XT2n2snxe3GepZQLL1DPLLHYOiFZSy1JpKSQAlgUluVO551i5OKz1nBa-yLHVuRQuL2nOQUhB5-j60Hfdd5sxzmaaKjhf17b13RgMVnE50ILQf1CumSSSyUiv_tBVN_ZtXMRgjQnjmip-VCnOiAJJWFQ3B-X6LoTel2bdV43ttwaD2b_E_H5J5OTAv6vab49as3zN-P4MdAfmfYrP
CitedBy_id crossref_primary_10_1785_0120200278
Cites_doi 10.1029/JB078i005p00832
10.1130/0091-7613
10.1029/JB083iB07p03369
10.1186/BF03351877
10.1785/0120000605
10.1016/j.epsl.2004.07.042
10.1029/2005JB003843
10.1038/nature04797
10.1002/2014JB011361
10.1130/0016-7606(1984)95<883:HAOTSA>2.0.CO;2
10.1029/2001JB000393
10.1029/2004JB003559
10.1785/0120050118
10.1029/97GL02951
10.1029/94GL00640
10.1029/1999JB900198
10.1029/2009JB007198
10.1002/ggge.20080
10.1130/G32120.1
10.1785/0120000833
10.1785/0120000832
10.1002/2013JB010347
10.1785/0120060106
10.1111/j.1365-246X.2006.03312.x
10.1029/2011JB008562
10.1016/S0012-821X(03)00432-1
10.1785/0120130259
10.1029/2000JB000100
10.1029/91JB00199
10.1029/2002JB002257
10.1126/science.289.5484.1519
10.1029/JB083iB08p03907
10.1126/science.1096388
10.1029/2009JB006982
10.1130/0016-7606(1988)100<0755:LQAATL>2.3.CO;2
10.1029/2012JB009289
10.1130/G25157A.1
10.1029/2004JB003548
10.1029/2005JB003703
10.1130/0016-7606(2001)113<1580:PTMATC>2.0.CO;2
10.1029/JB095iB06p08593
10.1029/JB086iB03p01754
10.1038/35003555
10.1130/0016-7606(1967)78[705:SJFZIT]2.0.CO;2
10.1130/B25590.1
10.1111/j.1365-246X.2011.05179.x
10.1029/2011JB009056
10.1002/jgrb.50209
10.1029/96JB02488
10.1016/S0012-821X(03)00144-4
10.1029/93JB00442
10.1016/S0191-8141(00)00122-X
10.1029/2008JB006021
10.1111/j.1365-246X.2008.04029.x
10.1029/2002GL015184
10.1029/2003JB002640
10.1002/jgrb.50365
10.1023/A:1011487912054
10.1029/2002GL016476
10.1139/e78-085
10.1029/2006TC002033
10.1029/2007JB005280
10.1130/0091-7613(1991)019<0032:PFAKFP>2.3.CO;2
10.1029/2003JB002558
10.1130/0091-7613(1999)027<0267:WPOTNA>2.3.CO;2
10.1029/1998JB900082
10.1029/2005JB003689
10.1016/S0012-821X(04)00006-8
10.1029/2008JB006026
10.1029/2004JB003229
10.1130/G23187A.1
10.1029/94JB00125
10.1785/0120130006
10.1785/0120000836
10.1029/2004JB003096
10.1029/2012TC003112
10.1126/science.1105466
10.1130/GSAT01804-5A.1
10.1046/j.1365-246x.2000.00165.x
10.1130/G25623A.1
10.1029/2000JB900328
10.1016/j.epsl.2005.01.017
10.1016/j.epsl.2008.07.057
10.1038/nature02784
10.1029/2004JB003210
ContentType Journal Article
Copyright 2016. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2016. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1002/2016GL070681
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Aerospace Database
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 12,045
ExternalDocumentID 4290086081
10_1002_2016GL070681
GRL55067
Genre article
GeographicLocations Turkey
California
Tibet
United States--US
Owens Valley
China, People's Rep., Xizang
INE, USA, California
USA, California, Owens Valley
MED, Turkey
GeographicLocations_xml – name: Owens Valley
– name: California
– name: Tibet
– name: United States--US
– name: Turkey
– name: INE, USA, California
– name: MED, Turkey
– name: China, People's Rep., Xizang
– name: USA, California, Owens Valley
GrantInformation_xml – fundername: Harvard University and the Department of Energy Computational Science Graduate Fellowship Program of the Office of Science and National Nuclear Security Administration in the Department of Energy
  funderid: DE‐FG02‐97ER25308
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAYXX
ALXUD
CITATION
PYCSY
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-a4617-e4a4a1cc0298797f897670017d32bc8be518c070ae53dedb1a9b76cbf3b506763
IEDL.DBID 33P
ISSN 0094-8276
IngestDate Fri Oct 25 08:18:18 EDT 2024
Sat Oct 26 00:16:00 EDT 2024
Tue Nov 19 05:56:09 EST 2024
Tue Nov 19 06:45:43 EST 2024
Thu Nov 21 20:52:19 EST 2024
Sat Aug 24 00:54:55 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4617-e4a4a1cc0298797f897670017d32bc8be518c070ae53dedb1a9b76cbf3b506763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2016GL070681
PQID 1854280724
PQPubID 54723
PageCount 10
ParticipantIDs proquest_miscellaneous_1880009623
proquest_miscellaneous_1859472747
proquest_journals_1912459385
proquest_journals_1854280724
crossref_primary_10_1002_2016GL070681
wiley_primary_10_1002_2016GL070681_GRL55067
PublicationCentury 2000
PublicationDate 16 December 2016
PublicationDateYYYYMMDD 2016-12-16
PublicationDate_xml – month: 12
