The MEMIN research unit: Scaling impact cratering experiments in porous sandstones
– The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the...
Saved in:
Published in: | Meteoritics & planetary science Vol. 48; no. 1; pp. 8 - 22 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-01-2013
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | – The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12 mm were accelerated to velocities of 2.5–7.8 km s−1, yielding craters with diameters between 3.9 and 40 cm. Results show that the target’s porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger‐scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size. |
---|---|
AbstractList | Abstract- The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12mm were accelerated to velocities of 2.5-7.8kms-1, yielding craters with diameters between 3.9 and 40cm. Results show that the target's porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger-scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size. [PUBLICATION ABSTRACT] Abstract– The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12 mm were accelerated to velocities of 2.5–7.8 km s −1 , yielding craters with diameters between 3.9 and 40 cm. Results show that the target’s porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger‐scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size. Abstract- The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12mm were accelerated to velocities of 2.5-7.8kms super(-1), yielding craters with diameters between 3.9 and 40cm. Results show that the target's porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger-scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size. – The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12 mm were accelerated to velocities of 2.5–7.8 km s−1, yielding craters with diameters between 3.9 and 40 cm. Results show that the target’s porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger‐scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size. |
Author | DUFRESNE, Anja SCHÄFER, Frank KENKMANN, Thomas THOMA, Klaus POELCHAU, Michael H. HOERTH, Tobias |
Author_xml | – sequence: 1 givenname: Michael H. surname: POELCHAU fullname: POELCHAU, Michael H. email: michael.poelchau@geologie.uni-freiburg.de organization: Institut für Geowissenschaften, Albertstraße 23b, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany – sequence: 2 givenname: Thomas surname: KENKMANN fullname: KENKMANN, Thomas organization: Institut für Geowissenschaften, Albertstraße 23b, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany – sequence: 3 givenname: Klaus surname: THOMA fullname: THOMA, Klaus organization: Fraunhofer-Institut für Kurzzeitdynamik Ernst-Mach Institut, EMI, Eckerstraße 4; 79104 Freiburg, Germany – sequence: 4 givenname: Tobias surname: HOERTH fullname: HOERTH, Tobias organization: Fraunhofer-Institut für Kurzzeitdynamik Ernst-Mach Institut, EMI, Eckerstraße 4; 79104 Freiburg, Germany – sequence: 5 givenname: Anja surname: DUFRESNE fullname: DUFRESNE, Anja organization: Institut für Geowissenschaften, Albertstraße 23b, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany – sequence: 6 givenname: Frank surname: SCHÄFER fullname: SCHÄFER, Frank organization: Fraunhofer-Institut für Kurzzeitdynamik Ernst-Mach Institut, EMI, Eckerstraße 4; 79104 Freiburg, Germany |
BookMark | eNp9kE9PwzAMxSM0JBhw4RNE4oKQCnHTJi03BGMMbfzbENyirHOh0KYl6cT49mQMOHDAF1vW71nPr0s6pjZIyC6wQ_B1VOnGHULIQKyRTUijOIiBsY6fWSKClMt0g3Sde2GMx8CjTXI3eUY66o0GV9SiQ22zZzo3RXtMx5kuC_NEi6rRWUszq1u0ywUuGj9UaFpHC0Ob2tZzR502M9d6N26brOe6dLjz3bfI_XlvcnoRDK_7g9OTYaAjAd4MCM2kjLMQmZzOGOockhkXccyRs4z5bYQwzUWY5qGMpjpJdZjnMuZTngjI-RbZX91tbP02R9eqqnAZlqU26B0pEBIiyWTIPLr3B32p59Z4dwr8bclCDkvqYEVltnbOYq4a_6e2HwqYWsarlvGqr3g9DCv4vSjx4x9SjU5uxj-aYKUpXIuLX422r0pILmP1cNVXw-T2LHq8FKrPPwGhOIyx |
CODEN | MPSCFY |
CitedBy_id | crossref_primary_10_1016_j_ijimpeng_2017_04_008 crossref_primary_10_1016_j_ijimpeng_2024_104965 crossref_primary_10_1016_j_proeng_2015_04_027 crossref_primary_10_3390_app10041393 crossref_primary_10_1016_j_jsg_2017_03_007 crossref_primary_10_1111_maps_13048 crossref_primary_10_1111_maps_13003 crossref_primary_10_3390_geosciences11090395 crossref_primary_10_1111_maps_12712 crossref_primary_10_1111_j_1945_5100_2012_01430_x crossref_primary_10_1111_maps_12030 crossref_primary_10_1016_j_pss_2014_03_010 crossref_primary_10_1061__ASCE_AS_1943_5525_0001110 crossref_primary_10_1016_j_pss_2017_09_001 crossref_primary_10_1016_j_tecto_2014_07_030 crossref_primary_10_1111_maps_13080 crossref_primary_10_1016_j_icarus_2022_114945 crossref_primary_10_1007_s10035_019_0988_1 crossref_primary_10_1016_j_pss_2020_105141 crossref_primary_10_1111_maps_12948 crossref_primary_10_1016_j_earscirev_2022_104112 crossref_primary_10_1016_j_icarus_2018_09_006 crossref_primary_10_1111_maps_12907 crossref_primary_10_1038_s41586_020_2846_z crossref_primary_10_1111_maps_12024 crossref_primary_10_1111_maps_13113 crossref_primary_10_3390_app10113910 crossref_primary_10_14489_glc_2023_05_pp_014_022 crossref_primary_10_1016_j_ijimpeng_2015_03_009 crossref_primary_10_1029_2018JE005841 crossref_primary_10_1016_j_ijimpeng_2018_08_008 crossref_primary_10_1016_j_ijimpeng_2016_08_003 crossref_primary_10_1002_2017JE005283 crossref_primary_10_1111_j_1945_5100_2012_01427_x crossref_primary_10_1002_2014JE004616 crossref_primary_10_1016_j_jsames_2013_03_007 crossref_primary_10_1088_0004_637X_797_1_30 crossref_primary_10_1016_j_dt_2018_07_012 crossref_primary_10_1016_j_pss_2013_06_010 crossref_primary_10_1111_maps_12694 crossref_primary_10_1111_maps_12892 crossref_primary_10_1016_j_jsg_2024_105082 crossref_primary_10_1111_maps_12017 crossref_primary_10_1029_2018JB017128 crossref_primary_10_1111_maps_12018 crossref_primary_10_1016_j_icarus_2014_04_039 crossref_primary_10_1016_j_earscirev_2020_103321 crossref_primary_10_1016_j_ijsolstr_2018_04_024 crossref_primary_10_1111_j_1945_5100_2012_01431_x crossref_primary_10_1016_j_gca_2016_07_018 crossref_primary_10_1016_j_ijimpeng_2020_103499 crossref_primary_10_1111_j_1945_5100_2012_1429_x crossref_primary_10_1007_s12517_014_1672_8 crossref_primary_10_1111_maps_12406 crossref_primary_10_1007_s10717_023_00580_y crossref_primary_10_1016_j_icarus_2014_08_018 crossref_primary_10_1007_s00603_016_1010_4 crossref_primary_10_1111_maps_13179 crossref_primary_10_1098_rsos_220029 crossref_primary_10_1016_j_icarus_2017_05_010 crossref_primary_10_1111_maps_13133 crossref_primary_10_1111_maps_12000 crossref_primary_10_1111_maps_12044 crossref_primary_10_1111_maps_12682 crossref_primary_10_1111_maps_12560 crossref_primary_10_1016_j_gca_2014_02_034 crossref_primary_10_1016_j_jsg_2013_08_007 |
Cites_doi | 10.1111/maps.12018 10.1111/j.1365-2966.2005.09122.x 10.1016/j.icarus.2005.10.013 10.1111/j.1945-5100.2011.01200.x 10.1146/annurev.ea.21.050193.002001 10.1111/j.1945-5100.2012.01427.x 10.1111/j.1945-5100.2007.tb00549.x 10.1111/maps.12000 10.1126/science.1172339 10.1111/j.1945-5100.2012.01430.x 10.1016/S0019-1035(03)00024-1 10.1016/j.pss.2006.05.002 10.1046/j.1365-8711.2003.06385.x 10.3133/ofr63100 10.1111/maps.12030 10.1130/G31624.1 10.1111/j.1945-5100.2006.tb00437.x 10.1016/0019-1035(87)90020-0 10.1063/1.1303688 10.1111/maps.12024 10.1016/j.icarus.2006.08.029 10.1016/0734-743X(87)90069-8 10.1029/JS082i028p04055 10.1002/9780470172278 10.1029/2011JE003935 10.1016/0019-1035(84)90026-5 10.1029/92JE02679 10.1111/j.1945-5100.1994.tb00670.x 10.1111/j.1945-5100.2009.tb00783.x 10.1016/j.icarus.2007.06.006 10.1029/94JB00726 10.1029/JB076i008p01993 10.1007/s12665-011-1043-7 10.1111/j.1945-5100.2012.1429.x 10.1029/JB087iB03p01849 10.1016/j.icarus.2007.01.009 10.1029/GL013i008p00745 10.1006/icar.2001.6734 10.2475/ajs.261.7.668 10.1111/maps.12044 10.1006/icar.1993.1119 10.1111/j.1945-5100.2009.tb02006.x 10.1016/j.ijrmms.2006.03.007 10.1007/BF02630651 10.1016/B978-0-12-066266-1.50015-6 10.1007/BF00375110 10.1111/j.1945-5100.2012.01431.x 10.1115/1.3607836 10.1029/JB089iB06p04077 |
ContentType | Journal Article |
Copyright | The Meteoritical Society, 2013 |
Copyright_xml | – notice: The Meteoritical Society, 2013 |
DBID | BSCLL AAYXX CITATION 7TG 8FD H8D KL. L7M 7QF JG9 |
DOI | 10.1111/maps.12016 |
DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Aluminium Industry Abstracts Materials Research Database |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Materials Research Database Aluminium Industry Abstracts |
DatabaseTitleList | Aerospace Database CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1945-5100 |
EndPage | 22 |
ExternalDocumentID | 2874572841 10_1111_maps_12016 MAPS12016 ark_67375_WNG_L8QD4XJ6_G |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 2WC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS EJD ESX F00 F01 F04 F5P FEDTE FRP G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LC2 LC3 LDC LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR RNP ROL RX1 SAMSI SUPJJ UB1 V8K VOH W8V W99 WBKPD WH7 WIH WIK WIN WOHZO WUPDE WXSBR WYISQ XG1 ZZTAW ~02 ~IA ~WT AETEA AAMNL AAYXX CITATION 7TG 8FD H8D KL. L7M 7QF JG9 |
ID | FETCH-LOGICAL-a4616-916a0775c2e07bd0eaf18d36553e30c0e074e1bf629f274ba89a2ff753b3861f3 |
IEDL.DBID | 33P |
ISSN | 1086-9379 |
IngestDate | Fri Aug 16 21:54:57 EDT 2024 Thu Oct 10 17:35:00 EDT 2024 Thu Nov 21 21:23:08 EST 2024 Sat Aug 24 00:56:00 EDT 2024 Wed Oct 30 09:50:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4616-916a0775c2e07bd0eaf18d36553e30c0e074e1bf629f274ba89a2ff753b3861f3 |
Notes | istex:170908F9C3B66BFB8B0C0BF481D1926855320A24 ArticleID:MAPS12016 ark:/67375/WNG-L8QD4XJ6-G ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1274702310 |
PQPubID | 1016381 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1671470720 proquest_journals_1274702310 crossref_primary_10_1111_maps_12016 wiley_primary_10_1111_maps_12016_MAPS12016 istex_primary_ark_67375_WNG_L8QD4XJ6_G |
PublicationCentury | 2000 |
PublicationDate | 2013-01 January 2013 2013-01-00 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Hoboken |
PublicationTitle | Meteoritics & planetary science |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Carr M. H., Crumpler L. A., Cutts J. A., Greeley R., Guest J. E., and Masursky H.1977. Martian craters and emplacement of ejecta by surface flows. Journal of Geophysical Research82:4055-4065. Kenkmann T. and Schönian F.2006. Ries and Chicxulub: Impact craters on Earth provide insights for Martian ejecta blankets. Meteoritics & Planetary Science41:1587-1603. Meyers M. A. 1994. Dynamic behavior of materials. New York: John Wiley & Sons, Inc. 668 p. Shoemaker E. M.1963. Hypervelocity impact of steel into Coconino sandstone. American Journal of Science261:668-682. Kenkmann T., Artemieva N. A., Wünnemann K., Poelchau M. H., Elbeshausen D., and Núñez del Prado H.2009. The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage. Meteoritics & Planetary Science44:985-1000. Smith P. H., Tamppari L. K., Arvidson R. E., Bass D., Blaney D., Boynton W. V., Carswell A., Catling D. C., Clark B. C., Duck T., DeJong E., Fisher D., Goetz W., Gunnlaugsson H. P., Hecht M. H., Hipkin V., Hoffman J., Hviid S. F., Keller H. U., Kounaves S. P., Lange C. F., Lemmon M. T., Madsen M. B., Markiewicz W. J., Marshall J., McKay C. P., Mellon M. T., Ming D. W., Morris R. V., Pike W. T., Renno N., Staufer U., Stoker C., Taylor P., Whiteway J. A., and Zent A. P.2009. H2O at the Phoenix landing site. Science325:58-61. Stöffler D. and Langenhorst F.1994. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics29:155-181. Dufresne A., Poelchau M. H., Kenkmann T., Deutsch A., Hoerth T., Schäfer F., and Thoma K. 2013. Crater morphology in sandstone targets: The MEMIN impact parameter study. Meteoritics & Planetary Science48, doi: 10.1111/maps.12024. Ebert M., Hecht L., Deutsch A., and Kenkmann T.2013. Chemical modification of projectile residues and target material in a MEMIN cratering experiment. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.1429.x. Folco L., Di Martino M., El Barkooky A., D'Orazio M., Lethy A., Urbini S., Nicolosi I., Hafez M., Cordier C., van Ginneken M., Zeoli A., Radwan A. M., El Khrepy S., El Gabry M., Gomaa M., Barakat A. A., Serra R., and El Sharkawi M.2011. Kamil crater (Egypt): Ground truth for small-scale meteorite impacts on Earth. Geology39:179-182. doi: 10.1130/G31624. 1. Melosh H. J.1984. Impact ejection, spallation, and the origin of meteorites. Icarus59:234-260. Güldemeister N., Durr N., Wünnemann K., and Hiermaier S. 2013. Propagation of impact-induced shock waves in porous sandstone using mesoscale modeling. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.01430.x Housen K. R. and Holsapple K. A.2003. Impact cratering on porous asteroids. Icarus163:102-119. Erskine D., Nellis W. J., and Weir S. T.1994. Shock wave profile study of tuff from the Nevada Test Site. Journal of Geophysical Research99:15529-15537. Schultz P. H., Eberhardy C. A., Ernst C. M., A'Hearn M. F., Sunshine J. M., and Lisse C. M.2007. The Deep Impact oblique impact cratering experiment. Icarus190:295-333. Atkinson B. K.1984. Subcritical crack growth in geological materials. Journal of Geophysical Research89:4077-4114. Michikami T., Moriguchi K., Hasegawa S., and Fujiwara A.2007. Ejecta velocity distribution for impact cratering experiments on porous and low strength targets. Planetary and Space Science55:70-88. Kieffer S., Phakey P. P., and Christie J. M.1976. Shock processes in porous quartzite: Transmission electron microscope observations and theory. Contributions to Mineralogy and Petrology59:41-93. Hiesinger H., van der Bogert C. H., Pasckert J. H., Funcke L., Giacomini L., Ostrach L. R., and Robinson M. S.2012. How old are young lunar craters?Journal of Geophysical Research, 117:E00H10. doi:10.1029/2011JE003935. Gault D. E.1973. Displaced mass, depth, diameter, and effects of oblique trajectories for impact craters formed in dense crystalline rocks. The Moon6:32-44. Hoerth T., Schäfer F., Thoma K., Kenkmann T., Poelchau M. H., Lexow B., and Deutsch A.2013. Hypervelocity impacts on dry and wet sandstone: Observations of ejecta dynamics and crater growth. Meteoritics & Planetary Science48, doi: 10.1111/maps.12044. Lange M. A. and Ahrens T. J.1987. Impact experiments in low-temperature ice. Icarus69:506-518. Ahrens T. J. and Rubin A. M.1993. Impact-induced tensional failure in rock. Journal of Geophysical Research98:1185-1203. Smrekar S., Cintala M. J., and Hörz F.1986. Small-scale impacts into rock: An evaluation of the effects of target temperature on experimental results. Geophysical Research Letters13:745-748. Stück H., Siegesmund S., and Rüdrich J.2011. Weathering behaviour and construction suitability of dimension stones from the Drei Gleichen area (Thuringia, Germany). Environmental Earth Sciences63:1763-1786. Wünnemann K., Collins G. S., and Melosh H. J.2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus180:514-527. Sommer F., Reiser F., Dufresne A., Poelchau M. H., Hoerth T., Deutsch A., Kenkmann T., and Thoma K.2013. Ejection behavior characteristics of experimental impacts into dry and wet sandstone: Results from the MEMIN research unit. Meteoritics & Planetary Science48, doi: 10.1111/maps.12017. Palchik V.2006. Application of Mohr-Coulomb failure theory to very porous sandy shales. International Journal of Rock Mechanics & Mining Sciences43:1153-1162. Barnouin-Jha O. S., Yamamoto S., Toriumi T., Sugita S., and Matsui T.2007. Non-intrusive measurements of crater growth. Icarus188:506-521. Kowitz A., Schmitt R. T., Reimold W. U., and Hornemann U. 2013. First MEMIN shock recovery experiments in dry, porous sandstone at low shock pressure (5-12.5 GPa). Meteoritics & Planetary Science48, doi: 10.1111/maps.12030. Baldwin E. C., Milner D. J., Burchell M. J., and Crawford I. A.2007. Laboratory impacts into dry and wet sandstone with and without an overlying layer: Implications for scaling laws and projectile survivability. Meteoritics & Planetary Science42:1905-1914. Tancredi G., Ishitsuka J., Schultz P. H., Harris R. S., Brown P., Revelle D. O., Antier K., Le Pichon A., Rosales D., Vidal E., Varela M. E., Sánchez L., Benavente S., Bojorquez J., Cabezas D., and Dalmau A.2009. A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact. Meteoritics & Planetary Science44:1967-1984. Buhl E., Poelchau M. H., Dresen G., and Kenkmann T.2013. Deformation of dry and wet sandstone targets during hyper-velocity impact experiments, as revealed from the MEMIN program. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.01431.x. Shrine N. R. G., Burchell M. J., and Grey I. D. S.2002. Velocity scaling of impact craters in water ice over the range 1-7.3 km/s. Icarus155:475-485. Schmidt R. M. and Housen K. R.1987. Some recent advances in the scaling of impact and explosion cratering. International Journal of Impact Engineering5:543-560. Burchell M. J. and Whitehorn L.2003. Oblique incidence hypervelocity impacts on rock. Monthly Notices of the Royal Astronomical Society341:192-198. Zel'dovich Y. B., and Raizer Y. P. 1967. Physics of shock waves and high-temperature hydrodynamic phenomena, vol. 2. New York: Academic Press. 