Statistical tests of simple earthquake cycle models
A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations...
Saved in:
Published in: | Geophysical research letters Vol. 43; no. 23; pp. 12,036 - 12,045 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
John Wiley & Sons, Inc
16-12-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike‐slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike‐slip faults worldwide. Here we use the Kolmogorov‐Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike‐slip faults. We reject a large subset of two‐layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long‐term Maxwell viscosities ηM <~ 4.0 × 1019 Pa s and ηM >~ 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.
Key Points
We test viscoelastic earthquake cycle models for consistency with 15 sets of observations across major strike‐slip faults
Kolmogorov‐Smirnov hypothesis tests allow the rejection of a large subset of viscoelastic models at a significance level of 0.05
Model predictions of earthquake cycle timing are consistent with geologic and historical records on the Owens Valley and Altyn Tagh faults |
---|---|
AbstractList | A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of [alpha]=0.05 (those with long-term Maxwell viscosities ηM<~4.0×1019Pas and ηM>~4.6×1020Pas) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record. A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike‐slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike‐slip faults worldwide. Here we use the Kolmogorov‐Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike‐slip faults. We reject a large subset of two‐layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long‐term Maxwell viscosities ηM <~ 4.0 × 1019 Pa s and ηM >~ 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record. Key Points We test viscoelastic earthquake cycle models for consistency with 15 sets of observations across major strike‐slip faults Kolmogorov‐Smirnov hypothesis tests allow the rejection of a large subset of viscoelastic models at a significance level of 0.05 Model predictions of earthquake cycle timing are consistent with geologic and historical records on the Owens Valley and Altyn Tagh faults A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of alpha =0.05 (those with long-term Maxwell viscosities eta sub(M)<~4.010 super(19)Pas and eta sub(M)>~4.610 super(20)Pas) but cannot reject models on the basis of transient Kelvin viscosity eta sub(K). Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record. Key Points * We test viscoelastic earthquake cycle models for consistency with 15 sets of observations across major strike-slip faults * Kolmogorov-Smirnov hypothesis tests allow the rejection of a large subset of viscoelastic models at a significance level of 0.05 * Model predictions of earthquake cycle timing are consistent with geologic and historical records on the Owens Valley and Altyn Tagh faults A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike‐slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike‐slip faults worldwide. Here we use the Kolmogorov‐Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike‐slip faults. We reject a large subset of two‐layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long‐term Maxwell viscosities η M <~ 4.0 × 10 19 Pa s and η M >~ 4.6 × 10 20 Pa s) but cannot reject models on the basis of transient Kelvin viscosity η K . Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record. We test viscoelastic earthquake cycle models for consistency with 15 sets of observations across major strike‐slip faults Kolmogorov‐Smirnov hypothesis tests allow the rejection of a large subset of viscoelastic models at a significance level of 0.05 Model predictions of earthquake cycle timing are consistent with geologic and historical records on the Owens Valley and Altyn Tagh faults |
Author | Evans, Eileen L. DeVries, Phoebe M. R. |
Author_xml | – sequence: 1 givenname: Phoebe M. R. surname: DeVries fullname: DeVries, Phoebe M. R. email: phoeberobinson@fas.harvard.edu organization: Harvard University – sequence: 2 givenname: Eileen L. surname: Evans fullname: Evans, Eileen L. organization: U.S. Geological Survey |
BookMark | eNqN0UtLw0AQAOBFKthWb_6AgBcPRmffu0cpWoWA4OO8bDYbTM2jzSZI_3231IN4KJ5mGD6GeczQpO1aj9AlhlsMQO4IYLHMQIJQ-ARNsWYsVQBygqYAOuZEijM0C2EFABQoniL6NtihCkPlbJ0MPgwh6cokVM269om3_fC5Ge2XT9zWxULTFb4O5-i0tHXwFz9xjj4eH94XT2n2snxe3GepZQLL1DPLLHYOiFZSy1JpKSQAlgUluVO551i5OKz1nBa-yLHVuRQuL2nOQUhB5-j60Hfdd5sxzmaaKjhf17b13RgMVnE50ILQf1CumSSSyUiv_tBVN_ZtXMRgjQnjmip-VCnOiAJJWFQ3B-X6LoTel2bdV43ttwaD2b_E_H5J5OTAv6vab49as3zN-P4MdAfmfYrP |
CitedBy_id | crossref_primary_10_1785_0120200278 |