  year: 2016
  text: 16 December 2016
  day: 16
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2016
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 1990; 95
1991; 19
2015; 105
1991; 96
1973
1988; 100
1996; 101
2009; 114
2007; 35
1981; 86
1994; 21
2001; 106
1984; 95
2013; 14
2000; 289
2000; 404
2010; 115
2013; 118
2002; 107
2005; 307
2002; 92
2008; 113
2004; 219
2008; 275
2006; 441
2007; 26
2007; 169
2014; 119
2003; 215
2005; 110
2005; 234
1973; 78
2008; 18
1999; 27
1997; 24
2015; 120
2005; 117
1994; 1982
2009; 176
2013; 103
2006
1978; 15
2001; 29
2011; 39
2007; 97
2004; 109
2001; 23
1999; 104
2004; 305
2003; 30
2004; 227
2003; 31
2003; 210
2012; 31
1994; 84
2006; 111
2004; 430
2001; 113
2003; 108
1991; 27
2002; 29
2001; 5
1967; 78
1993; 98
1978; 83
1994; 99
2016
2000; 142
2012; 117
2009; 37
2005; 57
2011; 187
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_94_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
Hollander M. (e_1_2_7_42_1) 1973
e_1_2_7_29_1
DeVries P. R. (e_1_2_7_22_1) 2016
Petersen M. D. (e_1_2_7_73_1) 1994; 84
Beanland S. (e_1_2_7_6_1) 1994; 1982
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
Thatcher W. (e_1_2_7_90_1) 2008; 18
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
Merifield P. M. (e_1_2_7_67_1) 1991; 27
References_xml – volume: 37
  start-page: 647
  year: 2009
  end-page: 650
  article-title: Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet
  publication-title: Geology
– volume: 108
  issue: B8
  year: 2003
  article-title: Postseismic relaxation across the central Nevada seismic belt
  publication-title: J. Geophys. Res.
– volume: 109
  year: 2004
  article-title: Viscoelastic earthquake cycle models with deep stress‐driven creep along the San Andreas Fault system
  publication-title: J. Geophys. Res.
– volume: 227
  start-page: 411
  issue: 3
  year: 2004
  end-page: 426
  article-title: Holocene slip rate of the North Anatolian Fault beneath the Sea of Marmara
  publication-title: Earth Planet. Sci. Lett.
– volume: 104
  start-page: 17,633
  issue: B8
  year: 1999
  end-page: 17,651
  article-title: Postglacial left slip rate and past occurrence of M≥8 earthquakes on the western Haiyuan fault, Gansu, China
  publication-title: J. Geophys. Res.
– volume: 99
  start-page: 6819
  issue: B4
  year: 1994
  end-page: 6841
  article-title: Paleoseismic evidence of clustered earthquakes on the San Andreas fault in the Carrizo Plain, California
  publication-title: J. Geophys. Res.
– volume: 215
  start-page: 89
  year: 2003
  end-page: 104
  article-title: Transient rheology of the uppermost mantle beneath the Mojave Desert, California
  publication-title: Earth. Planet. Sci. Lett.
– volume: 83
  start-page: 3907
  issue: B8
  year: 1978
  end-page: 3939
  article-title: Prehistorical large earthquakes produced by slip on the San Andreas Fault at Pallett Creek, California
  publication-title: J. Geophys. Res.
– volume: 117
  year: 2012
  article-title: The Pingding segment of the Altyn Tagh Fault (91°E): Holocene slip‐rate determination from cosmogenic radionuclide dating of offset fluvial terraces
  publication-title: J. Geophys. Res.
– volume: 142
  start-page: 755
  issue: 3
  year: 2000
  end-page: 768
  article-title: Slip rate on the Dead Sea transform fault in northern Araba valley (Jordan)
  publication-title: Geophys. J. Int.
– volume: 120
  start-page: 2794
  year: 2015
  end-page: 2819
  article-title: Reconciling viscoelastic models of postseismic and interseismic deformation: Effects of viscous shear zones and finite length ruptures
  publication-title: J. Geophys. Res. Solid Earth
– volume: 14
  start-page: 828
  year: 2013
  end-page: 838
  article-title: How do “ghost transients” from past earthquakes affect GPS slip rate estimates on southern California faults?
  publication-title: Geochem. Geophys. Geosyst.
– volume: 118
  start-page: 5643
  year: 2013
  end-page: 5664
  article-title: Slip rates and off‐fault deformation in Southern California inferred from GPS data and models
  publication-title: J. Geophys. Res. Solid Earth
– volume: 27
  start-page: 28‐1
  year: 1991
  end-page: 28‐21
  article-title: A slip rate based on trenching studies, San Jacinto fault zone near Anza, California
  publication-title: Eng. Geol. Geotech. Eng.
– volume: 35
  start-page: 867
  issue: 10
  year: 2007
  end-page: 870
  article-title: Late Holocene slip rate for the North Anatolian fault, Turkey, from cosmogenic 36Cl geochronology: Implications for the constancy of fault loading and strain release rates
  publication-title: Geology
– volume: 117
  start-page: 795
  issue: 5–6
  year: 2005
  end-page: 807
  article-title: Dating offset fans along the Mojave section of the San Andreas fault using cosmogenic Al and Be
  publication-title: Geol. Soc. Am. Bull.
– volume: 39
  start-page: 627
  issue: 7
  year: 2011
  end-page: 630
  article-title: Reconciling geologic and geodetic model fault slip‐rate discrepancies in Southern California: Consideration of nonsteady mantle flow and lower crustal fault creep
  publication-title: Geology
– volume: 117
  year: 2012
  article-title: Dynamic models of interseismic deformation and stress transfer from plate motion to continental transform faults
  publication-title: J. Geophys. Res.
– volume: 275
  start-page: 246
  issue: 3
  year: 2008
  end-page: 257
  article-title: Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR
  publication-title: Earth Planet. Sci. Lett.
– volume: 176
  start-page: 670
  issue: 3
  year: 2009
  end-page: 682
  article-title: Coupled afterslip and viscoelastic flow following the 2002 Denali Fault, Alaska earthquake
  publication-title: Geophys. J. Int.
– volume: 187
  start-page: 613
  issue: 2
  year: 2011
  end-page: 630
  article-title: Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake
  publication-title: Geophys. J. Int.
– volume: 30
  start-page: 1139
  issue: 3
  year: 2003
  article-title: New constraints on the motion of the Fairweather fault, Alaska, from GPS observations
  publication-title: Geophys. Res. Lett.
– volume: 404
  start-page: 69
  issue: 6773
  year: 2000
  end-page: 72
  article-title: Geodetic evidence for a low slip rate in the Altyn Tagh fault system
  publication-title: Nature
– volume: 111
  year: 2006
  article-title: A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years
  publication-title: J. Geophys. Res.
– volume: 234
  start-page: 189
  issue: 1
  year: 2005
  end-page: 205
  article-title: Late Holocene activity of the Dead Sea Transform revealed in 3D palaeoseismic trenches on the Jordan Gorge segment
  publication-title: Earth Planet. Sci. Lett.
– volume: 119
  start-page: 3678
  year: 2014
  end-page: 3699
  article-title: Weak ductile shear zone beneath a major strike‐slip fault: Inferences from earthquake cycle model constrained by geodetic observations of the western North Anatolian Fault Zone
  publication-title: J. Geophys. Res. Solid Earth
– volume: 92
  start-page: 126
  issue: 1
  year: 2002
  end-page: 137
  article-title: Time‐dependent distributed afterslip on and deep below the İzmit earthquake rupture
  publication-title: Bull. Seismol. Soc. Am.
– volume: 114
  year: 2009
  article-title: Seven years of postseismic deformation following the 1999,  = 7.4 and  = 7.2, Izmit‐Düzce, Turkey earthquake sequence
  publication-title: J. Geophys. Res.
– volume: 27
  start-page: 267
  issue: 3
  year: 1999
  end-page: 270
  article-title: Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematics
  publication-title: Geology
– volume: 115
  year: 2010
  article-title: Early Holocene and Late Pleistocene slip rates of the southern Dead Sea fault determined from Be cosmogenic dating of offset alluvial deposits
  publication-title: J. Geophys. Res.
– volume: 57
  start-page: 987
  issue: 10
  year: 2005
  end-page: 994
  article-title: The central Philippine Fault Zone
  publication-title: Earth Planets Space
– volume: 5
  start-page: 449
  issue: 3
  year: 2001
  end-page: 474
  article-title: Late Pleistocene and Holocene slip rate of the northern Wadi Araba fault, Dead Sea transform, Jordan
  publication-title: J. Seismolog.
– volume: 289
  start-page: 1519
  issue: 5484
  year: 2000
  end-page: 1524
  article-title: Coseismic and Postseismic Fault Slip for the 17 August 1999,  = 7.5, Izmit, Turkey Earthquake
  publication-title: Science
– year: 2016
  article-title: Viscoelastic block models of the North Anatolian fault: A unified earthquake cycle representation of pre‐ and post‐seismic observations
  publication-title: Bull. Seismol. Soc. Am.
– volume: 97
  start-page: 749
  issue: 3
  year: 2007
  end-page: 771
  article-title: 12,000‐year‐long record of 10 to 13 paleoearthquakes on the Yammouneh fault, Levant fault system, Lebanon
  publication-title: Bull. Seismol. Soc. Am.
– volume: 117
  year: 2012
  article-title: Using short‐term postseismic displacements to infer the ambient deformation conditions of the upper mantle
  publication-title: J. Geophys. Res.
– volume: 103
  start-page: 2824
  issue: 5
  year: 2013
  end-page: 2835
  article-title: Inference of multiple earthquake‐cycle relaxation timescales from irregular geodetic sampling of interseismic deformation
  publication-title: Bull. Seismol. Soc. Am.
– volume: 29
  start-page: 1051
  issue: 11
  year: 2001
  end-page: 1054
  article-title: Late Holocene earthquake history of the central Altyn Tagh fault, China
  publication-title: Geology
– volume: 113
  year: 2008
  article-title: Slip rate and locking depth from GPS profiles across the southern Dead Sea Transform
  publication-title: J. Geophys. Res.
– volume: 29
  start-page: 819
  issue: 9
  year: 2001
  end-page: 822
  article-title: Holocene slip rates along the Owens Valley fault, California: Implications for the recent evolution of the Eastern California Shear Zone
  publication-title: Geology
– volume: 169
  start-page: 1009
  issue: 3
  year: 2007
  end-page: 1027
  article-title: Post‐seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling
  publication-title: Geophys. J. Int.
– volume: 18
  start-page: 4
  issue: 4–5
  year: 2008
  end-page: 11
  article-title: Temporal evolution of continental lithospheric strength in actively deforming regions
  publication-title: GSA Today
– volume: 83
  start-page: 3369
  issue: B7
  year: 1978
  end-page: 3376
  article-title: Asthenosphere readjustment and the earthquake cycle
  publication-title: J. Geophys. Res.
– volume: 29
  start-page: 975
  issue: 11
  year: 2001
  end-page: 978
  article-title: Transient strain accumulation and fault interaction in the Eastern California shear zone
  publication-title: Geology
– volume: 210
  start-page: 35
  issue: 1
  year: 2003
  end-page: 52
  article-title: Evidence for 830 years of seismic quiescence from palaeoseismology, archaeoseismology and historical seismicity along the Dead Sea fault in Syria
  publication-title: Earth Planet. Sci. Lett.
– volume: 100
  start-page: 755
  issue: 5
  year: 1988
  end-page: 766
  article-title: Late Quaternary activity along the Lone Pine fault, eastern California
  publication-title: Geol. Soc. Am. Bull.
– volume: 109
  year: 2004
  article-title: Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh
  publication-title: J. Geophys. Res.
– start-page: 848
  year: 1973
– volume: 307
  start-page: 411
  issue: 5708
  year: 2005
  end-page: 414
  article-title: Slip‐rate measurements on the Karakorum Fault may imply secular variations in fault motion
  publication-title: Science
– volume: 31
  start-page: 55
  issue: 1
  year: 2003
  end-page: 58
  article-title: Paleoseismology and Global Positioning System: Earthquake‐cycle effects and geodetic versus geologic fault slip rates in the Eastern California shear zone
  publication-title: Geology
– volume: 92
  start-page: 194
  issue: 1
  year: 2002
  end-page: 207
  article-title: Postseismic deformation near the İzmit earthquake (17 August 1999, 7.5) rupture zone
  publication-title: Bull. Seismol. Soc. Am.
– volume: 92
  start-page: 172
  issue: 1
  year: 2002
  end-page: 193
  article-title: Dynamics of Izmit earthquake postseismic deformation and loading of the Düzce earthquake hypocenter
  publication-title: Bull. Seismol. Soc. Am.
– volume: 24
  start-page: 3073
  issue: 23
  year: 1997
  end-page: 3076
  article-title: Global Positioning System constraints on fault slip rates in the Death Valley region, California and Nevada
  publication-title: Geophys. Res. Lett.
– volume: 26
  issue: 2
  year: 2007
  article-title: Slip rate gradients along the eastern Kunlun fault
  publication-title: Tectonics
– volume: 430
  start-page: 548
  issue: 6999
  year: 2004
  end-page: 551
  article-title: Evidence of power‐law flow in the Mojave desert mantle
  publication-title: Nature
– volume: 107
  start-page: 2235
  issue: B10
  year: 2002
  article-title: Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey
  publication-title: J. Geophys. Res.
– volume: 118
  start-page: 3101
  year: 2013
  end-page: 3111
  article-title: Earthquake cycle deformation in the Tibetan plateau with a weak mid‐crustal layer
  publication-title: J. Geophys. Res. Solid Earth
– volume: 114
  year: 2009
  article-title: Izmit earthquake postseismic deformation and dynamics of the North Anatolian Fault Zone
  publication-title: J. Geophys. Res.
– volume: 110
  year: 2005
  article-title: The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate
  publication-title: J. Geophys. Res.
– volume: 97
  start-page: 14
  issue: 1B
  year: 2007
  end-page: 34
  article-title: Millennial recurrence of large earthquakes on the Haiyuan fault near Songshan, Gansu Province, China
  publication-title: Bull. Seismol. Soc. Am.
– volume: 84
  start-page: 1608
  issue: 5
  year: 1994
  end-page: 1649
  article-title: Fault slip rates and earthquake histories for active faults in southern California
  publication-title: Bull. Seismol. Soc. Am.
– volume: 113
  start-page: 1580
  issue: 12
  year: 2001
  end-page: 1592
  article-title: Present tectonic motion across the Coast Ranges and San Andreas fault system in central California
  publication-title: Geol. Soc. Am. Bull.
– volume: 78
  start-page: 832
  issue: 5
  year: 1973
  end-page: 845
  article-title: Geodetic determination of relative plate motion in central California
  publication-title: J. Geophys. Res.
– volume: 29
  issue: 13
  year: 2002
  article-title: Convergence across the northwest Himalaya from GPS measurements
  publication-title: Geophys. Res. Lett.
– volume: 37
  start-page: 31
  issue: 1
  year: 2009
  end-page: 34
  article-title: Earthquake‐cycle deformation and fault slip rates in northern Tibet
  publication-title: Geology
– volume: 95
  start-page: 883
  issue: 8
  year: 1984
  end-page: 896
  article-title: Holocene activity of the San Andreas fault at Wallace Creek, California, Geol
  publication-title: Soc. Am. Bull.
– volume: 111
  year: 2006
  article-title: Strain accumulation across the Carrizo segment of the San Andreas Fault, California: Impact of laterally varying crustal properties
  publication-title: J. Geophys. Res.
– volume: 109
  start-page: B5
  year: 2004
  article-title: GPS measurements of current crustal movements along the Dead Sea Fault
  publication-title: J. Geophys. Res.
– volume: 110
  year: 2005
  article-title: Postseismic and interseismic displacements near a strike‐slip fault: A 2D theory for general linear viscoelastic rheologies
  publication-title: J. Geophys. Res.
– volume: 101
  start-page: 21,943
  issue: B10
  year: 1996
  end-page: 21,960
  article-title: Global Positioning System constraints on fault slip rates in southern California and northern Baja, Mexico
  publication-title: J. Geophys. Res.
– volume: 78
  start-page: 705
  issue: 6
  year: 1967
  end-page: 730
  article-title: San Jacinto fault zone in the Peninsular Ranges of southern California
  publication-title: Geol. Soc. Am. Bull.
– volume: 111
  year: 2006
  article-title: Long‐term slip rate of the southern San Andreas fault from Be‐ Al surface exposure dating of an offset alluvial fan
  publication-title: J. Geophys. Res.
– volume: 105
  start-page: 94
  issue: 1
  year: 2015
  end-page: 106
  article-title: Maximum‐likelihood recurrence parameters and conditional probability of a ground‐rupturing earthquake on the Southern Alpine Fault, South Island, New Zealand
  publication-title: Bull. Seismol. Soc. Am.
– volume: 21
  start-page: 975
  issue: 11
  year: 1994
  end-page: 978
  article-title: Detection of creep along the Philippine Fault: First results of geodetic measurements on Leyte island, central Philippines
  publication-title: Geophys. Res. Lett.
– volume: 219
  start-page: 255
  issue: 3
  year: 2004
  end-page: 269
  article-title: Large‐scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet
  publication-title: Earth Planet. Sci. Lett.
– volume: 111
  year: 2006
  article-title: Confirmation of Arabia plate slow motion by new GPS data in Yemen
  publication-title: J. Geophys. Res.
– volume: 1982
  start-page: 1
  year: 1994
  end-page: 29
  article-title: The Owens Valley fault zone, eastern California, and surface faulting associated with the 1872 earthquake
  publication-title: U.S. Geol. Surv. Bull.
– volume: 92
  start-page: 2761
  issue: 7
  year: 2002
  end-page: 2781
  article-title: Paleoseismic event dating and the conditional probability of large earthquakes on the southern San Andreas fault, California
  publication-title: Bull. Seismol. Soc. Am.
– volume: 106
  start-page: 2245
  issue: B2
  year: 2001
  end-page: 2263
  article-title: Refined kinematics of the Eastern California Shear Zone from GPS observations, 1993–1998
  publication-title: J. Geophys. Res.
– volume: 19
  start-page: 32
  issue: 1
  year: 1991
  end-page: 35
  article-title: Philippine fault: A key for Philippine kinematics
  publication-title: Geology
– volume: 104
  start-page: 25,233
  issue: B11
  year: 1999
  end-page: 25,255
  article-title: Crustal deformation during 1994–1998 due to oblique continental collision in the central Southern Alps, New Zealand, and implications for seismic potential of the Alpine fault
  publication-title: J. Geophys. Res.
– volume: 96
  start-page: 8369
  issue: B5
  year: 1991
  end-page: 8389
  article-title: The velocity field along the San Andreas fault in central and southern California
  publication-title: J. Geophys. Res.
– year: 2006
– volume: 95
  start-page: 8593
  issue: B6
  year: 1990
  end-page: 8605
  article-title: Late Quaternary rate of slip along the San Jacinto fault zone near Anza, southern California
  publication-title: J. Geophys. Res.
– volume: 441
  start-page: 968
  issue: 7096
  year: 2006
  end-page: 971
  article-title: Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system
  publication-title: Nature
– volume: 110
  year: 2005
  article-title: Fault slip rates, effects of elastic heterogeneity on geodetic data, and the strength of the lower crust in the Salton Trough region, southern California
  publication-title: J. Geophys. Res.
– volume: 31
  issue: 5
  year: 2012
  article-title: Quaternary morphotectonic mapping of the Wadi Araba and implications for the tectonic activity of the southern Dead Sea fault
  publication-title: Tectonics
– volume: 15
  start-page: 805
  issue: 5
  year: 1978
  end-page: 816
  article-title: Late Quaternary offsets along the Fairweather fault and crustal plate interactions in southern Alaska
  publication-title: Can. J. Earth Sci.
– volume: 86
  start-page: 1754
  issue: B3
  year: 1981
  end-page: 1762
  article-title: Variable rates of late Quaternary strike slip on the San Jacinto fault zone, southern California
  publication-title: J. Geophys. Res.
– volume: 115
  year: 2010
  article-title: Recent behavior of the North Anatolian Fault: Insights from an integrated paleoseismological data set
  publication-title: J. Geophys. Res.
– volume: 98
  start-page: 14217
  issue: B8
  year: 1993
  end-page: 14231
  article-title: Holocene slip rate of the central Garlock fault in southeastern Searles Valley, California
  publication-title: J. Geophys. Res.
– volume: 305
  start-page: 236
  issue: 5681
  year: 2004
  end-page: 239
  article-title: InSAR observations of low slip rates on the major faults of western Tibet
  publication-title: Science
– volume: 107
  start-page: B9
  year: 2002
  article-title: Slip rates of the Karakorum fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines
  publication-title: J. Geophys. Res.
– volume: 23
  start-page: 507
  issue: 2
  year: 2001
  end-page: 520
  article-title: Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand
  publication-title: J. Struct. Geol.
– ident: e_1_2_7_81_1
  doi: 10.1029/JB078i005p00832
– ident: e_1_2_7_93_1
  doi: 10.1130/0091-7613
– ident: e_1_2_7_82_1
  doi: 10.1029/JB083iB07p03369
– volume: 1982
  start-page: 1
  year: 1994
  ident: e_1_2_7_6_1
  article-title: The Owens Valley fault zone, eastern California, and surface faulting associated with the 1872 earthquake
  publication-title: U.S. Geol. Surv. Bull.
  contributor:
    fullname: Beanland S.
– ident: e_1_2_7_9_1
  doi: 10.1186/BF03351877
– ident: e_1_2_7_13_1
  doi: 10.1785/0120000605
– ident: e_1_2_7_76_1
  doi: 10.1016/j.epsl.2004.07.042
– ident: e_1_2_7_85_1
  doi: 10.1029/2005JB003843
– ident: e_1_2_7_28_1
  doi: 10.1038/nature04797
– ident: e_1_2_7_34_1
  doi: 10.1002/2014JB011361
– ident: e_1_2_7_84_1
  doi: 10.1130/0016-7606(1984)95<883:HAOTSA>2.0.CO;2
– ident: e_1_2_7_43_1
  doi: 10.1029/2001JB000393
– ident: e_1_2_7_91_1
  doi: 10.1029/2004JB003559
– ident: e_1_2_7_57_1
  doi: 10.1785/0120050118
– ident: e_1_2_7_8_1
  doi: 10.1029/97GL02951
– ident: e_1_2_7_24_1
  doi: 10.1029/94GL00640
– volume: 27
  start-page: 28‐1
  year: 1991
  ident: e_1_2_7_67_1
  article-title: A slip rate based on trenching studies, San Jacinto fault zone near Anza, California
  publication-title: Eng. Geol. Geotech. Eng.
  contributor:
    fullname: Merifield P. M.
– ident: e_1_2_7_10_1
  doi: 10.1029/1999JB900198
– ident: e_1_2_7_53_1
  doi: 10.1029/2009JB007198
– ident: e_1_2_7_37_1
  doi: 10.1002/ggge.20080
– ident: e_1_2_7_55_1
  doi: 10.1130/0091-7613
– ident: e_1_2_7_18_1
  doi: 10.1130/G32120.1
– ident: e_1_2_7_15_1
  doi: 10.1785/0120000833
– ident: e_1_2_7_35_1
  doi: 10.1785/0120000832
– ident: e_1_2_7_96_1
  doi: 10.1002/2013JB010347
– ident: e_1_2_7_20_1
  doi: 10.1785/0120060106
– ident: e_1_2_7_79_1
  doi: 10.1111/j.1365-246X.2006.03312.x
– ident: e_1_2_7_32_1
  doi: 10.1029/2011JB008562
– ident: e_1_2_7_75_1
  doi: 10.1016/S0012-821X(03)00432-1
– ident: e_1_2_7_38_1
– ident: e_1_2_7_12_1
  doi: 10.1785/0120130259
– volume: 84
  start-page: 1608
  issue: 5
  year: 1994
  ident: e_1_2_7_73_1
  article-title: Fault slip rates and earthquake histories for active faults in southern California
  publication-title: Bull. Seismol. Soc. Am.
  contributor:
    fullname: Petersen M. D.
– ident: e_1_2_7_14_1
  doi: 10.1029/2000JB000100
– year: 2016
  ident: e_1_2_7_22_1
  article-title: Viscoelastic block models of the North Anatolian fault: A unified earthquake cycle representation of pre‐ and post‐seismic observations
  publication-title: Bull. Seismol. Soc. Am.
  contributor:
    fullname: DeVries P. R.
– ident: e_1_2_7_56_1
  doi: 10.1029/91JB00199
– ident: e_1_2_7_39_1
  doi: 10.1029/2002JB002257
– ident: e_1_2_7_77_1
  doi: 10.1126/science.289.5484.1519
– ident: e_1_2_7_83_1
  doi: 10.1029/JB083iB08p03907
– ident: e_1_2_7_95_1
  doi: 10.1126/science.1096388
– ident: e_1_2_7_30_1
  doi: 10.1029/2009JB006982
– ident: e_1_2_7_58_1
  doi: 10.1130/0016-7606(1988)100<0755:LQAATL>2.3.CO;2
– ident: e_1_2_7_68_1
– ident: e_1_2_7_66_1
  doi: 10.1029/2012JB009289
– ident: e_1_2_7_41_1
  doi: 10.1130/G25157A.1
– ident: e_1_2_7_27_1
  doi: 10.1029/2004JB003548
– ident: e_1_2_7_88_1
  doi: 10.1029/2005JB003703
– ident: e_1_2_7_2_1
  doi: 10.1130/0016-7606(2001)113<1580:PTMATC>2.0.CO;2
– ident: e_1_2_7_78_1
  doi: 10.1029/JB095iB06p08593
– ident: e_1_2_7_87_1
  doi: 10.1029/JB086iB03p01754
– ident: e_1_2_7_11_1
  doi: 10.1038/35003555
– ident: e_1_2_7_86_1
  doi: 10.1130/0016-7606(1967)78[705:SJFZIT]2.0.CO;2
– ident: e_1_2_7_60_1
  doi: 10.1130/B25590.1
– ident: e_1_2_7_80_1
  doi: 10.1111/j.1365-246X.2011.05179.x
– ident: e_1_2_7_89_1
  doi: 10.1029/2011JB009056
– ident: e_1_2_7_21_1
  doi: 10.1002/jgrb.50209
– ident: e_1_2_7_7_1
  doi: 10.1029/96JB02488
– ident: e_1_2_7_63_1
  doi: 10.1016/S0012-821X(03)00144-4
– ident: e_1_2_7_61_1
  doi: 10.1029/93JB00442
– ident: e_1_2_7_71_1
  doi: 10.1016/S0191-8141(00)00122-X
– ident: e_1_2_7_26_1
  doi: 10.1029/2008JB006021
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1365-246X.2008.04029.x
– start-page: 848
  volume-title: Nonparametric Statistical Methods
  year: 1973
  ident: e_1_2_7_42_1
  contributor:
    fullname: Hollander M.
– ident: e_1_2_7_4_1
  doi: 10.1029/2002GL015184
– ident: e_1_2_7_94_1
  doi: 10.1029/2003JB002640
– ident: e_1_2_7_44_1
  doi: 10.1002/jgrb.50365
– ident: e_1_2_7_70_1
  doi: 10.1023/A:1011487912054
– ident: e_1_2_7_29_1
  doi: 10.1029/2002GL016476
– ident: e_1_2_7_74_1
  doi: 10.1139/e78-085
– ident: e_1_2_7_47_1
  doi: 10.1029/2006TC002033
– ident: e_1_2_7_52_1
  doi: 10.1029/2007JB005280
– ident: e_1_2_7_5_1
  doi: 10.1130/0091-7613(1991)019<0032:PFAKFP>2.3.CO;2
– ident: e_1_2_7_64_1
  doi: 10.1029/2003JB002558
– ident: e_1_2_7_3_1
  doi: 10.1130/0091-7613(1999)027<0267:WPOTNA>2.3.CO;2
– ident: e_1_2_7_51_1
  doi: 10.1029/1998JB900082
– ident: e_1_2_7_72_1
  doi: 10.1130/0091-7613
– ident: e_1_2_7_40_1
  doi: 10.1029/2005JB003689
– ident: e_1_2_7_50_1
  doi: 10.1016/S0012-821X(04)00006-8
– ident: e_1_2_7_36_1
  doi: 10.1029/2008JB006026
– ident: e_1_2_7_92_1
  doi: 10.1029/2004JB003229
– ident: e_1_2_7_49_1
  doi: 10.1130/G23187A.1
– ident: e_1_2_7_33_1
  doi: 10.1029/94JB00125
– ident: e_1_2_7_62_1
  doi: 10.1785/0120130006
– ident: e_1_2_7_25_1
  doi: 10.1785/0120000836
– ident: e_1_2_7_45_1
  doi: 10.1029/2004JB003096
– ident: e_1_2_7_54_1
  doi: 10.1029/2012TC003112
– ident: e_1_2_7_17_1
  doi: 10.1126/science.1105466
– volume: 18
  start-page: 4
  issue: 4
  year: 2008
  ident: e_1_2_7_90_1
  article-title: Temporal evolution of continental lithospheric strength in actively deforming regions
  publication-title: GSA Today
  doi: 10.1130/GSAT01804-5A.1
  contributor:
    fullname: Thatcher W.
– ident: e_1_2_7_48_1
  doi: 10.1046/j.1365-246x.2000.00165.x
– ident: e_1_2_7_19_1
  doi: 10.1130/G25623A.1
– ident: e_1_2_7_69_1
  doi: 10.1029/2000JB900328
– ident: e_1_2_7_59_1
  doi: 10.1016/j.epsl.2005.01.017
– ident: e_1_2_7_23_1
  doi: 10.1130/0091-7613
– ident: e_1_2_7_16_1
  doi: 10.1016/j.epsl.2008.07.057
– ident: e_1_2_7_31_1
  doi: 10.1038/nature02784
– ident: e_1_2_7_65_1
  doi: 10.1029/2004JB003210
SSID ssj0003031
Score 2.2666445
Snippet A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 12,036
SubjectTerms Basins
earthquake cycle
Earthquake prediction
Earthquakes
Estimates
Fault lines
Faults
Geological faults
Geology
hypothesis testing
Kolmogorov-Smirnov test
Mathematical models
Modelling
Phenomenology
Physics
Rheological properties
rheology
Seismic activity
Similarity
Slip
Statistical analysis
Statistical tests
Strike-slip faults
Tests
Time measurement
viscoelastic
Viscoelasticity
Viscosity
Title Statistical tests of simple earthquake cycle models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016GL070681
https://www.proquest.com/docview/1854280724
https://www.proquest.com/docview/1912459385
https://search.proquest.com/docview/1859472747
https://search.proquest.com/docview/1880009623
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66IHjxLVZXqaAnKbttnr0IorvrYRHxAd5KkiYoQlft9rD_3knafQiyIN5K82iYZGa-aZJvEDozXGsI_2lEmehGRHEcpVLaSMXOYMZMx9YnsX3kdy_ipudoci6nd2FqfojZDzenGd5eOwWXquzMSUPBc7HBEFYs8zevIVDwNzjw_cwQu4_VJJQkEglnzbl3aN5ZbPzTI81h5iJY9d6mv_nfcW6hjQZnhlf1wthGK6bYQWsDn8d3Ak_-5KcudxF2cNOzNUN1wJ3jMhzZsHxzrMEhqMH49bOS7ybUE-gn9Ilzyj303O89Xd9GTSaFSBKAKJEhksgYZiVJBU-5FQBC3IYzz3GitFCGxkLDEKWhODe5imWqONPKYkXBnTG8j1rFqDAHKLSKxlalVHWxJGAdlKVMJVzqXClrjQjQ-VSa2UdNmJHV1MhJtiiKALWnos4atSkzAA_E0fMk5PfiFNAITbGgATqdFYM-uE0OWZhR5btICXex9rI6wsduCQ7QhZ-7pUPNBg9D6uRw-KfaR2jdvXdnX2LWRq3xV2WO0WqZVyd-nX4Dv9bjcg
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JaxsxFH6kDqW5JOkS6qxTaE9lcGa0zimExHFCXVNaF3obJI1ES8FOO_bB_z7vabwViiHkNqAnjXh6y6ftE8B7r5zD6b9IhdTnKbeKpYUxIbUZBcxMuizER2y_qcEPfd0lmpyLxV2Yhh9iueBGnhHjNTk4LUh3VqyhmLpkr48mK-nq9TaXaIt0h4N9WYZi-l1DQ8lTnSs5P_mO9Tvrtf_NSSuguQ5XY7652XtyT_dhdw41k8vGNl7Clh-9gue9-JTvDL_i4U9XvwZGiDMSNqM4Qs9JnYxDUv8i4uAEPWHy88_U_PaJm2E7SXw7p34D32-6w6vbdP6YQmo4opTUc8NNhgOTF1oVKmjEIbTnrCqWW6etF5l22EXjBat8ZTNTWCWdDcwKzGiSHUBrNB75t5AEK7JgC2HPmeEYIGwQ0ubKuMraELxuw4eFOsv7hjOjbNiR83JdFW04Xui6nHtOXSJ-4MTQk_P_FxcISETBtGjDu2UxugTtc5iRH09jEwVXNN3eJKPj9C1nbfgYB29jV8ve174gPRw-SvoMXtwOP_fL_t3g0xHskAwdhcnkMbQmf6f-BJ7V1fQ0Gu0DPRLnmg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58oHjxLVarrqAnWexunnsRRG0Vi4gP8LYk2QRFaNVtD_33TrJtrSCCeFvIJBsmmZkvr28ADqwwBpf_LGZcNmKqBYkzpVysE-8wE24SF5LY3oubJ3l-4WlyTkZvYSp-iPGGm7eM4K-9gb8V7viLNBQjF2-1ccZy__J6liIS99z5hNyOPbH_W8VCSWOZCj68-I71jydrfw9JXzhzEq2GcNNc-m9Hl2FxCDSj02pmrMCU7azCXCsk8h3gV7j6aco1IB5vBrpmFEfg2SujrovKF08bHKEd9J7f--rVRmaA7UQhc065Do_Ni4ezy3iYSiFWFDFKbKmiKsFhSTMpMuEkohB_4iwKkmojtWWJNNhFZRkpbKETlWnBjXZEM4xnnGzATKfbsZsQOc0SpzOmG0RRdA_aMa5ToUyhtXNW1uBwpM38rWLMyCtu5DSfVEUN6iNV50O7KXNED9Tz86T05-IM4QjLiGQ12B8Xo0H4Uw7Vsd1-aCKjwi-2f5ORYfGWkhochbH7tat5667NvB62_iS9B_O35828fXVzvQ0LXsTfg0l4HWZ6H327A9Nl0d8NU_YTbibmQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+tests+of+simple+earthquake+cycle+models&rft.jtitle=Geophysical+research+letters&rft.au=DeVries%2C+Phoebe+M.+R.&rft.au=Evans%2C+Eileen+L.&rft.date=2016-12-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=43&rft.issue=23&rft.spage=12%2C036&rft.epage=12%2C045&rft_id=info:doi/10.1002%2F2016GL070681&rft.externalDBID=10.1002%252F2016GL070681&rft.externalDocID=GRL55067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon