Dynamic (in)stability of Thwaites Glacier, West Antarctica
Thwaites Glacier, West Antarctica, has the potential to directly contribute ∼1 m to sea level and currently is losing mass and thinning rapidly. Here, we report on regional results for the Sea‐level Response to Ice Sheet Evolution (SeaRISE) experiments and investigate the impact of i) spatial resolu...
Saved in:
Published in: | Journal of geophysical research. Earth surface Vol. 118; no. 2; pp. 638 - 655 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
Blackwell Publishing Ltd
01-06-2013
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thwaites Glacier, West Antarctica, has the potential to directly contribute ∼1 m to sea level and currently is losing mass and thinning rapidly. Here, we report on regional results for the Sea‐level Response to Ice Sheet Evolution (SeaRISE) experiments and investigate the impact of i) spatial resolution within existing data sets, ii) grounding‐zone processes, and iii) till rheology on the dynamics of this outlet glacier. In addition to the SeaRISE data sets, we use detailed aerogeophysical and satellite data from Thwaites Glacier as input to a coupled ice stream/ice‐shelf/ocean‐plume model that includes oceanic influences across a several kilometers wide grounding zone suggested by new, high‐resolution data. Our results indicate that the ice tongue provides limited stability, and that while future atmospheric warming will likely add mass to the surface of the glacier, strong ice stream stabilization on bedrock highs narrower than the length of the grounding zone may be ephemeral if circulating waters substantially reduce basal resistance and enhance melting beneath grounded ice within this zone. However, we find that stability is significantly enhanced by effectively plastic till beds. Accurate projections of future sea level change relies on correct understanding of the till rheology as well as local basal processes near the grounding line.
Key Points
If destabilized, Thwaites Glacier could retreat 100s km in less than a century
Stabilization on basal highs narrower than the grounding zone may be ephemeral
Stability on basal highs is enhanced by effectively‐plastic beds |
---|---|
Bibliography: | istex:4B08A193C25A3A6DD4091114C6A68C6B5B7C1A25 ArticleID:JGRF20044 ark:/67375/WNG-XXBFVSL3-6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2169-9003 2169-9011 |
DOI: | 10.1002/jgrf.20044 |