944 p. Burchell M. J. and Johnson E.2005. Impact craters on small icy bodies such as icy satellites and comet nuclei. Monthly Notices of the Royal Astronomical Society360:769-781. Butkovich T. R.1971. Influence of water in rocks on effects of underground nuclear explosions. Journal of Geophysical Research76:1993-2011. Holsapple K. A. and Housen K. R.2007. A crater and its ejecta: An interpretation of deep impact. Icarus187:345-356. Kenkmann T., Wünnemann K., Deutsch A., Poelchau M. H., Schäfer F., and Thoma K.2011. Impact cratering in sandstone: The MEMIN pilot study on the effect of pore water. Meteoritics & Planetary Science46:890-902. Love S. G., Hörz F., and Brownlee D. E.1993. Target porosity effects in impact cratering and collisional disruption. Icarus105:216-224. Holsapple K. A.1993. The scaling of impact processes in planetary sciences. Annual Review of Earth and Planetary Science21:333-373. Kenkmann T., Trullenque G., Deutsch A., Hecht L., Ebert M., Salge T., Schäfer F., and Thoma K. 2013. Deformation and melting of steel projectiles in hypervelocity cratering experiments. Meteoritics & Planetary Science48, doi: 10.1111/maps.12018. Moser D., Poelchau M. H., Stark F., and Grosse C. 2013. Application of non-destructive testing methods to study the damage zone underneath impact craters of laboratory experiments. Meteoritics & Planetary Science48, doi: doi: 10.1111/maps.12000. Holsapple K. A. and Schmidt R. M.1982. On the scaling of crater dimensions 2. Impact processes. Journal of Geophysical Research87:1849-1870. Lexow B., Wickert M., Thoma K., Schäfer F., Poelchau M. H., and Kenkmann T. 2013. The extra-large light-gas gun of the Fraunhofer EMI: Applications for impact cratering research. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.01427.x. 2009; 44 2013; 48 2011 2007; 187 2007; 188 1993; 21 1987; 5 1986; 13 1984; 89 2002; 155 1975 2007 2006 1994 2007; 190 2004 1994; 29 2011; 39 1993; 105 2007; 55 1977; 82 1977 1987; 69 1963; 261 1971; 76 2006; 41 2005; 360 2000 1984; 59 2006; 43 1967; 2 1993; 98 1982; 87 1987 1994; 99 2011; 63 1963 1962 2011; 46 2006; 180 1980 2007; 42 1973; 6 2012; 117 1976; 59 2003; 341 2009; 325 2003; 163 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Sommer F. (e_1_2_8_55_1) 2013; 48 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 Oberbeck V. R (e_1_2_8_44_1) 1977 e_1_2_8_50_1 |
References_xml | – volume: 6 start-page: 32 year: 1973 end-page: 44 article-title: Displaced mass, depth, diameter, and effects of oblique trajectories for impact craters formed in dense crystalline rocks publication-title: The Moon – volume: 5 start-page: 543 year: 1987 end-page: 560 article-title: Some recent advances in the scaling of impact and explosion cratering publication-title: International Journal of Impact Engineering – start-page: 543 year: 1963 end-page: 576 – volume: 41 start-page: 1587 year: 2006 end-page: 1603 article-title: Ries and Chicxulub: Impact craters on Earth provide insights for Martian ejecta blankets publication-title: Meteoritics & Planetary Science – volume: 63 start-page: 1763 year: 2011 end-page: 1786 article-title: Weathering behaviour and construction suitability of dimension stones from the Drei Gleichen area (Thuringia, Germany) publication-title: Environmental Earth Sciences – volume: 42 start-page: 1905 year: 2007 end-page: 1914 article-title: Laboratory impacts into dry and wet sandstone with and without an overlying layer: Implications for scaling laws and projectile survivability publication-title: Meteoritics & Planetary Science – volume: 187 start-page: 345 year: 2007 end-page: 356 article-title: A crater and its ejecta: An interpretation of deep impact publication-title: Icarus – volume: 44 start-page: 1967 year: 2009 end-page: 1984 article-title: A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact publication-title: Meteoritics & Planetary Science – volume: 39 start-page: 179 year: 2011 end-page: 182 article-title: Kamil crater (Egypt): Ground truth for small‐scale meteorite impacts on Earth publication-title: Geology – volume: 89 start-page: 4077 year: 1984 end-page: 4114 article-title: Subcritical crack growth in geological materials publication-title: Journal of Geophysical Research – volume: 48 year: 2013 article-title: Crater morphology in sandstone targets: The MEMIN impact parameter study publication-title: Meteoritics & Planetary Science – year: 1994 – volume: 59 start-page: 234 year: 1984 end-page: 260 article-title: Impact ejection, spallation, and the origin of meteorites publication-title: Icarus – volume: 325 start-page: 58 year: 2009 end-page: 61 article-title: H O at the Phoenix landing site publication-title: Science – volume: 29 start-page: 155 year: 1994 end-page: 181 article-title: Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory publication-title: Meteoritics – volume: 48 year: 2013 article-title: Application of non‐destructive testing methods to study the damage zone underneath impact craters of laboratory experiments publication-title: Meteoritics & Planetary Science – volume: 341 start-page: 192 year: 2003 end-page: 198 article-title: Oblique incidence hypervelocity impacts on rock publication-title: Monthly Notices of the Royal Astronomical Society – start-page: 45 year: 1977 end-page: 64 – volume: 98 start-page: 1185 year: 1993 end-page: 1203 article-title: Impact‐induced tensional failure in rock publication-title: Journal of Geophysical Research – year: 2004 – volume: 48 year: 2013 article-title: Propagation of impact‐induced shock waves in porous sandstone using mesoscale modeling publication-title: Meteoritics & Planetary Science – volume: 55 start-page: 70 year: 2007 end-page: 88 article-title: Ejecta velocity distribution for impact cratering experiments on porous and low strength targets publication-title: Planetary and Space Science – volume: 190 start-page: 295 year: 2007 end-page: 333 article-title: The Deep Impact oblique impact cratering experiment publication-title: Icarus – volume: 188 start-page: 506 year: 2007 end-page: 521 article-title: Non‐intrusive measurements of crater growth publication-title: Icarus – start-page: 429 year: 1987 end-page: 475 – volume: 48 year: 2013 article-title: Deformation of dry and wet sandstone targets during hyper‐velocity impact experiments, as revealed from the MEMIN program publication-title: Meteoritics & Planetary Science – volume: 360 start-page: 769 year: 2005 end-page: 781 article-title: Impact craters on small icy bodies such as icy satellites and comet nuclei publication-title: Monthly Notices of the Royal Astronomical Society – volume: 48 year: 2013 article-title: Hypervelocity impacts on dry and wet sandstone: Observations of ejecta dynamics and crater growth publication-title: Meteoritics & Planetary Science – volume: 87 start-page: 1849 year: 1982 end-page: 1870 article-title: On the scaling of crater dimensions 2. Impact processes publication-title: Journal of Geophysical Research – start-page: 1251 year: 2000 end-page: 1254 – start-page: 367 year: 1963 end-page: 400 – volume: 99 start-page: 15529 year: 1994 end-page: 15537 article-title: Shock wave profile study of tuff from the Nevada Test Site publication-title: Journal of Geophysical Research – start-page: 106 year: 1962 end-page: 112 – volume: 48 year: 2013 article-title: Chemical modification of projectile residues and target material in a MEMIN cratering experiment publication-title: Meteoritics & Planetary Science – volume: 2 year: 1967 – volume: 82 start-page: 4055 year: 1977 end-page: 4065 article-title: Martian craters and emplacement of ejecta by surface flows publication-title: Journal of Geophysical Research – volume: 46 start-page: 890 year: 2011 end-page: 902 article-title: Impact cratering in sandstone: The MEMIN pilot study on the effect of pore water publication-title: Meteoritics & Planetary Science – year: 2007 – volume: 105 start-page: 216 year: 1993 end-page: 224 article-title: Target porosity effects in impact cratering and collisional disruption publication-title: Icarus – volume: 59 start-page: 41 year: 1976 end-page: 93 article-title: Shock processes in porous quartzite: Transmission electron microscope observations and theory publication-title: Contributions to Mineralogy and Petrology – volume: 261 start-page: 668 year: 1963 end-page: 682 article-title: Hypervelocity impact of steel into Coconino sandstone publication-title: American Journal of Science – volume: 76 start-page: 1993 year: 1971 end-page: 2011 article-title: Influence of water in rocks on effects of underground nuclear explosions publication-title: Journal of Geophysical Research – volume: 13 start-page: 745 year: 1986 end-page: 748 article-title: Small‐scale impacts into rock: An evaluation of the effects of target temperature on experimental results publication-title: Geophysical Research Letters – volume: 117 start-page: E00H10 year: 2012 article-title: How old are young lunar craters? publication-title: Journal of Geophysical Research – volume: 48 year: 2013 article-title: Deformation and melting of steel projectiles in hypervelocity cratering experiments publication-title: Meteoritics & Planetary Science – volume: 180 start-page: 514 year: 2006 end-page: 527 article-title: A strain‐based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets publication-title: Icarus – volume: 44 start-page: 985 year: 2009 end-page: 1000 article-title: The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage publication-title: Meteoritics & Planetary Science – start-page: 2099 year: 1980 end-page: 2128 – volume: 155 start-page: 475 year: 2002 end-page: 485 article-title: Velocity scaling of impact craters in water ice over the range 1–7.3 km/s publication-title: Icarus – volume: 43 start-page: 1153 year: 2006 end-page: 1162 article-title: Application of Mohr–Coulomb failure theory to very porous sandy shales publication-title: International Journal of Rock Mechanics & Mining Sciences – start-page: 2379 year: 1980 end-page: 2401 – volume: 163 start-page: 102 year: 2003 end-page: 119 article-title: Impact cratering on porous asteroids publication-title: Icarus – year: 2006 – start-page: 2621 year: 1975 end-page: 2644 – volume: 48 year: 2013 article-title: The extra‐large light‐gas gun of the Fraunhofer EMI: Applications for impact cratering research publication-title: Meteoritics & Planetary Science – volume: 48 year: 2013 article-title: First MEMIN shock recovery experiments in dry, porous sandstone at low shock pressure (5–12.5 GPa) publication-title: Meteoritics & Planetary Science – start-page: 1 year: 2011 end-page: 16 – volume: 21 start-page: 333 year: 1993 end-page: 373 article-title: The scaling of impact processes in planetary sciences publication-title: Annual Review of Earth and Planetary Science – volume: 48 year: 2013 article-title: Ejection behavior characteristics of experimental impacts into dry and wet sandstone: Results from the MEMIN research unit publication-title: Meteoritics & Planetary Science – volume: 69 start-page: 506 year: 1987 end-page: 518 article-title: Impact experiments in low‐temperature ice publication-title: Icarus – ident: e_1_2_8_31_1 doi: 10.1111/maps.12018 – ident: e_1_2_8_7_1 doi: 10.1111/j.1365-2966.2005.09122.x – ident: e_1_2_8_59_1 doi: 10.1016/j.icarus.2005.10.013 – ident: e_1_2_8_30_1 doi: 10.1111/j.1945-5100.2011.01200.x – ident: e_1_2_8_23_1 doi: 10.1146/annurev.ea.21.050193.002001 – ident: e_1_2_8_22_1 – ident: e_1_2_8_36_1 doi: 10.1111/j.1945-5100.2012.01427.x – ident: e_1_2_8_4_1 doi: 10.1111/j.1945-5100.2007.tb00549.x – ident: e_1_2_8_43_1 doi: 10.1111/maps.12000 – ident: e_1_2_8_53_1 doi: 10.1126/science.1172339 – ident: e_1_2_8_18_1 doi: 10.1111/j.1945-5100.2012.01430.x – ident: e_1_2_8_27_1 doi: 10.1016/S0019-1035(03)00024-1 – ident: e_1_2_8_40_1 doi: 10.1016/j.pss.2006.05.002 – ident: e_1_2_8_8_1 doi: 10.1046/j.1365-8711.2003.06385.x – ident: e_1_2_8_42_1 doi: 10.3133/ofr63100 – ident: e_1_2_8_33_1 doi: 10.1111/maps.12030 – ident: e_1_2_8_14_1 doi: 10.1130/G31624.1 – ident: e_1_2_8_28_1 doi: 10.1111/j.1945-5100.2006.tb00437.x – ident: e_1_2_8_35_1 doi: 10.1016/0019-1035(87)90020-0 – ident: e_1_2_8_20_1 doi: 10.1063/1.1303688 – ident: e_1_2_8_11_1 doi: 10.1111/maps.12024 – ident: e_1_2_8_25_1 doi: 10.1016/j.icarus.2006.08.029 – ident: e_1_2_8_49_1 doi: 10.1016/0734-743X(87)90069-8 – ident: e_1_2_8_10_1 doi: 10.1029/JS082i028p04055 – ident: e_1_2_8_39_1 doi: 10.1002/9780470172278 – ident: e_1_2_8_34_1 – ident: e_1_2_8_19_1 doi: 10.1029/2011JE003935 – ident: e_1_2_8_48_1 – ident: e_1_2_8_38_1 doi: 10.1016/0019-1035(84)90026-5 – ident: e_1_2_8_2_1 doi: 10.1029/92JE02679 – ident: e_1_2_8_56_1 doi: 10.1111/j.1945-5100.1994.tb00670.x – ident: e_1_2_8_29_1 doi: 10.1111/j.1945-5100.2009.tb00783.x – ident: e_1_2_8_50_1 doi: 10.1016/j.icarus.2007.06.006 – ident: e_1_2_8_13_1 doi: 10.1029/94JB00726 – ident: e_1_2_8_9_1 doi: 10.1029/JB076i008p01993 – ident: e_1_2_8_57_1 doi: 10.1007/s12665-011-1043-7 – ident: e_1_2_8_12_1 doi: 10.1111/j.1945-5100.2012.1429.x – ident: e_1_2_8_26_1 doi: 10.1029/JB087iB03p01849 – ident: e_1_2_8_5_1 doi: 10.1016/j.icarus.2007.01.009 – ident: e_1_2_8_54_1 doi: 10.1029/GL013i008p00745 – ident: e_1_2_8_52_1 doi: 10.1006/icar.2001.6734 – ident: e_1_2_8_47_1 – volume: 48 year: 2013 ident: e_1_2_8_55_1 article-title: Ejection behavior characteristics of experimental impacts into dry and wet sandstone: Results from the MEMIN research unit publication-title: Meteoritics & Planetary Science contributor: fullname: Sommer F. – ident: e_1_2_8_51_1 doi: 10.2475/ajs.261.7.668 – ident: e_1_2_8_21_1 doi: 10.1111/maps.12044 – ident: e_1_2_8_37_1 doi: 10.1006/icar.1993.1119 – ident: e_1_2_8_58_1 doi: 10.1111/j.1945-5100.2009.tb02006.x – ident: e_1_2_8_45_1 doi: 10.1016/j.ijrmms.2006.03.007 – ident: e_1_2_8_16_1 – ident: e_1_2_8_15_1 doi: 10.1007/BF02630651 – ident: e_1_2_8_60_1 – ident: e_1_2_8_24_1 – ident: e_1_2_8_17_1 doi: 10.1016/B978-0-12-066266-1.50015-6 – ident: e_1_2_8_41_1 – ident: e_1_2_8_46_1 – ident: e_1_2_8_32_1 doi: 10.1007/BF00375110 – ident: e_1_2_8_6_1 doi: 10.1111/j.1945-5100.2012.01431.x – start-page: 45 volume-title: Impact and explosion cratering year: 1977 ident: e_1_2_8_44_1 contributor: fullname: Oberbeck V. R – ident: e_1_2_8_61_1 doi: 10.1115/1.3607836 – ident: e_1_2_8_3_1 doi: 10.1029/JB089iB06p04077 |
SSID | ssj0035134 |
Score | 2.374519 |
Snippet | – The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and... Abstract– The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and... Abstract- The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 8 |
SubjectTerms | Aluminum Craters Efficiency Experiments Impact analysis Porosity Projectiles Sandstones Saturation Spalling Studies |
Title | The MEMIN research unit: Scaling impact cratering experiments in porous sandstones |
URI | https://api.istex.fr/ark:/67375/WNG-L8QD4XJ6-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmaps.12016 https://www.proquest.com/docview/1274702310 https://search.proquest.com/docview/1671470720 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-Ll58i_VFRPEgVJq2m7biZfGxIu6iruLeQtImKLK7YlzQf-9M2u7qRRBvpU1DmMlk5ptkvhCyn4MPStIi8jNeKD-WSegrWQBKKQBrBEZL6YrCLrtJp5eenSNNzkldC1PyQ4wTbmgZbr1GA5fKfjPyvny1Rwz8F_JtA0xw9RvRTb0MR41qSxlidh98cFZxk-IxnsmvP7zRLAr240eo-T1gdR7nYuF_Y10k81WkSZvl1FgiU3qwTNabFnPfw_4nPaDuuUxt2BVyBzOGtkEtHVoxAD3RERj8Me2CHsHD0bKikubILoHpQDq5HsDS5wGFUH44stRi9TByfNtV8nBxfn966Vc3Lvgy5gzkxLhETrw81EGiikBLw0CRvNGIdBTkAbyNNVOGh5kBOKtkmsnQGIA8Kko5M9EamRlA_-uEGtA0BJsGHKCKc5WpSOqCw2ogAwDFknlkr5a8eC2JNUQNSFBcwonLIwdOKeMm8u0Fj6IlDfHYaYnr9PYs7l1x0fLIVq01UVkhdgFgCQnuAo_sjj-D_eCmiBxokIlgPGHQKAmhzaHT4S_DEe3mTdc9bfyl8SaZC90tGpi52SIz728jvU2mbTHacXP2C3Hj7Xs |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8CeoAL2_gQZYwZgTggZYqT1EmQOFRQWra2Asq03iw7sbUJURBZpfHf856TtHCZhLhFyYtlvQ-_D_v9DHCQoQ-Kkzz0UpFrL1Jx4GmVY5aSY67hW6OUawrrjeLhODnrEEzOSd0LU-JDzApuZBluvSYDp4L0Cyu_Uw_FN44OTCxCIxKoidTBEV7WC3HYqjaVMWr30AunFTopHeSZ__vKHzWItf9eBZsvQ1bnc84_vHO2H2G1CjZZu9SOT7BgJmuw1S6o_H1_98QOmXsuqxvFOlyj0rABSmbIKhCg32yKNn_MRihKdHKsbKpkGQFMUEWQzW8IKNifCcNo_n5asIIaiAnmu9iAn-edm9OeV1264KlIcGQUF4pg8bLA-LHOfaMsR1mKVis0oZ_5-DYyXFsRpBYzWq2SVAXWYtajw0RwG27C0gTH3wJmUdgYb1r0gTrKdKpDZXKBC4LyMS9WvAn7NevlQ4mtIeuchNglHbuacOikMiNRj7d0Gi1uyV_DruwnV2fR-LuQ3Sbs1GKTlSHSEJgvEcad34S92Wc0IdoXURODPJFcxByJ4gBpjpwQ_zMdOWhfjtzT9luIv8Jy72bQl_2L4Y_PsBK4SzWokLMDS38fp-YLLBb5dNcp8DN3RfGj |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xIU17gQGb6MbAaIgHpKA4Tp1k2ku1Uj4GVUeH4M2yE1sgRKkIleC_352TFHhBQrxZydmy7ny-D_t-BtjK0QYlaSGCTBYmiHUSBUYXGKUUGGuEzmrti8IOhkn_Iu3uEUzOr6YWpsKHmCbcSDP8fk0KPi7cMyW_0eNyl6P9krMwH6MfTsj5QgyafVi06zNldNoDNMJZDU5K93ie-r4wR_PE2YcXvuZzj9WbnN7i-yb7CRZqV5N1qrWxBDN2tAyrnZKS37c3j2yb-XaV2yhX4BSXDDtBufRZDQF0ySao8T_ZEAWJJo5VJZUsJ3gJygeyp_cBSnY1YujL305KVlL5MIF8l5_hrLf37_dBUD-5EOhYcuQTl5pA8fLIhokpQqsdR0nKdltYEeYhfo0tN05GmcN41ug005FzGPMYkUruxBeYG-H4q8Acihq9TYcW0MS5yYzQtpC4HegQo2LNW_Cj4bwaV8gaqolIiF3Ks6sF214oUxJ9d0130ZK2Ou_vq-P0bze-OJJqvwVrjdRUrYY0BEZLhHAXtmBz-hsViE5F9MgiTxSXCUeiJEKaHS_DV6ajTjqDoW99fQvxBnwYdHvq-LD_5xt8jPyLGpTFWYO5-7uJ_Q6zZTFZ98v3P5KW8Ek |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+MEMIN+research+unit%3A+Scaling+impact+cratering+experiments+in+porous+sandstones&rft.jtitle=Meteoritics+%26+planetary+science&rft.au=POELCHAU%2C+Michael+H.&rft.au=KENKMANN%2C+Thomas&rft.au=THOMA%2C+Klaus&rft.au=HOERTH%2C+Tobias&rft.date=2013-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1086-9379&rft.eissn=1945-5100&rft.volume=48&rft.issue=1&rft.spage=8&rft.epage=22&rft_id=info:doi/10.1111%2Fmaps.12016&rft.externalDBID=10.1111%252Fmaps.12016&rft.externalDocID=MAPS12016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1086-9379&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1086-9379&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1086-9379&client=summon |