Cites_doi | 10.1029/JB078i005p00832 10.1130/0091-7613 10.1029/JB083iB07p03369 10.1186/BF03351877 10.1785/0120000605 10.1016/j.epsl.2004.07.042 10.1029/2005JB003843 10.1038/nature04797 10.1002/2014JB011361 10.1130/0016-7606(1984)95<883:HAOTSA>2.0.CO;2 10.1029/2001JB000393 10.1029/2004JB003559 10.1785/0120050118 10.1029/97GL02951 10.1029/94GL00640 10.1029/1999JB900198 10.1029/2009JB007198 10.1002/ggge.20080 10.1130/G32120.1 10.1785/0120000833 10.1785/0120000832 10.1002/2013JB010347 10.1785/0120060106 10.1111/j.1365-246X.2006.03312.x 10.1029/2011JB008562 10.1016/S0012-821X(03)00432-1 10.1785/0120130259 10.1029/2000JB000100 10.1029/91JB00199 10.1029/2002JB002257 10.1126/science.289.5484.1519 10.1029/JB083iB08p03907 10.1126/science.1096388 10.1029/2009JB006982 10.1130/0016-7606(1988)100<0755:LQAATL>2.3.CO;2 10.1029/2012JB009289 10.1130/G25157A.1 10.1029/2004JB003548 10.1029/2005JB003703 10.1130/0016-7606(2001)113<1580:PTMATC>2.0.CO;2 10.1029/JB095iB06p08593 10.1029/JB086iB03p01754 10.1038/35003555 10.1130/0016-7606(1967)78[705:SJFZIT]2.0.CO;2 10.1130/B25590.1 10.1111/j.1365-246X.2011.05179.x 10.1029/2011JB009056 10.1002/jgrb.50209 10.1029/96JB02488 10.1016/S0012-821X(03)00144-4 10.1029/93JB00442 10.1016/S0191-8141(00)00122-X 10.1029/2008JB006021 10.1111/j.1365-246X.2008.04029.x 10.1029/2002GL015184 10.1029/2003JB002640 10.1002/jgrb.50365 10.1023/A:1011487912054 10.1029/2002GL016476 10.1139/e78-085 10.1029/2006TC002033 10.1029/2007JB005280 10.1130/0091-7613(1991)019<0032:PFAKFP>2.3.CO;2 10.1029/2003JB002558 10.1130/0091-7613(1999)027<0267:WPOTNA>2.3.CO;2 10.1029/1998JB900082 10.1029/2005JB003689 10.1016/S0012-821X(04)00006-8 10.1029/2008JB006026 10.1029/2004JB003229 10.1130/G23187A.1 10.1029/94JB00125 10.1785/0120130006 10.1785/0120000836 10.1029/2004JB003096 10.1029/2012TC003112 10.1126/science.1105466 10.1130/GSAT01804-5A.1 10.1046/j.1365-246x.2000.00165.x 10.1130/G25623A.1 10.1029/2000JB900328 10.1016/j.epsl.2005.01.017 10.1016/j.epsl.2008.07.057 10.1038/nature02784 10.1029/2004JB003210 |
ContentType | Journal Article |
Copyright | 2016. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2016. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1002/2016GL070681 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | 12,045 |
ExternalDocumentID | 4290086081 10_1002_2016GL070681 GRL55067 |
Genre | article |
GeographicLocations | Turkey California Tibet United States--US Owens Valley China, People's Rep., Xizang INE, USA, California USA, California, Owens Valley MED, Turkey |
GeographicLocations_xml | – name: Owens Valley – name: California – name: Tibet – name: United States--US – name: Turkey – name: INE, USA, California – name: MED, Turkey – name: China, People's Rep., Xizang – name: USA, California, Owens Valley |
GrantInformation_xml | – fundername: Harvard University and the Department of Energy Computational Science Graduate Fellowship Program of the Office of Science and National Nuclear Security Administration in the Department of Energy funderid: DE‐FG02‐97ER25308 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAYXX ALXUD CITATION PYCSY 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-a4617-e4a4a1cc0298797f897670017d32bc8be518c070ae53dedb1a9b76cbf3b506763 |
IEDL.DBID | 33P |
ISSN | 0094-8276 |
IngestDate | Fri Oct 25 08:18:18 EDT 2024 Sat Oct 26 00:16:00 EDT 2024 Tue Nov 19 05:56:09 EST 2024 Tue Nov 19 06:45:43 EST 2024 Thu Nov 21 20:52:19 EST 2024 Sat Aug 24 00:54:55 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4617-e4a4a1cc0298797f897670017d32bc8be518c070ae53dedb1a9b76cbf3b506763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2016GL070681 |
PQID | 1854280724 |
PQPubID | 54723 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1880009623 proquest_miscellaneous_1859472747 proquest_journals_1912459385 proquest_journals_1854280724 crossref_primary_10_1002_2016GL070681 wiley_primary_10_1002_2016GL070681_GRL55067 |
PublicationCentury | 2000 |
PublicationDate | 16 December 2016 |
PublicationDateYYYYMMDD | 2016-12-16 |
PublicationDate_xml | – month: 12 year: 2016 text: 16 December 2016 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2016 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 1990; 95 1991; 19 2015; 105 1991; 96 1973 1988; 100 1996; 101 2009; 114 2007; 35 1981; 86 1994; 21 2001; 106 1984; 95 2013; 14 2000; 289 2000; 404 2010; 115 2013; 118 2002; 107 2005; 307 2002; 92 2008; 113 2004; 219 2008; 275 2006; 441 2007; 26 2007; 169 2014; 119 2003; 215 2005; 110 2005; 234 1973; 78 2008; 18 1999; 27 1997; 24 2015; 120 2005; 117 1994; 1982 2009; 176 2013; 103 2006 1978; 15 2001; 29 2011; 39 2007; 97 2004; 109 2001; 23 1999; 104 2004; 305 2003; 30 2004; 227 2003; 31 2003; 210 2012; 31 1994; 84 2006; 111 2004; 430 2001; 113 2003; 108 1991; 27 2002; 29 2001; 5 1967; 78 1993; 98 1978; 83 1994; 99 2016 2000; 142 2012; 117 2009; 37 2005; 57 2011; 187 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_94_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 Hollander M. (e_1_2_7_42_1) 1973 e_1_2_7_29_1 DeVries P. R. (e_1_2_7_22_1) 2016 Petersen M. D. (e_1_2_7_73_1) 1994; 84 Beanland S. (e_1_2_7_6_1) 1994; 1982 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 Thatcher W. (e_1_2_7_90_1) 2008; 18 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 Merifield P. M. (e_1_2_7_67_1) 1991; 27 |
References_xml | – volume: 37 start-page: 647 year: 2009 end-page: 650 article-title: Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet publication-title: Geology – volume: 108 issue: B8 year: 2003 article-title: Postseismic relaxation across the central Nevada seismic belt publication-title: J. Geophys. Res. – volume: 109 year: 2004 article-title: Viscoelastic earthquake cycle models with deep stress‐driven creep along the San Andreas Fault system publication-title: J. Geophys. Res. – volume: 227 start-page: 411 issue: 3 year: 2004 end-page: 426 article-title: Holocene slip rate of the North Anatolian Fault beneath the Sea of Marmara publication-title: Earth Planet. Sci. Lett. – volume: 104 start-page: 17,633 issue: B8 year: 1999 end-page: 17,651 article-title: Postglacial left slip rate and past occurrence of M≥8 earthquakes on the western Haiyuan fault, Gansu, China publication-title: J. Geophys. Res. – volume: 99 start-page: 6819 issue: B4 year: 1994 end-page: 6841 article-title: Paleoseismic evidence of clustered earthquakes on the San Andreas fault in the Carrizo Plain, California publication-title: J. Geophys. Res. – volume: 215 start-page: 89 year: 2003 end-page: 104 article-title: Transient rheology of the uppermost mantle beneath the Mojave Desert, California publication-title: Earth. Planet. Sci. Lett. – volume: 83 start-page: 3907 issue: B8 year: 1978 end-page: 3939 article-title: Prehistorical large earthquakes produced by slip on the San Andreas Fault at Pallett Creek, California publication-title: J. Geophys. Res. – volume: 117 year: 2012 article-title: The Pingding segment of the Altyn Tagh Fault (91°E): Holocene slip‐rate determination from cosmogenic radionuclide dating of offset fluvial terraces publication-title: J. Geophys. Res. – volume: 142 start-page: 755 issue: 3 year: 2000 end-page: 768 article-title: Slip rate on the Dead Sea transform fault in northern Araba valley (Jordan) publication-title: Geophys. J. Int. – volume: 120 start-page: 2794 year: 2015 end-page: 2819 article-title: Reconciling viscoelastic models of postseismic and interseismic deformation: Effects of viscous shear zones and finite length ruptures publication-title: J. Geophys. Res. Solid Earth – volume: 14 start-page: 828 year: 2013 end-page: 838 article-title: How do “ghost transients” from past earthquakes affect GPS slip rate estimates on southern California faults? publication-title: Geochem. Geophys. Geosyst. – volume: 118 start-page: 5643 year: 2013 end-page: 5664 article-title: Slip rates and off‐fault deformation in Southern California inferred from GPS data and models publication-title: J. Geophys. Res. Solid Earth – volume: 27 start-page: 28‐1 year: 1991 end-page: 28‐21 article-title: A slip rate based on trenching studies, San Jacinto fault zone near Anza, California publication-title: Eng. Geol. Geotech. Eng. – volume: 35 start-page: 867 issue: 10 year: 2007 end-page: 870 article-title: Late Holocene slip rate for the North Anatolian fault, Turkey, from cosmogenic 36Cl geochronology: Implications for the constancy of fault loading and strain release rates publication-title: Geology – volume: 117 start-page: 795 issue: 5–6 year: 2005 end-page: 807 article-title: Dating offset fans along the Mojave section of the San Andreas fault using cosmogenic Al and Be publication-title: Geol. Soc. Am. Bull. – volume: 39 start-page: 627 issue: 7 year: 2011 end-page: 630 article-title: Reconciling geologic and geodetic model fault slip‐rate discrepancies in Southern California: Consideration of nonsteady mantle flow and lower crustal fault creep publication-title: Geology – volume: 117 year: 2012 article-title: Dynamic models of interseismic deformation and stress transfer from plate motion to continental transform faults publication-title: J. Geophys. Res. – volume: 275 start-page: 246 issue: 3 year: 2008 end-page: 257 article-title: Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR publication-title: Earth Planet. Sci. Lett. – volume: 176 start-page: 670 issue: 3 year: 2009 end-page: 682 article-title: Coupled afterslip and viscoelastic flow following the 2002 Denali Fault, Alaska earthquake publication-title: Geophys. J. Int. – volume: 187 start-page: 613 issue: 2 year: 2011 end-page: 630 article-title: Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake publication-title: Geophys. J. Int. – volume: 30 start-page: 1139 issue: 3 year: 2003 article-title: New constraints on the motion of the Fairweather fault, Alaska, from GPS observations publication-title: Geophys. Res. Lett. – volume: 404 start-page: 69 issue: 6773 year: 2000 end-page: 72 article-title: Geodetic evidence for a low slip rate in the Altyn Tagh fault system publication-title: Nature – volume: 111 year: 2006 article-title: A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years publication-title: J. Geophys. Res. – volume: 234 start-page: 189 issue: 1 year: 2005 end-page: 205 article-title: Late Holocene activity of the Dead Sea Transform revealed in 3D palaeoseismic trenches on the Jordan Gorge segment publication-title: Earth Planet. Sci. Lett. – volume: 119 start-page: 3678 year: 2014 end-page: 3699 article-title: Weak ductile shear zone beneath a major strike‐slip fault: Inferences from earthquake cycle model constrained by geodetic observations of the western North Anatolian Fault Zone publication-title: J. Geophys. Res. Solid Earth – volume: 92 start-page: 126 issue: 1 year: 2002 end-page: 137 article-title: Time‐dependent distributed afterslip on and deep below the İzmit earthquake rupture publication-title: Bull. Seismol. Soc. Am. – volume: 114 year: 2009 article-title: Seven years of postseismic deformation following the 1999, = 7.4 and = 7.2, Izmit‐Düzce, Turkey earthquake sequence publication-title: J. Geophys. Res. – volume: 27 start-page: 267 issue: 3 year: 1999 end-page: 270 article-title: Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematics publication-title: Geology – volume: 115 year: 2010 article-title: Early Holocene and Late Pleistocene slip rates of the southern Dead Sea fault determined from Be cosmogenic dating of offset alluvial deposits publication-title: J. Geophys. Res. – volume: 57 start-page: 987 issue: 10 year: 2005 end-page: 994 article-title: The central Philippine Fault Zone publication-title: Earth Planets Space – volume: 5 start-page: 449 issue: 3 year: 2001 end-page: 474 article-title: Late Pleistocene and Holocene slip rate of the northern Wadi Araba fault, Dead Sea transform, Jordan publication-title: J. Seismolog. – volume: 289 start-page: 1519 issue: 5484 year: 2000 end-page: 1524 article-title: Coseismic and Postseismic Fault Slip for the 17 August 1999, = 7.5, Izmit, Turkey Earthquake publication-title: Science – year: 2016 article-title: Viscoelastic block models of the North Anatolian fault: A unified earthquake cycle representation of pre‐ and post‐seismic observations publication-title: Bull. Seismol. Soc. Am. – volume: 97 start-page: 749 issue: 3 year: 2007 end-page: 771 article-title: 12,000‐year‐long record of 10 to 13 paleoearthquakes on the Yammouneh fault, Levant fault system, Lebanon publication-title: Bull. Seismol. Soc. Am. – volume: 117 year: 2012 article-title: Using short‐term postseismic displacements to infer the ambient deformation conditions of the upper mantle publication-title: J. Geophys. Res. – volume: 103 start-page: 2824 issue: 5 year: 2013 end-page: 2835 article-title: Inference of multiple earthquake‐cycle relaxation timescales from irregular geodetic sampling of interseismic deformation publication-title: Bull. Seismol. Soc. Am. – volume: 29 start-page: 1051 issue: 11 year: 2001 end-page: 1054 article-title: Late Holocene earthquake history of the central Altyn Tagh fault, China publication-title: Geology – volume: 113 year: 2008 article-title: Slip rate and locking depth from GPS profiles across the southern Dead Sea Transform publication-title: J. Geophys. Res. – volume: 29 start-page: 819 issue: 9 year: 2001 end-page: 822 article-title: Holocene slip rates along the Owens Valley fault, California: Implications for the recent evolution of the Eastern California Shear Zone publication-title: Geology – volume: 169 start-page: 1009 issue: 3 year: 2007 end-page: 1027 article-title: Post‐seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling publication-title: Geophys. J. Int. – volume: 18 start-page: 4 issue: 4–5 year: 2008 end-page: 11 article-title: Temporal evolution of continental lithospheric strength in actively deforming regions publication-title: GSA Today – volume: 83 start-page: 3369 issue: B7 year: 1978 end-page: 3376 article-title: Asthenosphere readjustment and the earthquake cycle publication-title: J. Geophys. Res. – volume: 29 start-page: 975 issue: 11 year: 2001 end-page: 978 article-title: Transient strain accumulation and fault interaction in the Eastern California shear zone publication-title: Geology – volume: 210 start-page: 35 issue: 1 year: 2003 end-page: 52 article-title: Evidence for 830 years of seismic quiescence from palaeoseismology, archaeoseismology and historical seismicity along the Dead Sea fault in Syria publication-title: Earth Planet. Sci. Lett. – volume: 100 start-page: 755 issue: 5 year: 1988 end-page: 766 article-title: Late Quaternary activity along the Lone Pine fault, eastern California publication-title: Geol. Soc. Am. Bull. – volume: 109 year: 2004 article-title: Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh publication-title: J. Geophys. Res. – start-page: 848 year: 1973 – volume: 307 start-page: 411 issue: 5708 year: 2005 end-page: 414 article-title: Slip‐rate measurements on the Karakorum Fault may imply secular variations in fault motion publication-title: Science – volume: 31 start-page: 55 issue: 1 year: 2003 end-page: 58 article-title: Paleoseismology and Global Positioning System: Earthquake‐cycle effects and geodetic versus geologic fault slip rates in the Eastern California shear zone publication-title: Geology – volume: 92 start-page: 194 issue: 1 year: 2002 end-page: 207 article-title: Postseismic deformation near the İzmit earthquake (17 August 1999, 7.5) rupture zone publication-title: Bull. Seismol. Soc. Am. – volume: 92 start-page: 172 issue: 1 year: 2002 end-page: 193 article-title: Dynamics of Izmit earthquake postseismic deformation and loading of the Düzce earthquake hypocenter publication-title: Bull. Seismol. Soc. Am. – volume: 24 start-page: 3073 issue: 23 year: 1997 end-page: 3076 article-title: Global Positioning System constraints on fault slip rates in the Death Valley region, California and Nevada publication-title: Geophys. Res. Lett. – volume: 26 issue: 2 year: 2007 article-title: Slip rate gradients along the eastern Kunlun fault publication-title: Tectonics – volume: 430 start-page: 548 issue: 6999 year: 2004 end-page: 551 article-title: Evidence of power‐law flow in the Mojave desert mantle publication-title: Nature – volume: 107 start-page: 2235 issue: B10 year: 2002 article-title: Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey publication-title: J. Geophys. Res. – volume: 118 start-page: 3101 year: 2013 end-page: 3111 article-title: Earthquake cycle deformation in the Tibetan plateau with a weak mid‐crustal layer publication-title: J. Geophys. Res. Solid Earth – volume: 114 year: 2009 article-title: Izmit earthquake postseismic deformation and dynamics of the North Anatolian Fault Zone publication-title: J. Geophys. Res. – volume: 110 year: 2005 article-title: The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate publication-title: J. Geophys. Res. – volume: 97 start-page: 14 issue: 1B year: 2007 end-page: 34 article-title: Millennial recurrence of large earthquakes on the Haiyuan fault near Songshan, Gansu Province, China publication-title: Bull. Seismol. Soc. Am. – volume: 84 start-page: 1608 issue: 5 year: 1994 end-page: 1649 article-title: Fault slip rates and earthquake histories for active faults in southern California publication-title: Bull. Seismol. Soc. Am. – volume: 113 start-page: 1580 issue: 12 year: 2001 end-page: 1592 article-title: Present tectonic motion across the Coast Ranges and San Andreas fault system in central California publication-title: Geol. Soc. Am. Bull. – volume: 78 start-page: 832 issue: 5 year: 1973 end-page: 845 article-title: Geodetic determination of relative plate motion in central California publication-title: J. Geophys. Res. – volume: 29 issue: 13 year: 2002 article-title: Convergence across the northwest Himalaya from GPS measurements publication-title: Geophys. Res. Lett. – volume: 37 start-page: 31 issue: 1 year: 2009 end-page: 34 article-title: Earthquake‐cycle deformation and fault slip rates in northern Tibet publication-title: Geology – volume: 95 start-page: 883 issue: 8 year: 1984 end-page: 896 article-title: Holocene activity of the San Andreas fault at Wallace Creek, California, Geol publication-title: Soc. Am. Bull. – volume: 111 year: 2006 article-title: Strain accumulation across the Carrizo segment of the San Andreas Fault, California: Impact of laterally varying crustal properties publication-title: J. Geophys. Res. – volume: 109 start-page: B5 year: 2004 article-title: GPS measurements of current crustal movements along the Dead Sea Fault publication-title: J. Geophys. Res. – volume: 110 year: 2005 article-title: Postseismic and interseismic displacements near a strike‐slip fault: A 2D theory for general linear viscoelastic rheologies publication-title: J. Geophys. Res. – volume: 101 start-page: 21,943 issue: B10 year: 1996 end-page: 21,960 article-title: Global Positioning System constraints on fault slip rates in southern California and northern Baja, Mexico publication-title: J. Geophys. Res. – volume: 78 start-page: 705 issue: 6 year: 1967 end-page: 730 article-title: San Jacinto fault zone in the Peninsular Ranges of southern California publication-title: Geol. Soc. Am. Bull. – volume: 111 year: 2006 article-title: Long‐term slip rate of the southern San Andreas fault from Be‐ Al surface exposure dating of an offset alluvial fan publication-title: J. Geophys. Res. – volume: 105 start-page: 94 issue: 1 year: 2015 end-page: 106 article-title: Maximum‐likelihood recurrence parameters and conditional probability of a ground‐rupturing earthquake on the Southern Alpine Fault, South Island, New Zealand publication-title: Bull. Seismol. Soc. Am. – volume: 21 start-page: 975 issue: 11 year: 1994 end-page: 978 article-title: Detection of creep along the Philippine Fault: First results of geodetic measurements on Leyte island, central Philippines publication-title: Geophys. Res. Lett. – volume: 219 start-page: 255 issue: 3 year: 2004 end-page: 269 article-title: Large‐scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet publication-title: Earth Planet. Sci. Lett. – volume: 111 year: 2006 article-title: Confirmation of Arabia plate slow motion by new GPS data in Yemen publication-title: J. Geophys. Res. – volume: 1982 start-page: 1 year: 1994 end-page: 29 article-title: The Owens Valley fault zone, eastern California, and surface faulting associated with the 1872 earthquake publication-title: U.S. Geol. Surv. Bull. – volume: 92 start-page: 2761 issue: 7 year: 2002 end-page: 2781 article-title: Paleoseismic event dating and the conditional probability of large earthquakes on the southern San Andreas fault, California publication-title: Bull. Seismol. Soc. Am. – volume: 106 start-page: 2245 issue: B2 year: 2001 end-page: 2263 article-title: Refined kinematics of the Eastern California Shear Zone from GPS observations, 1993–1998 publication-title: J. Geophys. Res. – volume: 19 start-page: 32 issue: 1 year: 1991 end-page: 35 article-title: Philippine fault: A key for Philippine kinematics publication-title: Geology – volume: 104 start-page: 25,233 issue: B11 year: 1999 end-page: 25,255 article-title: Crustal deformation during 1994–1998 due to oblique continental collision in the central Southern Alps, New Zealand, and implications for seismic potential of the Alpine fault publication-title: J. Geophys. Res. – volume: 96 start-page: 8369 issue: B5 year: 1991 end-page: 8389 article-title: The velocity field along the San Andreas fault in central and southern California publication-title: J. Geophys. Res. – year: 2006 – volume: 95 start-page: 8593 issue: B6 year: 1990 end-page: 8605 article-title: Late Quaternary rate of slip along the San Jacinto fault zone near Anza, southern California publication-title: J. Geophys. Res. – volume: 441 start-page: 968 issue: 7096 year: 2006 end-page: 971 article-title: Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system publication-title: Nature – volume: 110 year: 2005 article-title: Fault slip rates, effects of elastic heterogeneity on geodetic data, and the strength of the lower crust in the Salton Trough region, southern California publication-title: J. Geophys. Res. – volume: 31 issue: 5 year: 2012 article-title: Quaternary morphotectonic mapping of the Wadi Araba and implications for the tectonic activity of the southern Dead Sea fault publication-title: Tectonics – volume: 15 start-page: 805 issue: 5 year: 1978 end-page: 816 article-title: Late Quaternary offsets along the Fairweather fault and crustal plate interactions in southern Alaska publication-title: Can. J. Earth Sci. – volume: 86 start-page: 1754 issue: B3 year: 1981 end-page: 1762 article-title: Variable rates of late Quaternary strike slip on the San Jacinto fault zone, southern California publication-title: J. Geophys. Res. – volume: 115 year: 2010 article-title: Recent behavior of the North Anatolian Fault: Insights from an integrated paleoseismological data set publication-title: J. Geophys. Res. – volume: 98 start-page: 14217 issue: B8 year: 1993 end-page: 14231 article-title: Holocene slip rate of the central Garlock fault in southeastern Searles Valley, California publication-title: J. Geophys. Res. – volume: 305 start-page: 236 issue: 5681 year: 2004 end-page: 239 article-title: InSAR observations of low slip rates on the major faults of western Tibet publication-title: Science – volume: 107 start-page: B9 year: 2002 article-title: Slip rates of the Karakorum fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines publication-title: J. Geophys. Res. – volume: 23 start-page: 507 issue: 2 year: 2001 end-page: 520 article-title: Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand publication-title: J. Struct. Geol. – ident: e_1_2_7_81_1 doi: 10.1029/JB078i005p00832 – ident: e_1_2_7_93_1 doi: 10.1130/0091-7613 – ident: e_1_2_7_82_1 doi: 10.1029/JB083iB07p03369 – volume: 1982 start-page: 1 year: 1994 ident: e_1_2_7_6_1 article-title: The Owens Valley fault zone, eastern California, and surface faulting associated with the 1872 earthquake publication-title: U.S. Geol. Surv. Bull. contributor: fullname: Beanland S. – ident: e_1_2_7_9_1 doi: 10.1186/BF03351877 – ident: e_1_2_7_13_1 doi: 10.1785/0120000605 – ident: e_1_2_7_76_1 doi: 10.1016/j.epsl.2004.07.042 – ident: e_1_2_7_85_1 doi: 10.1029/2005JB003843 – ident: e_1_2_7_28_1 doi: 10.1038/nature04797 – ident: e_1_2_7_34_1 doi: 10.1002/2014JB011361 – ident: e_1_2_7_84_1 doi: 10.1130/0016-7606(1984)95<883:HAOTSA>2.0.CO;2 – ident: e_1_2_7_43_1 doi: 10.1029/2001JB000393 – ident: e_1_2_7_91_1 doi: 10.1029/2004JB003559 – ident: e_1_2_7_57_1 doi: 10.1785/0120050118 – ident: e_1_2_7_8_1 doi: 10.1029/97GL02951 – ident: e_1_2_7_24_1 doi: 10.1029/94GL00640 – volume: 27 start-page: 28‐1 year: 1991 ident: e_1_2_7_67_1 article-title: A slip rate based on trenching studies, San Jacinto fault zone near Anza, California publication-title: Eng. Geol. Geotech. Eng. contributor: fullname: Merifield P. M. – ident: e_1_2_7_10_1 doi: 10.1029/1999JB900198 – ident: e_1_2_7_53_1 doi: 10.1029/2009JB007198 – ident: e_1_2_7_37_1 doi: 10.1002/ggge.20080 – ident: e_1_2_7_55_1 doi: 10.1130/0091-7613 – ident: e_1_2_7_18_1 doi: 10.1130/G32120.1 – ident: e_1_2_7_15_1 doi: 10.1785/0120000833 – ident: e_1_2_7_35_1 doi: 10.1785/0120000832 – ident: e_1_2_7_96_1 doi: 10.1002/2013JB010347 – ident: e_1_2_7_20_1 doi: 10.1785/0120060106 – ident: e_1_2_7_79_1 doi: 10.1111/j.1365-246X.2006.03312.x – ident: e_1_2_7_32_1 doi: 10.1029/2011JB008562 – ident: e_1_2_7_75_1 doi: 10.1016/S0012-821X(03)00432-1 – ident: e_1_2_7_38_1 – ident: e_1_2_7_12_1 doi: 10.1785/0120130259 – volume: 84 start-page: 1608 issue: 5 year: 1994 ident: e_1_2_7_73_1 article-title: Fault slip rates and earthquake histories for active faults in southern California publication-title: Bull. Seismol. Soc. Am. contributor: fullname: Petersen M. D. – ident: e_1_2_7_14_1 doi: 10.1029/2000JB000100 – year: 2016 ident: e_1_2_7_22_1 article-title: Viscoelastic block models of the North Anatolian fault: A unified earthquake cycle representation of pre‐ and post‐seismic observations publication-title: Bull. Seismol. Soc. Am. contributor: fullname: DeVries P. R. – ident: e_1_2_7_56_1 doi: 10.1029/91JB00199 – ident: e_1_2_7_39_1 doi: 10.1029/2002JB002257 – ident: e_1_2_7_77_1 doi: 10.1126/science.289.5484.1519 – ident: e_1_2_7_83_1 doi: 10.1029/JB083iB08p03907 – ident: e_1_2_7_95_1 doi: 10.1126/science.1096388 – ident: e_1_2_7_30_1 doi: 10.1029/2009JB006982 – ident: e_1_2_7_58_1 doi: 10.1130/0016-7606(1988)100<0755:LQAATL>2.3.CO;2 – ident: e_1_2_7_68_1 – ident: e_1_2_7_66_1 doi: 10.1029/2012JB009289 – ident: e_1_2_7_41_1 doi: 10.1130/G25157A.1 – ident: e_1_2_7_27_1 doi: 10.1029/2004JB003548 – ident: e_1_2_7_88_1 doi: 10.1029/2005JB003703 – ident: e_1_2_7_2_1 doi: 10.1130/0016-7606(2001)113<1580:PTMATC>2.0.CO;2 – ident: e_1_2_7_78_1 doi: 10.1029/JB095iB06p08593 – ident: e_1_2_7_87_1 doi: 10.1029/JB086iB03p01754 – ident: e_1_2_7_11_1 doi: 10.1038/35003555 – ident: e_1_2_7_86_1 doi: 10.1130/0016-7606(1967)78[705:SJFZIT]2.0.CO;2 – ident: e_1_2_7_60_1 doi: 10.1130/B25590.1 – ident: e_1_2_7_80_1 doi: 10.1111/j.1365-246X.2011.05179.x – ident: e_1_2_7_89_1 doi: 10.1029/2011JB009056 – ident: e_1_2_7_21_1 doi: 10.1002/jgrb.50209 – ident: e_1_2_7_7_1 doi: 10.1029/96JB02488 – ident: e_1_2_7_63_1 doi: 10.1016/S0012-821X(03)00144-4 – ident: e_1_2_7_61_1 doi: 10.1029/93JB00442 – ident: e_1_2_7_71_1 doi: 10.1016/S0191-8141(00)00122-X – ident: e_1_2_7_26_1 doi: 10.1029/2008JB006021 – ident: e_1_2_7_46_1 doi: 10.1111/j.1365-246X.2008.04029.x – start-page: 848 volume-title: Nonparametric Statistical Methods year: 1973 ident: e_1_2_7_42_1 contributor: fullname: Hollander M. – ident: e_1_2_7_4_1 doi: 10.1029/2002GL015184 – ident: e_1_2_7_94_1 doi: 10.1029/2003JB002640 – ident: e_1_2_7_44_1 doi: 10.1002/jgrb.50365 – ident: e_1_2_7_70_1 doi: 10.1023/A:1011487912054 – ident: e_1_2_7_29_1 doi: 10.1029/2002GL016476 – ident: e_1_2_7_74_1 doi: 10.1139/e78-085 – ident: e_1_2_7_47_1 doi: 10.1029/2006TC002033 – ident: e_1_2_7_52_1 doi: 10.1029/2007JB005280 – ident: e_1_2_7_5_1 doi: 10.1130/0091-7613(1991)019<0032:PFAKFP>2.3.CO;2 – ident: e_1_2_7_64_1 doi: 10.1029/2003JB002558 – ident: e_1_2_7_3_1 doi: 10.1130/0091-7613(1999)027<0267:WPOTNA>2.3.CO;2 – ident: e_1_2_7_51_1 doi: 10.1029/1998JB900082 – ident: e_1_2_7_72_1 doi: 10.1130/0091-7613 – ident: e_1_2_7_40_1 doi: 10.1029/2005JB003689 – ident: e_1_2_7_50_1 doi: 10.1016/S0012-821X(04)00006-8 – ident: e_1_2_7_36_1 doi: 10.1029/2008JB006026 – ident: e_1_2_7_92_1 doi: 10.1029/2004JB003229 – ident: e_1_2_7_49_1 doi: 10.1130/G23187A.1 – ident: e_1_2_7_33_1 doi: 10.1029/94JB00125 – ident: e_1_2_7_62_1 doi: 10.1785/0120130006 – ident: e_1_2_7_25_1 doi: 10.1785/0120000836 – ident: e_1_2_7_45_1 doi: 10.1029/2004JB003096 – ident: e_1_2_7_54_1 doi: 10.1029/2012TC003112 – ident: e_1_2_7_17_1 doi: 10.1126/science.1105466 – volume: 18 start-page: 4 issue: 4 year: 2008 ident: e_1_2_7_90_1 article-title: Temporal evolution of continental lithospheric strength in actively deforming regions publication-title: GSA Today doi: 10.1130/GSAT01804-5A.1 contributor: fullname: Thatcher W. – ident: e_1_2_7_48_1 doi: 10.1046/j.1365-246x.2000.00165.x – ident: e_1_2_7_19_1 doi: 10.1130/G25623A.1 – ident: e_1_2_7_69_1 doi: 10.1029/2000JB900328 – ident: e_1_2_7_59_1 doi: 10.1016/j.epsl.2005.01.017 – ident: e_1_2_7_23_1 doi: 10.1130/0091-7613 – ident: e_1_2_7_16_1 doi: 10.1016/j.epsl.2008.07.057 – ident: e_1_2_7_31_1 doi: 10.1038/nature02784 – ident: e_1_2_7_65_1 doi: 10.1029/2004JB003210 |
SSID | ssj0003031 |
Score | 2.2666445 |
Snippet | A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 12,036 |
SubjectTerms | Basins earthquake cycle Earthquake prediction Earthquakes Estimates Fault lines Faults Geological faults Geology hypothesis testing Kolmogorov-Smirnov test Mathematical models Modelling Phenomenology Physics Rheological properties rheology Seismic activity Similarity Slip Statistical analysis Statistical tests Strike-slip faults Tests Time measurement viscoelastic Viscoelasticity Viscosity |
Title | Statistical tests of simple earthquake cycle models |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016GL070681 https://www.proquest.com/docview/1854280724 https://www.proquest.com/docview/1912459385 https://search.proquest.com/docview/1859472747 https://search.proquest.com/docview/1880009623 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66IHjxLVZXqaAnKbttnr0IorvrYRHxAd5KkiYoQlft9rD_3knafQiyIN5K82iYZGa-aZJvEDozXGsI_2lEmehGRHEcpVLaSMXOYMZMx9YnsX3kdy_ipudoci6nd2FqfojZDzenGd5eOwWXquzMSUPBc7HBEFYs8zevIVDwNzjw_cwQu4_VJJQkEglnzbl3aN5ZbPzTI81h5iJY9d6mv_nfcW6hjQZnhlf1wthGK6bYQWsDn8d3Ak_-5KcudxF2cNOzNUN1wJ3jMhzZsHxzrMEhqMH49bOS7ybUE-gn9Ilzyj303O89Xd9GTSaFSBKAKJEhksgYZiVJBU-5FQBC3IYzz3GitFCGxkLDEKWhODe5imWqONPKYkXBnTG8j1rFqDAHKLSKxlalVHWxJGAdlKVMJVzqXClrjQjQ-VSa2UdNmJHV1MhJtiiKALWnos4atSkzAA_E0fMk5PfiFNAITbGgATqdFYM-uE0OWZhR5btICXex9rI6wsduCQ7QhZ-7pUPNBg9D6uRw-KfaR2jdvXdnX2LWRq3xV2WO0WqZVyd-nX4Dv9bjcg |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JaxsxFH6kDqW5JOkS6qxTaE9lcGa0zimExHFCXVNaF3obJI1ES8FOO_bB_z7vabwViiHkNqAnjXh6y6ftE8B7r5zD6b9IhdTnKbeKpYUxIbUZBcxMuizER2y_qcEPfd0lmpyLxV2Yhh9iueBGnhHjNTk4LUh3VqyhmLpkr48mK-nq9TaXaIt0h4N9WYZi-l1DQ8lTnSs5P_mO9Tvrtf_NSSuguQ5XY7652XtyT_dhdw41k8vGNl7Clh-9gue9-JTvDL_i4U9XvwZGiDMSNqM4Qs9JnYxDUv8i4uAEPWHy88_U_PaJm2E7SXw7p34D32-6w6vbdP6YQmo4opTUc8NNhgOTF1oVKmjEIbTnrCqWW6etF5l22EXjBat8ZTNTWCWdDcwKzGiSHUBrNB75t5AEK7JgC2HPmeEYIGwQ0ubKuMraELxuw4eFOsv7hjOjbNiR83JdFW04Xui6nHtOXSJ-4MTQk_P_FxcISETBtGjDu2UxugTtc5iRH09jEwVXNN3eJKPj9C1nbfgYB29jV8ve174gPRw-SvoMXtwOP_fL_t3g0xHskAwdhcnkMbQmf6f-BJ7V1fQ0Gu0DPRLnmg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58oHjxLVarrqAnWexunnsRRG0Vi4gP8LYk2QRFaNVtD_33TrJtrSCCeFvIJBsmmZkvr28ADqwwBpf_LGZcNmKqBYkzpVysE-8wE24SF5LY3oubJ3l-4WlyTkZvYSp-iPGGm7eM4K-9gb8V7viLNBQjF2-1ccZy__J6liIS99z5hNyOPbH_W8VCSWOZCj68-I71jydrfw9JXzhzEq2GcNNc-m9Hl2FxCDSj02pmrMCU7azCXCsk8h3gV7j6aco1IB5vBrpmFEfg2SujrovKF08bHKEd9J7f--rVRmaA7UQhc065Do_Ni4ezy3iYSiFWFDFKbKmiKsFhSTMpMuEkohB_4iwKkmojtWWJNNhFZRkpbKETlWnBjXZEM4xnnGzATKfbsZsQOc0SpzOmG0RRdA_aMa5ToUyhtXNW1uBwpM38rWLMyCtu5DSfVEUN6iNV50O7KXNED9Tz86T05-IM4QjLiGQ12B8Xo0H4Uw7Vsd1-aCKjwi-2f5ORYfGWkhochbH7tat5667NvB62_iS9B_O35828fXVzvQ0LXsTfg0l4HWZ6H327A9Nl0d8NU_YTbibmQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+tests+of+simple+earthquake+cycle+models&rft.jtitle=Geophysical+research+letters&rft.au=DeVries%2C+Phoebe+M.+R.&rft.au=Evans%2C+Eileen+L.&rft.date=2016-12-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=43&rft.issue=23&rft.spage=12%2C036&rft.epage=12%2C045&rft_id=info:doi/10.1002%2F2016GL070681&rft.externalDBID=10.1002%252F2016GL070681&rft.externalDocID=GRL55067 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |