On the Temperature Dependence of Enzyme-Catalyzed Rates
One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have...
Saved in:
Published in: | Biochemistry (Easton) Vol. 55; no. 12; pp. 1681 - 1688 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
29-03-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase “macromolecular rate theory (MMRT)” to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔC p ‡ that are in general negative. That is, the heat capacity (C p ) for the enzyme–substrate complex is generally larger than the C p for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔC p ‡ is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔC p ‡ has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a “psychrophilic trap” which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems. |
---|---|
AbstractList | One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase “macromolecular rate theory (MMRT)” to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔC p ‡ that are in general negative. That is, the heat capacity (C p ) for the enzyme–substrate complex is generally larger than the C p for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔC p ‡ is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔC p ‡ has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a “psychrophilic trap” which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems. One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems. |
Author | Mulholland, Adrian J Hobbs, Joanne K Schipper, Louis A Arcus, Vickery L Pudney, Christopher R Van der Kamp, Marc W Prentice, Erica J Parker, Emily J |
AuthorAffiliation | University of Bristol School of Science University of Canterbury School of Biochemistry University of Bath Department of Biology and Biochemistry University of Waikato Biomolecular Interaction Centre and Department of Chemistry School of Chemistry |
AuthorAffiliation_xml | – name: University of Waikato – name: Department of Biology and Biochemistry – name: – name: School of Science – name: University of Canterbury – name: University of Bristol – name: Biomolecular Interaction Centre and Department of Chemistry – name: School of Biochemistry – name: University of Bath – name: School of Chemistry |
Author_xml | – sequence: 1 givenname: Vickery L surname: Arcus fullname: Arcus, Vickery L email: varcus@waikato.ac.nz – sequence: 2 givenname: Erica J surname: Prentice fullname: Prentice, Erica J – sequence: 3 givenname: Joanne K surname: Hobbs fullname: Hobbs, Joanne K – sequence: 4 givenname: Adrian J surname: Mulholland fullname: Mulholland, Adrian J – sequence: 5 givenname: Marc W surname: Van der Kamp fullname: Van der Kamp, Marc W – sequence: 6 givenname: Christopher R surname: Pudney fullname: Pudney, Christopher R – sequence: 7 givenname: Emily J surname: Parker fullname: Parker, Emily J – sequence: 8 givenname: Louis A surname: Schipper fullname: Schipper, Louis A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26881922$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtqwzAQRUVpaR7tFxSKl904kWzrtSxp-oBAoKRrIUsjkmDLqWQvkq-vQ9wuuxoGzr3DnAm69o0HhB4InhGckbk2cVbuGrOFekZLTLAsrtCY0AynhZT0Go0xxizNJMMjNIlx368F5sUtGmVMCCKzbIz42iftFpIN1AcIuu0CJC9wAG_BG0galyz96VhDutCtro4nsMmnbiHeoRunqwj3w5yir9flZvGertZvH4vnVaoLytrUEY2JFk6Ak7nj3FgtS-eYLY3MgFkHhhIKxmFhBTNUUmO5MawoRc5yW-ZT9HTpPYTmu4PYqnoXDVSV9tB0URHOOeaCcdKj-QU1oYkxgFOHsKt1OCqC1dmY6o2pwZgajPWpx-FAV9Zg_zK_inpgfgHO6X3TBd__-2_lD1t3fEs |
CitedBy_id | crossref_primary_10_1111_nph_15283 crossref_primary_10_1016_j_jmb_2018_11_004 crossref_primary_10_1038_s41467_020_20338_2 crossref_primary_10_1016_j_fcr_2020_107735 crossref_primary_10_1038_s42004_022_00734_z crossref_primary_10_1007_s11071_022_07967_6 crossref_primary_10_1039_D2TB01605B crossref_primary_10_1021_acssuschemeng_0c00987 crossref_primary_10_1016_j_fcr_2019_107605 crossref_primary_10_2139_ssrn_4139900 crossref_primary_10_1021_acs_biochem_0c00530 crossref_primary_10_1111_gcb_15053 crossref_primary_10_3390_plants10122646 crossref_primary_10_1021_acscatal_1c04151 crossref_primary_10_52711_0974_360X_2021_00706 crossref_primary_10_1007_s11295_022_01537_y crossref_primary_10_1038_s41570_017_0051 crossref_primary_10_1021_jacs_6b07852 crossref_primary_10_1016_j_bpc_2016_07_007 crossref_primary_10_1016_j_soilbio_2022_108800 crossref_primary_10_1063_5_0139055 crossref_primary_10_3390_ijms24108734 crossref_primary_10_1093_femsec_fiac081 crossref_primary_10_1002_chem_201902509 crossref_primary_10_1021_jacsau_1c00406 crossref_primary_10_1016_j_bej_2023_109183 crossref_primary_10_1016_j_scitotenv_2022_153558 crossref_primary_10_1111_gcb_15878 crossref_primary_10_1016_j_chaos_2022_112667 crossref_primary_10_1111_ele_14381 crossref_primary_10_1002_2016JG003343 crossref_primary_10_1021_acs_jpcb_1c10605 crossref_primary_10_1146_annurev_biophys_121219_081520 crossref_primary_10_1016_j_indcrop_2023_117550 crossref_primary_10_1039_C8CP05422C crossref_primary_10_1080_17425255_2023_2237412 crossref_primary_10_1126_science_aah3717 crossref_primary_10_1021_acs_analchem_1c05356 crossref_primary_10_1371_journal_pone_0301254 crossref_primary_10_1007_s00249_022_01618_9 crossref_primary_10_1016_j_enzmictec_2021_109807 crossref_primary_10_1038_s42004_024_01165_8 crossref_primary_10_1016_j_pocean_2023_103064 crossref_primary_10_1002_chem_202001973 crossref_primary_10_1007_s11071_021_06907_0 crossref_primary_10_1111_pce_14778 crossref_primary_10_3389_fmolb_2018_00004 crossref_primary_10_1074_jbc_RA119_007525 crossref_primary_10_1021_acs_chemrev_8b00596 crossref_primary_10_3389_fmicb_2016_01821 crossref_primary_10_1021_acscatal_8b01025 crossref_primary_10_1016_j_cbpb_2020_110548 crossref_primary_10_1021_acscatal_0c01300 crossref_primary_10_2139_ssrn_4140016 crossref_primary_10_1016_j_apsusc_2022_155816 crossref_primary_10_1021_acs_chemrev_0c00983 crossref_primary_10_1016_j_biotechadv_2023_108203 crossref_primary_10_1038_s41467_020_16778_5 crossref_primary_10_1021_acscatal_3c05584 crossref_primary_10_1016_j_ijbiomac_2020_01_064 crossref_primary_10_1134_S1021443722060218 crossref_primary_10_1016_j_bbrc_2021_07_091 crossref_primary_10_1021_acs_chemrev_8b00369 crossref_primary_10_3389_fphys_2017_00575 crossref_primary_10_3390_app11062534 crossref_primary_10_1016_j_bpc_2018_10_002 crossref_primary_10_1021_acs_jpcb_0c09898 crossref_primary_10_2139_ssrn_3999054 crossref_primary_10_1093_treephys_tpac084 crossref_primary_10_1039_C9FD00044E crossref_primary_10_1007_s00253_019_09659_5 crossref_primary_10_1002_ange_202211132 crossref_primary_10_3390_s20195594 crossref_primary_10_1111_nph_16964 crossref_primary_10_1002_evl3_299 crossref_primary_10_3390_biology11101444 crossref_primary_10_1111_nph_18900 crossref_primary_10_1029_2021MS002469 crossref_primary_10_1038_s41467_018_03597_y crossref_primary_10_3390_su142013306 crossref_primary_10_1016_j_gca_2021_07_034 crossref_primary_10_1016_j_soilbio_2018_01_027 crossref_primary_10_1039_D2NA00742H crossref_primary_10_1021_acscatal_1c01776 crossref_primary_10_3390_microorganisms9081706 crossref_primary_10_1021_acscatal_8b02810 crossref_primary_10_1007_s11120_023_01004_2 crossref_primary_10_1002_jcc_27048 crossref_primary_10_15252_msb_20209895 crossref_primary_10_1007_s00449_019_02170_1 crossref_primary_10_1111_1541_4337_12852 crossref_primary_10_1021_acs_jafc_8b04573 crossref_primary_10_1038_s41598_021_85611_w crossref_primary_10_1007_s00203_018_1602_3 crossref_primary_10_1039_D0GC00337A crossref_primary_10_1093_plphys_kiad167 crossref_primary_10_1029_2019GB006507 crossref_primary_10_1111_tpj_15867 crossref_primary_10_1002_cbic_202200028 crossref_primary_10_1021_acschembio_6b00885 crossref_primary_10_7554_eLife_72884 crossref_primary_10_1103_PhysRevE_107_064407 crossref_primary_10_1021_acscatal_7b00201 crossref_primary_10_1021_acs_biochem_3c00080 crossref_primary_10_1021_acsphotonics_3c01570 crossref_primary_10_2144_btn_2020_0131 crossref_primary_10_1016_j_lwt_2020_109444 crossref_primary_10_1016_j_agee_2019_106620 crossref_primary_10_1063_1_4997367 crossref_primary_10_1089_ast_2016_1628 crossref_primary_10_3390_catal13121515 crossref_primary_10_1016_j_bpc_2022_106856 crossref_primary_10_1021_acs_nanolett_3c02934 crossref_primary_10_1016_j_ecoleng_2023_107145 crossref_primary_10_4014_jmb_2008_08005 crossref_primary_10_3389_fpls_2020_628995 crossref_primary_10_1021_jacs_9b02731 crossref_primary_10_1021_acs_biochem_1c00470 crossref_primary_10_1002_kin_21163 crossref_primary_10_1126_science_aay2784 crossref_primary_10_1021_acscatal_1c04679 crossref_primary_10_1115_1_4054217 crossref_primary_10_1038_s41557_021_00763_6 crossref_primary_10_1007_s12010_020_03348_0 crossref_primary_10_1021_acs_chemrev_3c00042 crossref_primary_10_1111_evo_14016 crossref_primary_10_1007_s12274_022_4209_6 crossref_primary_10_3389_ffgc_2020_00005 crossref_primary_10_1016_j_ecoleng_2018_11_015 crossref_primary_10_1016_S1872_2067_23_64628_5 crossref_primary_10_1016_j_soilbio_2022_108879 crossref_primary_10_1016_j_ijhydene_2018_09_055 crossref_primary_10_1039_C7CE01053B crossref_primary_10_1103_PhysRevE_100_032416 crossref_primary_10_1002_anie_202211132 crossref_primary_10_1016_j_foodchem_2022_132945 crossref_primary_10_1111_pce_13162 crossref_primary_10_1007_s11252_023_01450_9 crossref_primary_10_1016_j_bcab_2024_103068 crossref_primary_10_1039_D3RA01556D crossref_primary_10_1186_s12934_023_02282_0 crossref_primary_10_1038_s41467_024_48281_6 crossref_primary_10_1039_C9NR04289J crossref_primary_10_1016_j_foodchem_2022_133344 crossref_primary_10_1007_s40502_021_00616_x crossref_primary_10_1016_j_bpc_2022_106825 crossref_primary_10_1007_s42770_023_01057_4 crossref_primary_10_1088_1402_4896_abfd65 crossref_primary_10_1016_j_ijfoodmicro_2022_109722 crossref_primary_10_1002_cbic_201900751 crossref_primary_10_1038_s41467_023_41096_x crossref_primary_10_1038_s41598_018_28833_9 crossref_primary_10_3390_app13052759 crossref_primary_10_1002_biot_202300642 crossref_primary_10_1016_j_procbio_2022_07_031 crossref_primary_10_3390_catal12030339 crossref_primary_10_1016_j_pbiomolbio_2017_02_001 crossref_primary_10_1111_febs_14152 crossref_primary_10_1016_j_compbiolchem_2021_107449 crossref_primary_10_1007_s00792_019_01082_y crossref_primary_10_1038_s41598_019_56469_w crossref_primary_10_1021_acs_biochem_8b01099 crossref_primary_10_1146_annurev_biochem_061516_044432 crossref_primary_10_1021_acs_biochem_1c00156 crossref_primary_10_1021_acsanm_0c02580 crossref_primary_10_1021_acscatal_3c06260 crossref_primary_10_1002_pro_4719 crossref_primary_10_1016_j_jbiosc_2023_07_001 crossref_primary_10_1016_j_molliq_2018_06_087 crossref_primary_10_1126_sciadv_aay1052 crossref_primary_10_1038_s41558_023_01708_2 crossref_primary_10_1080_00268976_2018_1530464 crossref_primary_10_1093_protein_gzaa018 crossref_primary_10_1007_s10533_017_0314_0 crossref_primary_10_1111_gcb_13936 crossref_primary_10_3389_fpls_2022_1037720 crossref_primary_10_1093_protein_gzaa012 crossref_primary_10_1088_1674_1056_accd49 crossref_primary_10_1016_j_kjs_2023_11_005 crossref_primary_10_1021_acscatal_0c00754 crossref_primary_10_1016_j_jbc_2022_101903 crossref_primary_10_1016_j_cis_2023_102968 crossref_primary_10_1016_j_geoderma_2021_115128 crossref_primary_10_1021_acscatal_3c01906 crossref_primary_10_1042_BSR20210336 crossref_primary_10_1111_gcb_14342 crossref_primary_10_1007_s42106_022_00186_4 crossref_primary_10_1016_j_sbi_2020_06_001 crossref_primary_10_1128_mbio_01407_22 crossref_primary_10_1016_j_bpj_2022_12_033 crossref_primary_10_1111_gcb_16639 crossref_primary_10_1093_protein_gzw079 crossref_primary_10_1021_acs_biochem_9b00213 crossref_primary_10_1038_s41467_023_39779_6 crossref_primary_10_1021_acsanm_1c00176 crossref_primary_10_3390_molecules27154981 crossref_primary_10_1021_acscatal_9b03967 crossref_primary_10_1016_j_envres_2022_113755 crossref_primary_10_1111_1750_3841_16845 |
Cites_doi | 10.1038/nchem.1223 10.1016/S0301-4622(97)00082-3 10.1021/cr0503106 10.1110/ps.9.6.1177 10.1021/ja501936d 10.1016/0968-0004(84)90221-4 10.1021/bi00806a045 10.1038/nrmicro773 10.1111/gcb.12596 10.1146/annurev.physchem.56.092503.141202 10.1093/molbev/msr253 10.1038/nchem.1244 10.1021/bi950967t 10.1021/bi00789a002 10.1016/j.sbi.2009.03.004 10.1074/jbc.M212508200 10.1371/journal.pcbi.1003813 10.1021/bi201321x 10.2174/156652407780598584 10.1073/pnas.97.22.11899 10.1016/j.jmb.2003.12.061 10.1155/2013/512840 10.1016/j.tibs.2013.11.001 10.1038/nchembio.202 10.1016/S0092-8674(02)00620-7 10.1002/prot.22654 10.1038/nature06407 10.1021/bi301504m 10.1016/j.tibs.2010.05.001 10.1021/ar000058i 10.1006/jmbi.1996.0647 10.1002/prot.340220410 10.1021/jacs.5b02202 10.1016/j.biochi.2012.05.013 10.1016/0968-0004(82)90104-9 10.1073/pnas.92.24.10869 10.1021/bi701732a 10.1074/jbc.R114.567081 10.1021/bi801177k 10.1073/pnas.1312437110 10.1006/jmbi.2001.5009 10.1021/bi700201w 10.1021/cb4005029 10.1016/j.febslet.2015.06.042 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American
Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | N~. CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acs.biochem.5b01094 |
DatabaseName | American Chemical Society (ACS) Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 1688 |
ExternalDocumentID | 10_1021_acs_biochem_5b01094 26881922 a477935086 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L01386X/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L018756/1 |
GroupedDBID | - .K2 02 23N 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AJYGW ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 KM L7B LG6 N~. P2P ROL TN5 UI2 VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 --- -DZ -~X .55 4.4 ABJNI ABQRX ADHLV AGXLV AHGAQ CGR CUPRZ CUY CVF ECM EIF GGK NPM XSW ZCA ~02 ~KM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a456t-f1a01a8f8ef93f77cda9bff6dbc92e6dfec515ecf08d86c595cd7cc64b8363db3 |
IEDL.DBID | ACS |
ISSN | 0006-2960 |
IngestDate | Fri Aug 16 20:59:39 EDT 2024 Fri Aug 23 04:05:36 EDT 2024 Sat Sep 28 07:57:34 EDT 2024 Thu Aug 27 13:42:16 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a456t-f1a01a8f8ef93f77cda9bff6dbc92e6dfec515ecf08d86c595cd7cc64b8363db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1021/acs.biochem.5b01094 |
PMID | 26881922 |
PQID | 1777078671 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1777078671 crossref_primary_10_1021_acs_biochem_5b01094 pubmed_primary_26881922 acs_journals_10_1021_acs_biochem_5b01094 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ N~. UI2 |
PublicationCentury | 2000 |
PublicationDate | 2016-03-29 |
PublicationDateYYYYMMDD | 2016-03-29 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref19/cit19 doi: 10.1038/nchem.1223 – ident: ref30/cit30 doi: 10.1016/S0301-4622(97)00082-3 – ident: ref44/cit44 doi: 10.1021/cr0503106 – ident: ref3/cit3 doi: 10.1110/ps.9.6.1177 – ident: ref15/cit15 doi: 10.1021/ja501936d – ident: ref31/cit31 doi: 10.1016/0968-0004(84)90221-4 – ident: ref34/cit34 doi: 10.1021/bi00806a045 – ident: ref22/cit22 doi: 10.1038/nrmicro773 – ident: ref5/cit5 doi: 10.1111/gcb.12596 – ident: ref9/cit9 doi: 10.1146/annurev.physchem.56.092503.141202 – ident: ref28/cit28 doi: 10.1093/molbev/msr253 – ident: ref1/cit1 doi: 10.1038/nchem.1244 – ident: ref39/cit39 doi: 10.1021/bi950967t – ident: ref35/cit35 doi: 10.1021/bi00789a002 – ident: ref7/cit7 doi: 10.1016/j.sbi.2009.03.004 – ident: ref24/cit24 doi: 10.1074/jbc.M212508200 – ident: ref26/cit26 doi: 10.1371/journal.pcbi.1003813 – ident: ref10/cit10 doi: 10.1021/bi201321x – ident: ref29/cit29 doi: 10.2174/156652407780598584 – ident: ref21/cit21 doi: 10.1073/pnas.97.22.11899 – ident: ref11/cit11 doi: 10.1016/j.jmb.2003.12.061 – ident: ref27/cit27 doi: 10.1155/2013/512840 – ident: ref40/cit40 doi: 10.1016/j.tibs.2013.11.001 – ident: ref14/cit14 doi: 10.1038/nchembio.202 – ident: ref37/cit37 doi: 10.1016/S0092-8674(02)00620-7 – ident: ref16/cit16 doi: 10.1002/prot.22654 – ident: ref17/cit17 doi: 10.1038/nature06407 – ident: ref20/cit20 doi: 10.1021/bi301504m – ident: ref2/cit2 doi: 10.1016/j.tibs.2010.05.001 – ident: ref12/cit12 doi: 10.1021/ar000058i – ident: ref36/cit36 doi: 10.1006/jmbi.1996.0647 – ident: ref8/cit8 doi: 10.1002/prot.340220410 – ident: ref43/cit43 doi: 10.1021/jacs.5b02202 – ident: ref23/cit23 doi: 10.1016/j.biochi.2012.05.013 – ident: ref32/cit32 doi: 10.1016/0968-0004(82)90104-9 – ident: ref38/cit38 doi: 10.1073/pnas.92.24.10869 – ident: ref41/cit41 doi: 10.1021/bi701732a – ident: ref13/cit13 doi: 10.1074/jbc.R114.567081 – ident: ref25/cit25 doi: 10.1021/bi801177k – ident: ref42/cit42 doi: 10.1073/pnas.1312437110 – ident: ref45/cit45 doi: 10.1006/jmbi.2001.5009 – ident: ref18/cit18 doi: 10.1021/bi700201w – ident: ref4/cit4 doi: 10.1021/cb4005029 – ident: ref6/cit6 doi: 10.1016/j.febslet.2015.06.042 |
SSID | ssj0004074 |
Score | 2.6315122 |
Snippet | One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1681 |
SubjectTerms | Animals Bacillus subtilis - enzymology Bacterial Proteins - chemistry Bacterial Proteins - metabolism Catalysis Cold Temperature Enzymes - chemistry Enzymes - metabolism Hot Temperature Kinetics Protein Structure, Secondary Thermodynamics |
Title | On the Temperature Dependence of Enzyme-Catalyzed Rates |
URI | http://dx.doi.org/10.1021/acs.biochem.5b01094 https://www.ncbi.nlm.nih.gov/pubmed/26881922 https://search.proquest.com/docview/1777078671 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL1oXejGR-ujvogg4sKpncxMklmWPuhKwVZwNyQ3CbjoVGy7aL_eZDpVBCu6DSETTjLcc3OScwGu0zSxjqfKgMoQg9jwKFDMuGTFhpYJ5NSif43cH_CHF9HpepucYI2CT8N7iZOGevXlo0aNRHklJ96ELcqbwudarfbg6xlkszRddkkydcx8ZTL08yA-HOHkezhawzGLWNPb--cs92G3JJWktdwFB7Bh8irUWrlLqEdzckOKa57F-XkVtturEm814I85cQSQDI0jz0tzZdIpq-KiIWNLuvliPjJB2x_yzBdGkyfPTQ_hudcdtvtBWUkhkI4gTQMbymYohRXGppHlHLVMlbVMK0ypYdoadLzGoG0KLRgmaYKaI7JYiYhFWkVHUMnHuTkBoi1TsUgRleKxVVx6iz0ME-0lNqpFHW4dFln5J0yyQuSmYeYbS4CyEqA63K2wz96W3hq_d79arU_mcPLChszNeOa-wbk3LWI8rMPxcuE-B6RMeM83evr3eZ3BjqNFzN80o-k5VKbvM3MBmxM9uyw23Aeql9OD |
link.rule.ids | 315,782,786,2771,27087,27935,27936,56750,56800 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5sPdSLj9ZHfa4g4sFos0l2N8fSBxVrBVvBW8i-wENTMe2h_fXupolFUBGvS5gMM7vMNzs73wBchGGgDU6NHRy7wvEV9RxOlElWtKsJExRrYbuRe0M6eGHtjqXJ8YteGKNEaiSlWRF_xS7g3to1_mqnSI1vAm4LOn4J1gODd-3AhmZruOqGbOTcyyZXxgagF1xD3wuxUUmkX6PSD1AzCzndrf8puw2bOcREzeWe2IE1lVSh1kxMej2eo0uUPfrMbtOrUGkVA99qQB8TZOAgGikDpZdUy6idz8gVCk006iSL-Vg5LXvlM18oiZ4sUt2F525n1Oo5-VwFJzZwaepoN264MdNM6dDTlAoZh1xrIrkIsSJSK2FQjhK6wSQjIggDIakQxOfMI57k3h6Uk0miDgBJTbjPQiE4p77mNLaEe8INpC24YcnqcGVsEeXnIo2ykjd2I7uYGyjKDVSH68IF0duSaeP3z88LN0XGTrbMESdqMjP_oNRSGBHq1mF_6b9PgZgwywCHD_-u1xlUeqOHftS_G9wfwYYBTMS-QcPhMZSn7zN1AqVUzk6zPfgBx__b6A |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58gHrxVR_1uYKIB6PNJtndHEsfKIqKreAtZF_goWkx9lB_vTtpoggq4nUJk2Fml_lmZ-cbgOM4jqzDqalHU195oeGBJ5lxyYr1LROKU6uwG_myx2-fRLuDNDmi6oVxSuROUl4U8fFUj7QtGQb8C1yXzzhJanAeSSzqhLMwHzEHehAUtXqfHZGNkn_Z5cvUgfSKb-h7IRiZVP41Mv0AN4uw0135v8KrsFxCTdKc7o01mDHZOtSamUuzBxNyQorHn8Wt-jostqrBbzXgdxlxsJD0jYPUU8pl0i5n5SpDhpZ0srfJwHgtvPqZvBlNHhCxbsBjt9NvXXrlfAUvdbDp1bN-2vBTYYWxcWA5VzqNpbVMSxVTw7Q1yqEdo2xDaMFUFEdKc6VYKEXAAi2DTZjLhpnZBqItk6GIlZKSh1byFIn3lB9pLLxRLepw6myRlOcjT4rSN_UTXCwNlJQGqsNZ5YZkNGXc-P3zo8pVibMTljvSzAzH7h-cI5UR434dtqY-_BBImUAmOLrzd70OYeG-3U1urm6vd2HJ4SaGT9FovAdzry9jsw-zuR4fFNvwHevC3mI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Temperature+Dependence+of+Enzyme-Catalyzed+Rates&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Arcus%2C+Vickery+L&rft.au=Prentice%2C+Erica+J&rft.au=Hobbs%2C+Joanne+K&rft.au=Mulholland%2C+Adrian+J&rft.date=2016-03-29&rft.eissn=1520-4995&rft.volume=55&rft.issue=12&rft.spage=1681&rft.epage=1688&rft_id=info:doi/10.1021%2Facs.biochem.5b01094&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |