The MEMIN research unit: Scaling impact cratering experiments in porous sandstones

– The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the...

Full description

Saved in:
Bibliographic Details
Published in:Meteoritics & planetary science Vol. 48; no. 1; pp. 8 - 22
Main Authors: POELCHAU, Michael H., KENKMANN, Thomas, THOMA, Klaus, HOERTH, Tobias, DUFRESNE, Anja, SCHÄFER, Frank
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-01-2013
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract – The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12 mm were accelerated to velocities of 2.5–7.8 km s−1, yielding craters with diameters between 3.9 and 40 cm. Results show that the target’s porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger‐scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size.
AbstractList Abstract- The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12mm were accelerated to velocities of 2.5-7.8kms-1, yielding craters with diameters between 3.9 and 40cm. Results show that the target's porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger-scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size. [PUBLICATION ABSTRACT]
Abstract– The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12 mm were accelerated to velocities of 2.5–7.8 km s −1 , yielding craters with diameters between 3.9 and 40 cm. Results show that the target’s porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger‐scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size.
Abstract- The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12mm were accelerated to velocities of 2.5-7.8kms super(-1), yielding craters with diameters between 3.9 and 40cm. Results show that the target's porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger-scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size.
– The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12 mm were accelerated to velocities of 2.5–7.8 km s−1, yielding craters with diameters between 3.9 and 40 cm. Results show that the target’s porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger‐scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size.
Author DUFRESNE, Anja
SCHÄFER, Frank
KENKMANN, Thomas
THOMA, Klaus
POELCHAU, Michael H.
HOERTH, Tobias
Author_xml – sequence: 1
  givenname: Michael H.
  surname: POELCHAU
  fullname: POELCHAU, Michael H.
  email: michael.poelchau@geologie.uni-freiburg.de
  organization: Institut für Geowissenschaften, Albertstraße 23b, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
– sequence: 2
  givenname: Thomas
  surname: KENKMANN
  fullname: KENKMANN, Thomas
  organization: Institut für Geowissenschaften, Albertstraße 23b, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
– sequence: 3
  givenname: Klaus
  surname: THOMA
  fullname: THOMA, Klaus
  organization: Fraunhofer-Institut für Kurzzeitdynamik Ernst-Mach Institut, EMI, Eckerstraße 4; 79104 Freiburg, Germany
– sequence: 4
  givenname: Tobias
  surname: HOERTH
  fullname: HOERTH, Tobias
  organization: Fraunhofer-Institut für Kurzzeitdynamik Ernst-Mach Institut, EMI, Eckerstraße 4; 79104 Freiburg, Germany
– sequence: 5
  givenname: Anja
  surname: DUFRESNE
  fullname: DUFRESNE, Anja
  organization: Institut für Geowissenschaften, Albertstraße 23b, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
– sequence: 6
  givenname: Frank
  surname: SCHÄFER
  fullname: SCHÄFER, Frank
  organization: Fraunhofer-Institut für Kurzzeitdynamik Ernst-Mach Institut, EMI, Eckerstraße 4; 79104 Freiburg, Germany
BookMark eNp9kE9PwzAMxSM0JBhw4RNE4oKQCnHTJi03BGMMbfzbENyirHOh0KYl6cT49mQMOHDAF1vW71nPr0s6pjZIyC6wQ_B1VOnGHULIQKyRTUijOIiBsY6fWSKClMt0g3Sde2GMx8CjTXI3eUY66o0GV9SiQ22zZzo3RXtMx5kuC_NEi6rRWUszq1u0ywUuGj9UaFpHC0Ob2tZzR502M9d6N26brOe6dLjz3bfI_XlvcnoRDK_7g9OTYaAjAd4MCM2kjLMQmZzOGOockhkXccyRs4z5bYQwzUWY5qGMpjpJdZjnMuZTngjI-RbZX91tbP02R9eqqnAZlqU26B0pEBIiyWTIPLr3B32p59Z4dwr8bclCDkvqYEVltnbOYq4a_6e2HwqYWsarlvGqr3g9DCv4vSjx4x9SjU5uxj-aYKUpXIuLX422r0pILmP1cNVXw-T2LHq8FKrPPwGhOIyx
CODEN MPSCFY
CitedBy_id crossref_primary_10_1016_j_ijimpeng_2017_04_008
crossref_primary_10_1016_j_ijimpeng_2024_104965
crossref_primary_10_1016_j_proeng_2015_04_027
crossref_primary_10_3390_app10041393
crossref_primary_10_1016_j_jsg_2017_03_007
crossref_primary_10_1111_maps_13048
crossref_primary_10_1111_maps_13003
crossref_primary_10_3390_geosciences11090395
crossref_primary_10_1111_maps_12712
crossref_primary_10_1111_j_1945_5100_2012_01430_x
crossref_primary_10_1111_maps_12030
crossref_primary_10_1016_j_pss_2014_03_010
crossref_primary_10_1061__ASCE_AS_1943_5525_0001110
crossref_primary_10_1016_j_pss_2017_09_001
crossref_primary_10_1016_j_tecto_2014_07_030
crossref_primary_10_1111_maps_13080
crossref_primary_10_1016_j_icarus_2022_114945
crossref_primary_10_1007_s10035_019_0988_1
crossref_primary_10_1016_j_pss_2020_105141
crossref_primary_10_1111_maps_12948
crossref_primary_10_1016_j_earscirev_2022_104112
crossref_primary_10_1016_j_icarus_2018_09_006
crossref_primary_10_1111_maps_12907
crossref_primary_10_1038_s41586_020_2846_z
crossref_primary_10_1111_maps_12024
crossref_primary_10_1111_maps_13113
crossref_primary_10_3390_app10113910
crossref_primary_10_14489_glc_2023_05_pp_014_022
crossref_primary_10_1016_j_ijimpeng_2015_03_009
crossref_primary_10_1029_2018JE005841
crossref_primary_10_1016_j_ijimpeng_2018_08_008
crossref_primary_10_1016_j_ijimpeng_2016_08_003
crossref_primary_10_1002_2017JE005283
crossref_primary_10_1111_j_1945_5100_2012_01427_x
crossref_primary_10_1002_2014JE004616
crossref_primary_10_1016_j_jsames_2013_03_007
crossref_primary_10_1088_0004_637X_797_1_30
crossref_primary_10_1016_j_dt_2018_07_012
crossref_primary_10_1016_j_pss_2013_06_010
crossref_primary_10_1111_maps_12694
crossref_primary_10_1111_maps_12892
crossref_primary_10_1016_j_jsg_2024_105082
crossref_primary_10_1111_maps_12017
crossref_primary_10_1029_2018JB017128
crossref_primary_10_1111_maps_12018
crossref_primary_10_1016_j_icarus_2014_04_039
crossref_primary_10_1016_j_earscirev_2020_103321
crossref_primary_10_1016_j_ijsolstr_2018_04_024
crossref_primary_10_1111_j_1945_5100_2012_01431_x
crossref_primary_10_1016_j_gca_2016_07_018
crossref_primary_10_1016_j_ijimpeng_2020_103499
crossref_primary_10_1111_j_1945_5100_2012_1429_x
crossref_primary_10_1007_s12517_014_1672_8
crossref_primary_10_1111_maps_12406
crossref_primary_10_1007_s10717_023_00580_y
crossref_primary_10_1016_j_icarus_2014_08_018
crossref_primary_10_1007_s00603_016_1010_4
crossref_primary_10_1111_maps_13179
crossref_primary_10_1098_rsos_220029
crossref_primary_10_1016_j_icarus_2017_05_010
crossref_primary_10_1111_maps_13133
crossref_primary_10_1111_maps_12000
crossref_primary_10_1111_maps_12044
crossref_primary_10_1111_maps_12682
crossref_primary_10_1111_maps_12560
crossref_primary_10_1016_j_gca_2014_02_034
crossref_primary_10_1016_j_jsg_2013_08_007
Cites_doi 10.1111/maps.12018
10.1111/j.1365-2966.2005.09122.x
10.1016/j.icarus.2005.10.013
10.1111/j.1945-5100.2011.01200.x
10.1146/annurev.ea.21.050193.002001
10.1111/j.1945-5100.2012.01427.x
10.1111/j.1945-5100.2007.tb00549.x
10.1111/maps.12000
10.1126/science.1172339
10.1111/j.1945-5100.2012.01430.x
10.1016/S0019-1035(03)00024-1
10.1016/j.pss.2006.05.002
10.1046/j.1365-8711.2003.06385.x
10.3133/ofr63100
10.1111/maps.12030
10.1130/G31624.1
10.1111/j.1945-5100.2006.tb00437.x
10.1016/0019-1035(87)90020-0
10.1063/1.1303688
10.1111/maps.12024
10.1016/j.icarus.2006.08.029
10.1016/0734-743X(87)90069-8
10.1029/JS082i028p04055
10.1002/9780470172278
10.1029/2011JE003935
10.1016/0019-1035(84)90026-5
10.1029/92JE02679
10.1111/j.1945-5100.1994.tb00670.x
10.1111/j.1945-5100.2009.tb00783.x
10.1016/j.icarus.2007.06.006
10.1029/94JB00726
10.1029/JB076i008p01993
10.1007/s12665-011-1043-7
10.1111/j.1945-5100.2012.1429.x
10.1029/JB087iB03p01849
10.1016/j.icarus.2007.01.009
10.1029/GL013i008p00745
10.1006/icar.2001.6734
10.2475/ajs.261.7.668
10.1111/maps.12044
10.1006/icar.1993.1119
10.1111/j.1945-5100.2009.tb02006.x
10.1016/j.ijrmms.2006.03.007
10.1007/BF02630651
10.1016/B978-0-12-066266-1.50015-6
10.1007/BF00375110
10.1111/j.1945-5100.2012.01431.x
10.1115/1.3607836
10.1029/JB089iB06p04077
ContentType Journal Article
Copyright The Meteoritical Society, 2013
Copyright_xml – notice: The Meteoritical Society, 2013
DBID BSCLL
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
7QF
JG9
DOI 10.1111/maps.12016
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Aluminium Industry Abstracts
Materials Research Database
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Materials Research Database
Aluminium Industry Abstracts
DatabaseTitleList Aerospace Database
CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1945-5100
EndPage 22
ExternalDocumentID 2874572841
10_1111_maps_12016
MAPS12016
ark_67375_WNG_L8QD4XJ6_G
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
2WC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FRP
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LC2
LC3
LDC
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
RNP
ROL
RX1
SAMSI
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WUPDE
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~WT
AETEA
AAMNL
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
7QF
JG9
ID FETCH-LOGICAL-a4616-916a0775c2e07bd0eaf18d36553e30c0e074e1bf629f274ba89a2ff753b3861f3
IEDL.DBID 33P
ISSN 1086-9379
IngestDate Fri Aug 16 21:54:57 EDT 2024
Thu Oct 10 17:35:00 EDT 2024
Thu Nov 21 21:23:08 EST 2024
Sat Aug 24 00:56:00 EDT 2024
Wed Oct 30 09:50:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4616-916a0775c2e07bd0eaf18d36553e30c0e074e1bf629f274ba89a2ff753b3861f3
Notes istex:170908F9C3B66BFB8B0C0BF481D1926855320A24
ArticleID:MAPS12016
ark:/67375/WNG-L8QD4XJ6-G
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1274702310
PQPubID 1016381
PageCount 15
ParticipantIDs proquest_miscellaneous_1671470720
proquest_journals_1274702310
crossref_primary_10_1111_maps_12016
wiley_primary_10_1111_maps_12016_MAPS12016
istex_primary_ark_67375_WNG_L8QD4XJ6_G
PublicationCentury 2000
PublicationDate 2013-01
January 2013
2013-01-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Hoboken
PublicationTitle Meteoritics & planetary science
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Carr M. H., Crumpler L. A., Cutts J. A., Greeley R., Guest J. E., and Masursky H.1977. Martian craters and emplacement of ejecta by surface flows. Journal of Geophysical Research82:4055-4065.
Kenkmann T. and Schönian F.2006. Ries and Chicxulub: Impact craters on Earth provide insights for Martian ejecta blankets. Meteoritics & Planetary Science41:1587-1603.
Meyers M. A. 1994. Dynamic behavior of materials. New York: John Wiley & Sons, Inc. 668 p.
Shoemaker E. M.1963. Hypervelocity impact of steel into Coconino sandstone. American Journal of Science261:668-682.
Kenkmann T., Artemieva N. A., Wünnemann K., Poelchau M. H., Elbeshausen D., and Núñez del Prado H.2009. The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage. Meteoritics & Planetary Science44:985-1000.
Smith P. H., Tamppari L. K., Arvidson R. E., Bass D., Blaney D., Boynton W. V., Carswell A., Catling D. C., Clark B. C., Duck T., DeJong E., Fisher D., Goetz W., Gunnlaugsson H. P., Hecht M. H., Hipkin V., Hoffman J., Hviid S. F., Keller H. U., Kounaves S. P., Lange C. F., Lemmon M. T., Madsen M. B., Markiewicz W. J., Marshall J., McKay C. P., Mellon M. T., Ming D. W., Morris R. V., Pike W. T., Renno N., Staufer U., Stoker C., Taylor P., Whiteway J. A., and Zent A. P.2009. H2O at the Phoenix landing site. Science325:58-61.
Stöffler D. and Langenhorst F.1994. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics29:155-181.
Dufresne A., Poelchau M. H., Kenkmann T., Deutsch A., Hoerth T., Schäfer F., and Thoma K. 2013. Crater morphology in sandstone targets: The MEMIN impact parameter study. Meteoritics & Planetary Science48, doi: 10.1111/maps.12024.
Ebert M., Hecht L., Deutsch A., and Kenkmann T.2013. Chemical modification of projectile residues and target material in a MEMIN cratering experiment. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.1429.x.
Folco L., Di Martino M., El Barkooky A., D'Orazio M., Lethy A., Urbini S., Nicolosi I., Hafez M., Cordier C., van Ginneken M., Zeoli A., Radwan A. M., El Khrepy S., El Gabry M., Gomaa M., Barakat A. A., Serra R., and El Sharkawi M.2011. Kamil crater (Egypt): Ground truth for small-scale meteorite impacts on Earth. Geology39:179-182. doi: 10.1130/G31624. 1.
Melosh H. J.1984. Impact ejection, spallation, and the origin of meteorites. Icarus59:234-260.
Güldemeister N., Durr N., Wünnemann K., and Hiermaier S. 2013. Propagation of impact-induced shock waves in porous sandstone using mesoscale modeling. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.01430.x
Housen K. R. and Holsapple K. A.2003. Impact cratering on porous asteroids. Icarus163:102-119.
Erskine D., Nellis W. J., and Weir S. T.1994. Shock wave profile study of tuff from the Nevada Test Site. Journal of Geophysical Research99:15529-15537.
Schultz P. H., Eberhardy C. A., Ernst C. M., A'Hearn M. F., Sunshine J. M., and Lisse C. M.2007. The Deep Impact oblique impact cratering experiment. Icarus190:295-333.
Atkinson B. K.1984. Subcritical crack growth in geological materials. Journal of Geophysical Research89:4077-4114.
Michikami T., Moriguchi K., Hasegawa S., and Fujiwara A.2007. Ejecta velocity distribution for impact cratering experiments on porous and low strength targets. Planetary and Space Science55:70-88.
Kieffer S., Phakey P. P., and Christie J. M.1976. Shock processes in porous quartzite: Transmission electron microscope observations and theory. Contributions to Mineralogy and Petrology59:41-93.
Hiesinger H., van der Bogert C. H., Pasckert J. H., Funcke L., Giacomini L., Ostrach L. R., and Robinson M. S.2012. How old are young lunar craters?Journal of Geophysical Research, 117:E00H10. doi:10.1029/2011JE003935.
Gault D. E.1973. Displaced mass, depth, diameter, and effects of oblique trajectories for impact craters formed in dense crystalline rocks. The Moon6:32-44.
Hoerth T., Schäfer F., Thoma K., Kenkmann T., Poelchau M. H., Lexow B., and Deutsch A.2013. Hypervelocity impacts on dry and wet sandstone: Observations of ejecta dynamics and crater growth. Meteoritics & Planetary Science48, doi: 10.1111/maps.12044.
Lange M. A. and Ahrens T. J.1987. Impact experiments in low-temperature ice. Icarus69:506-518.
Ahrens T. J. and Rubin A. M.1993. Impact-induced tensional failure in rock. Journal of Geophysical Research98:1185-1203.
Smrekar S., Cintala M. J., and Hörz F.1986. Small-scale impacts into rock: An evaluation of the effects of target temperature on experimental results. Geophysical Research Letters13:745-748.
Stück H., Siegesmund S., and Rüdrich J.2011. Weathering behaviour and construction suitability of dimension stones from the Drei Gleichen area (Thuringia, Germany). Environmental Earth Sciences63:1763-1786.
Wünnemann K., Collins G. S., and Melosh H. J.2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus180:514-527.
Sommer F., Reiser F., Dufresne A., Poelchau M. H., Hoerth T., Deutsch A., Kenkmann T., and Thoma K.2013. Ejection behavior characteristics of experimental impacts into dry and wet sandstone: Results from the MEMIN research unit. Meteoritics & Planetary Science48, doi: 10.1111/maps.12017.
Palchik V.2006. Application of Mohr-Coulomb failure theory to very porous sandy shales. International Journal of Rock Mechanics & Mining Sciences43:1153-1162.
Barnouin-Jha O. S., Yamamoto S., Toriumi T., Sugita S., and Matsui T.2007. Non-intrusive measurements of crater growth. Icarus188:506-521.
Kowitz A., Schmitt R. T., Reimold W. U., and Hornemann U. 2013. First MEMIN shock recovery experiments in dry, porous sandstone at low shock pressure (5-12.5 GPa). Meteoritics & Planetary Science48, doi: 10.1111/maps.12030.
Baldwin E. C., Milner D. J., Burchell M. J., and Crawford I. A.2007. Laboratory impacts into dry and wet sandstone with and without an overlying layer: Implications for scaling laws and projectile survivability. Meteoritics & Planetary Science42:1905-1914.
Tancredi G., Ishitsuka J., Schultz P. H., Harris R. S., Brown P., Revelle D. O., Antier K., Le Pichon A., Rosales D., Vidal E., Varela M. E., Sánchez L., Benavente S., Bojorquez J., Cabezas D., and Dalmau A.2009. A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact. Meteoritics & Planetary Science44:1967-1984.
Buhl E., Poelchau M. H., Dresen G., and Kenkmann T.2013. Deformation of dry and wet sandstone targets during hyper-velocity impact experiments, as revealed from the MEMIN program. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.01431.x.
Shrine N. R. G., Burchell M. J., and Grey I. D. S.2002. Velocity scaling of impact craters in water ice over the range 1-7.3 km/s. Icarus155:475-485.
Schmidt R. M. and Housen K. R.1987. Some recent advances in the scaling of impact and explosion cratering. International Journal of Impact Engineering5:543-560.
Burchell M. J. and Whitehorn L.2003. Oblique incidence hypervelocity impacts on rock. Monthly Notices of the Royal Astronomical Society341:192-198.
Zel'dovich Y. B., and Raizer Y. P. 1967. Physics of shock waves and high-temperature hydrodynamic phenomena, vol. 2. New York: Academic Press. 944 p.
Burchell M. J. and Johnson E.2005. Impact craters on small icy bodies such as icy satellites and comet nuclei. Monthly Notices of the Royal Astronomical Society360:769-781.
Butkovich T. R.1971. Influence of water in rocks on effects of underground nuclear explosions. Journal of Geophysical Research76:1993-2011.
Holsapple K. A. and Housen K. R.2007. A crater and its ejecta: An interpretation of deep impact. Icarus187:345-356.
Kenkmann T., Wünnemann K., Deutsch A., Poelchau M. H., Schäfer F., and Thoma K.2011. Impact cratering in sandstone: The MEMIN pilot study on the effect of pore water. Meteoritics & Planetary Science46:890-902.
Love S. G., Hörz F., and Brownlee D. E.1993. Target porosity effects in impact cratering and collisional disruption. Icarus105:216-224.
Holsapple K. A.1993. The scaling of impact processes in planetary sciences. Annual Review of Earth and Planetary Science21:333-373.
Kenkmann T., Trullenque G., Deutsch A., Hecht L., Ebert M., Salge T., Schäfer F., and Thoma K. 2013. Deformation and melting of steel projectiles in hypervelocity cratering experiments. Meteoritics & Planetary Science48, doi: 10.1111/maps.12018.
Moser D., Poelchau M. H., Stark F., and Grosse C. 2013. Application of non-destructive testing methods to study the damage zone underneath impact craters of laboratory experiments. Meteoritics & Planetary Science48, doi: doi: 10.1111/maps.12000.
Holsapple K. A. and Schmidt R. M.1982. On the scaling of crater dimensions 2. Impact processes. Journal of Geophysical Research87:1849-1870.
Lexow B., Wickert M., Thoma K., Schäfer F., Poelchau M. H., and Kenkmann T. 2013. The extra-large light-gas gun of the Fraunhofer EMI: Applications for impact cratering research. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.01427.x.
2009; 44
2013; 48
2011
2007; 187
2007; 188
1993; 21
1987; 5
1986; 13
1984; 89
2002; 155
1975
2007
2006
1994
2007; 190
2004
1994; 29
2011; 39
1993; 105
2007; 55
1977; 82
1977
1987; 69
1963; 261
1971; 76
2006; 41
2005; 360
2000
1984; 59
2006; 43
1967; 2
1993; 98
1982; 87
1987
1994; 99
2011; 63
1963
1962
2011; 46
2006; 180
1980
2007; 42
1973; 6
2012; 117
1976; 59
2003; 341
2009; 325
2003; 163
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Sommer F. (e_1_2_8_55_1) 2013; 48
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
Oberbeck V. R (e_1_2_8_44_1) 1977
e_1_2_8_50_1
References_xml – volume: 6
  start-page: 32
  year: 1973
  end-page: 44
  article-title: Displaced mass, depth, diameter, and effects of oblique trajectories for impact craters formed in dense crystalline rocks
  publication-title: The Moon
– volume: 5
  start-page: 543
  year: 1987
  end-page: 560
  article-title: Some recent advances in the scaling of impact and explosion cratering
  publication-title: International Journal of Impact Engineering
– start-page: 543
  year: 1963
  end-page: 576
– volume: 41
  start-page: 1587
  year: 2006
  end-page: 1603
  article-title: Ries and Chicxulub: Impact craters on Earth provide insights for Martian ejecta blankets
  publication-title: Meteoritics & Planetary Science
– volume: 63
  start-page: 1763
  year: 2011
  end-page: 1786
  article-title: Weathering behaviour and construction suitability of dimension stones from the Drei Gleichen area (Thuringia, Germany)
  publication-title: Environmental Earth Sciences
– volume: 42
  start-page: 1905
  year: 2007
  end-page: 1914
  article-title: Laboratory impacts into dry and wet sandstone with and without an overlying layer: Implications for scaling laws and projectile survivability
  publication-title: Meteoritics & Planetary Science
– volume: 187
  start-page: 345
  year: 2007
  end-page: 356
  article-title: A crater and its ejecta: An interpretation of deep impact
  publication-title: Icarus
– volume: 44
  start-page: 1967
  year: 2009
  end-page: 1984
  article-title: A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact
  publication-title: Meteoritics & Planetary Science
– volume: 39
  start-page: 179
  year: 2011
  end-page: 182
  article-title: Kamil crater (Egypt): Ground truth for small‐scale meteorite impacts on Earth
  publication-title: Geology
– volume: 89
  start-page: 4077
  year: 1984
  end-page: 4114
  article-title: Subcritical crack growth in geological materials
  publication-title: Journal of Geophysical Research
– volume: 48
  year: 2013
  article-title: Crater morphology in sandstone targets: The MEMIN impact parameter study
  publication-title: Meteoritics & Planetary Science
– year: 1994
– volume: 59
  start-page: 234
  year: 1984
  end-page: 260
  article-title: Impact ejection, spallation, and the origin of meteorites
  publication-title: Icarus
– volume: 325
  start-page: 58
  year: 2009
  end-page: 61
  article-title: H O at the Phoenix landing site
  publication-title: Science
– volume: 29
  start-page: 155
  year: 1994
  end-page: 181
  article-title: Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory
  publication-title: Meteoritics
– volume: 48
  year: 2013
  article-title: Application of non‐destructive testing methods to study the damage zone underneath impact craters of laboratory experiments
  publication-title: Meteoritics & Planetary Science
– volume: 341
  start-page: 192
  year: 2003
  end-page: 198
  article-title: Oblique incidence hypervelocity impacts on rock
  publication-title: Monthly Notices of the Royal Astronomical Society
– start-page: 45
  year: 1977
  end-page: 64
– volume: 98
  start-page: 1185
  year: 1993
  end-page: 1203
  article-title: Impact‐induced tensional failure in rock
  publication-title: Journal of Geophysical Research
– year: 2004
– volume: 48
  year: 2013
  article-title: Propagation of impact‐induced shock waves in porous sandstone using mesoscale modeling
  publication-title: Meteoritics & Planetary Science
– volume: 55
  start-page: 70
  year: 2007
  end-page: 88
  article-title: Ejecta velocity distribution for impact cratering experiments on porous and low strength targets
  publication-title: Planetary and Space Science
– volume: 190
  start-page: 295
  year: 2007
  end-page: 333
  article-title: The Deep Impact oblique impact cratering experiment
  publication-title: Icarus
– volume: 188
  start-page: 506
  year: 2007
  end-page: 521
  article-title: Non‐intrusive measurements of crater growth
  publication-title: Icarus
– start-page: 429
  year: 1987
  end-page: 475
– volume: 48
  year: 2013
  article-title: Deformation of dry and wet sandstone targets during hyper‐velocity impact experiments, as revealed from the MEMIN program
  publication-title: Meteoritics & Planetary Science
– volume: 360
  start-page: 769
  year: 2005
  end-page: 781
  article-title: Impact craters on small icy bodies such as icy satellites and comet nuclei
  publication-title: Monthly Notices of the Royal Astronomical Society
– volume: 48
  year: 2013
  article-title: Hypervelocity impacts on dry and wet sandstone: Observations of ejecta dynamics and crater growth
  publication-title: Meteoritics & Planetary Science
– volume: 87
  start-page: 1849
  year: 1982
  end-page: 1870
  article-title: On the scaling of crater dimensions 2. Impact processes
  publication-title: Journal of Geophysical Research
– start-page: 1251
  year: 2000
  end-page: 1254
– start-page: 367
  year: 1963
  end-page: 400
– volume: 99
  start-page: 15529
  year: 1994
  end-page: 15537
  article-title: Shock wave profile study of tuff from the Nevada Test Site
  publication-title: Journal of Geophysical Research
– start-page: 106
  year: 1962
  end-page: 112
– volume: 48
  year: 2013
  article-title: Chemical modification of projectile residues and target material in a MEMIN cratering experiment
  publication-title: Meteoritics & Planetary Science
– volume: 2
  year: 1967
– volume: 82
  start-page: 4055
  year: 1977
  end-page: 4065
  article-title: Martian craters and emplacement of ejecta by surface flows
  publication-title: Journal of Geophysical Research
– volume: 46
  start-page: 890
  year: 2011
  end-page: 902
  article-title: Impact cratering in sandstone: The MEMIN pilot study on the effect of pore water
  publication-title: Meteoritics & Planetary Science
– year: 2007
– volume: 105
  start-page: 216
  year: 1993
  end-page: 224
  article-title: Target porosity effects in impact cratering and collisional disruption
  publication-title: Icarus
– volume: 59
  start-page: 41
  year: 1976
  end-page: 93
  article-title: Shock processes in porous quartzite: Transmission electron microscope observations and theory
  publication-title: Contributions to Mineralogy and Petrology
– volume: 261
  start-page: 668
  year: 1963
  end-page: 682
  article-title: Hypervelocity impact of steel into Coconino sandstone
  publication-title: American Journal of Science
– volume: 76
  start-page: 1993
  year: 1971
  end-page: 2011
  article-title: Influence of water in rocks on effects of underground nuclear explosions
  publication-title: Journal of Geophysical Research
– volume: 13
  start-page: 745
  year: 1986
  end-page: 748
  article-title: Small‐scale impacts into rock: An evaluation of the effects of target temperature on experimental results
  publication-title: Geophysical Research Letters
– volume: 117
  start-page: E00H10
  year: 2012
  article-title: How old are young lunar craters?
  publication-title: Journal of Geophysical Research
– volume: 48
  year: 2013
  article-title: Deformation and melting of steel projectiles in hypervelocity cratering experiments
  publication-title: Meteoritics & Planetary Science
– volume: 180
  start-page: 514
  year: 2006
  end-page: 527
  article-title: A strain‐based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets
  publication-title: Icarus
– volume: 44
  start-page: 985
  year: 2009
  end-page: 1000
  article-title: The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage
  publication-title: Meteoritics & Planetary Science
– start-page: 2099
  year: 1980
  end-page: 2128
– volume: 155
  start-page: 475
  year: 2002
  end-page: 485
  article-title: Velocity scaling of impact craters in water ice over the range 1–7.3 km/s
  publication-title: Icarus
– volume: 43
  start-page: 1153
  year: 2006
  end-page: 1162
  article-title: Application of Mohr–Coulomb failure theory to very porous sandy shales
  publication-title: International Journal of Rock Mechanics & Mining Sciences
– start-page: 2379
  year: 1980
  end-page: 2401
– volume: 163
  start-page: 102
  year: 2003
  end-page: 119
  article-title: Impact cratering on porous asteroids
  publication-title: Icarus
– year: 2006
– start-page: 2621
  year: 1975
  end-page: 2644
– volume: 48
  year: 2013
  article-title: The extra‐large light‐gas gun of the Fraunhofer EMI: Applications for impact cratering research
  publication-title: Meteoritics & Planetary Science
– volume: 48
  year: 2013
  article-title: First MEMIN shock recovery experiments in dry, porous sandstone at low shock pressure (5–12.5 GPa)
  publication-title: Meteoritics & Planetary Science
– start-page: 1
  year: 2011
  end-page: 16
– volume: 21
  start-page: 333
  year: 1993
  end-page: 373
  article-title: The scaling of impact processes in planetary sciences
  publication-title: Annual Review of Earth and Planetary Science
– volume: 48
  year: 2013
  article-title: Ejection behavior characteristics of experimental impacts into dry and wet sandstone: Results from the MEMIN research unit
  publication-title: Meteoritics & Planetary Science
– volume: 69
  start-page: 506
  year: 1987
  end-page: 518
  article-title: Impact experiments in low‐temperature ice
  publication-title: Icarus
– ident: e_1_2_8_31_1
  doi: 10.1111/maps.12018
– ident: e_1_2_8_7_1
  doi: 10.1111/j.1365-2966.2005.09122.x
– ident: e_1_2_8_59_1
  doi: 10.1016/j.icarus.2005.10.013
– ident: e_1_2_8_30_1
  doi: 10.1111/j.1945-5100.2011.01200.x
– ident: e_1_2_8_23_1
  doi: 10.1146/annurev.ea.21.050193.002001
– ident: e_1_2_8_22_1
– ident: e_1_2_8_36_1
  doi: 10.1111/j.1945-5100.2012.01427.x
– ident: e_1_2_8_4_1
  doi: 10.1111/j.1945-5100.2007.tb00549.x
– ident: e_1_2_8_43_1
  doi: 10.1111/maps.12000
– ident: e_1_2_8_53_1
  doi: 10.1126/science.1172339
– ident: e_1_2_8_18_1
  doi: 10.1111/j.1945-5100.2012.01430.x
– ident: e_1_2_8_27_1
  doi: 10.1016/S0019-1035(03)00024-1
– ident: e_1_2_8_40_1
  doi: 10.1016/j.pss.2006.05.002
– ident: e_1_2_8_8_1
  doi: 10.1046/j.1365-8711.2003.06385.x
– ident: e_1_2_8_42_1
  doi: 10.3133/ofr63100
– ident: e_1_2_8_33_1
  doi: 10.1111/maps.12030
– ident: e_1_2_8_14_1
  doi: 10.1130/G31624.1
– ident: e_1_2_8_28_1
  doi: 10.1111/j.1945-5100.2006.tb00437.x
– ident: e_1_2_8_35_1
  doi: 10.1016/0019-1035(87)90020-0
– ident: e_1_2_8_20_1
  doi: 10.1063/1.1303688
– ident: e_1_2_8_11_1
  doi: 10.1111/maps.12024
– ident: e_1_2_8_25_1
  doi: 10.1016/j.icarus.2006.08.029
– ident: e_1_2_8_49_1
  doi: 10.1016/0734-743X(87)90069-8
– ident: e_1_2_8_10_1
  doi: 10.1029/JS082i028p04055
– ident: e_1_2_8_39_1
  doi: 10.1002/9780470172278
– ident: e_1_2_8_34_1
– ident: e_1_2_8_19_1
  doi: 10.1029/2011JE003935
– ident: e_1_2_8_48_1
– ident: e_1_2_8_38_1
  doi: 10.1016/0019-1035(84)90026-5
– ident: e_1_2_8_2_1
  doi: 10.1029/92JE02679
– ident: e_1_2_8_56_1
  doi: 10.1111/j.1945-5100.1994.tb00670.x
– ident: e_1_2_8_29_1
  doi: 10.1111/j.1945-5100.2009.tb00783.x
– ident: e_1_2_8_50_1
  doi: 10.1016/j.icarus.2007.06.006
– ident: e_1_2_8_13_1
  doi: 10.1029/94JB00726
– ident: e_1_2_8_9_1
  doi: 10.1029/JB076i008p01993
– ident: e_1_2_8_57_1
  doi: 10.1007/s12665-011-1043-7
– ident: e_1_2_8_12_1
  doi: 10.1111/j.1945-5100.2012.1429.x
– ident: e_1_2_8_26_1
  doi: 10.1029/JB087iB03p01849
– ident: e_1_2_8_5_1
  doi: 10.1016/j.icarus.2007.01.009
– ident: e_1_2_8_54_1
  doi: 10.1029/GL013i008p00745
– ident: e_1_2_8_52_1
  doi: 10.1006/icar.2001.6734
– ident: e_1_2_8_47_1
– volume: 48
  year: 2013
  ident: e_1_2_8_55_1
  article-title: Ejection behavior characteristics of experimental impacts into dry and wet sandstone: Results from the MEMIN research unit
  publication-title: Meteoritics & Planetary Science
  contributor:
    fullname: Sommer F.
– ident: e_1_2_8_51_1
  doi: 10.2475/ajs.261.7.668
– ident: e_1_2_8_21_1
  doi: 10.1111/maps.12044
– ident: e_1_2_8_37_1
  doi: 10.1006/icar.1993.1119
– ident: e_1_2_8_58_1
  doi: 10.1111/j.1945-5100.2009.tb02006.x
– ident: e_1_2_8_45_1
  doi: 10.1016/j.ijrmms.2006.03.007
– ident: e_1_2_8_16_1
– ident: e_1_2_8_15_1
  doi: 10.1007/BF02630651
– ident: e_1_2_8_60_1
– ident: e_1_2_8_24_1
– ident: e_1_2_8_17_1
  doi: 10.1016/B978-0-12-066266-1.50015-6
– ident: e_1_2_8_41_1
– ident: e_1_2_8_46_1
– ident: e_1_2_8_32_1
  doi: 10.1007/BF00375110
– ident: e_1_2_8_6_1
  doi: 10.1111/j.1945-5100.2012.01431.x
– start-page: 45
  volume-title: Impact and explosion cratering
  year: 1977
  ident: e_1_2_8_44_1
  contributor:
    fullname: Oberbeck V. R
– ident: e_1_2_8_61_1
  doi: 10.1115/1.3607836
– ident: e_1_2_8_3_1
  doi: 10.1029/JB089iB06p04077
SSID ssj0035134
Score 2.374519
Snippet – The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and...
Abstract– The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and...
Abstract- The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 8
SubjectTerms Aluminum
Craters
Efficiency
Experiments
Impact analysis
Porosity
Projectiles
Sandstones
Saturation
Spalling
Studies
Title The MEMIN research unit: Scaling impact cratering experiments in porous sandstones
URI https://api.istex.fr/ark:/67375/WNG-L8QD4XJ6-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmaps.12016
https://www.proquest.com/docview/1274702310
https://search.proquest.com/docview/1671470720
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-Ll58i_VFRPEgVJq2m7biZfGxIu6iruLeQtImKLK7YlzQf-9M2u7qRRBvpU1DmMlk5ptkvhCyn4MPStIi8jNeKD-WSegrWQBKKQBrBEZL6YrCLrtJp5eenSNNzkldC1PyQ4wTbmgZbr1GA5fKfjPyvny1Rwz8F_JtA0xw9RvRTb0MR41qSxlidh98cFZxk-IxnsmvP7zRLAr240eo-T1gdR7nYuF_Y10k81WkSZvl1FgiU3qwTNabFnPfw_4nPaDuuUxt2BVyBzOGtkEtHVoxAD3RERj8Me2CHsHD0bKikubILoHpQDq5HsDS5wGFUH44stRi9TByfNtV8nBxfn966Vc3Lvgy5gzkxLhETrw81EGiikBLw0CRvNGIdBTkAbyNNVOGh5kBOKtkmsnQGIA8Kko5M9EamRlA_-uEGtA0BJsGHKCKc5WpSOqCw2ogAwDFknlkr5a8eC2JNUQNSFBcwonLIwdOKeMm8u0Fj6IlDfHYaYnr9PYs7l1x0fLIVq01UVkhdgFgCQnuAo_sjj-D_eCmiBxokIlgPGHQKAmhzaHT4S_DEe3mTdc9bfyl8SaZC90tGpi52SIz728jvU2mbTHacXP2C3Hj7Xs
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8CeoAL2_gQZYwZgTggZYqT1EmQOFRQWra2Asq03iw7sbUJURBZpfHf856TtHCZhLhFyYtlvQ-_D_v9DHCQoQ-Kkzz0UpFrL1Jx4GmVY5aSY67hW6OUawrrjeLhODnrEEzOSd0LU-JDzApuZBluvSYDp4L0Cyu_Uw_FN44OTCxCIxKoidTBEV7WC3HYqjaVMWr30AunFTopHeSZ__vKHzWItf9eBZsvQ1bnc84_vHO2H2G1CjZZu9SOT7BgJmuw1S6o_H1_98QOmXsuqxvFOlyj0rABSmbIKhCg32yKNn_MRihKdHKsbKpkGQFMUEWQzW8IKNifCcNo_n5asIIaiAnmu9iAn-edm9OeV1264KlIcGQUF4pg8bLA-LHOfaMsR1mKVis0oZ_5-DYyXFsRpBYzWq2SVAXWYtajw0RwG27C0gTH3wJmUdgYb1r0gTrKdKpDZXKBC4LyMS9WvAn7NevlQ4mtIeuchNglHbuacOikMiNRj7d0Gi1uyV_DruwnV2fR-LuQ3Sbs1GKTlSHSEJgvEcad34S92Wc0IdoXURODPJFcxByJ4gBpjpwQ_zMdOWhfjtzT9luIv8Jy72bQl_2L4Y_PsBK4SzWokLMDS38fp-YLLBb5dNcp8DN3RfGj
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xIU17gQGb6MbAaIgHpKA4Tp1k2ku1Uj4GVUeH4M2yE1sgRKkIleC_352TFHhBQrxZydmy7ny-D_t-BtjK0QYlaSGCTBYmiHUSBUYXGKUUGGuEzmrti8IOhkn_Iu3uEUzOr6YWpsKHmCbcSDP8fk0KPi7cMyW_0eNyl6P9krMwH6MfTsj5QgyafVi06zNldNoDNMJZDU5K93ie-r4wR_PE2YcXvuZzj9WbnN7i-yb7CRZqV5N1qrWxBDN2tAyrnZKS37c3j2yb-XaV2yhX4BSXDDtBufRZDQF0ySao8T_ZEAWJJo5VJZUsJ3gJygeyp_cBSnY1YujL305KVlL5MIF8l5_hrLf37_dBUD-5EOhYcuQTl5pA8fLIhokpQqsdR0nKdltYEeYhfo0tN05GmcN41ug005FzGPMYkUruxBeYG-H4q8Acihq9TYcW0MS5yYzQtpC4HegQo2LNW_Cj4bwaV8gaqolIiF3Ks6sF214oUxJ9d0130ZK2Ou_vq-P0bze-OJJqvwVrjdRUrYY0BEZLhHAXtmBz-hsViE5F9MgiTxSXCUeiJEKaHS_DV6ajTjqDoW99fQvxBnwYdHvq-LD_5xt8jPyLGpTFWYO5-7uJ_Q6zZTFZ98v3P5KW8Ek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+MEMIN+research+unit%3A+Scaling+impact+cratering+experiments+in+porous+sandstones&rft.jtitle=Meteoritics+%26+planetary+science&rft.au=POELCHAU%2C+Michael+H.&rft.au=KENKMANN%2C+Thomas&rft.au=THOMA%2C+Klaus&rft.au=HOERTH%2C+Tobias&rft.date=2013-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1086-9379&rft.eissn=1945-5100&rft.volume=48&rft.issue=1&rft.spage=8&rft.epage=22&rft_id=info:doi/10.1111%2Fmaps.12016&rft.externalDBID=10.1111%252Fmaps.12016&rft.externalDocID=MAPS12016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1086-9379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1086-9379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1086-9379&client=summon