On the Temperature Dependence of Enzyme-Catalyzed Rates

One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) Vol. 55; no. 12; pp. 1681 - 1688
Main Authors: Arcus, Vickery L, Prentice, Erica J, Hobbs, Joanne K, Mulholland, Adrian J, Van der Kamp, Marc W, Pudney, Christopher R, Parker, Emily J, Schipper, Louis A
Format: Journal Article
Language:English
Published: United States American Chemical Society 29-03-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase “macromolecular rate theory (MMRT)” to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔC p ‡ that are in general negative. That is, the heat capacity (C p ) for the enzyme–substrate complex is generally larger than the C p for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔC p ‡ is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔC p ‡ has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a “psychrophilic trap” which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.
AbstractList One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase “macromolecular rate theory (MMRT)” to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔC p ‡ that are in general negative. That is, the heat capacity (C p ) for the enzyme–substrate complex is generally larger than the C p for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔC p ‡ is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔC p ‡ has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a “psychrophilic trap” which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.
One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.
Author Mulholland, Adrian J
Hobbs, Joanne K
Schipper, Louis A
Arcus, Vickery L
Pudney, Christopher R
Van der Kamp, Marc W
Prentice, Erica J
Parker, Emily J
AuthorAffiliation University of Bristol
School of Science
University of Canterbury
School of Biochemistry
University of Bath
Department of Biology and Biochemistry
University of Waikato
Biomolecular Interaction Centre and Department of Chemistry
School of Chemistry
AuthorAffiliation_xml – name: University of Waikato
– name: Department of Biology and Biochemistry
– name:
– name: School of Science
– name: University of Canterbury
– name: University of Bristol
– name: Biomolecular Interaction Centre and Department of Chemistry
– name: School of Biochemistry
– name: University of Bath
– name: School of Chemistry
Author_xml – sequence: 1
  givenname: Vickery L
  surname: Arcus
  fullname: Arcus, Vickery L
  email: varcus@waikato.ac.nz
– sequence: 2
  givenname: Erica J
  surname: Prentice
  fullname: Prentice, Erica J
– sequence: 3
  givenname: Joanne K
  surname: Hobbs
  fullname: Hobbs, Joanne K
– sequence: 4
  givenname: Adrian J
  surname: Mulholland
  fullname: Mulholland, Adrian J
– sequence: 5
  givenname: Marc W
  surname: Van der Kamp
  fullname: Van der Kamp, Marc W
– sequence: 6
  givenname: Christopher R
  surname: Pudney
  fullname: Pudney, Christopher R
– sequence: 7
  givenname: Emily J
  surname: Parker
  fullname: Parker, Emily J
– sequence: 8
  givenname: Louis A
  surname: Schipper
  fullname: Schipper, Louis A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26881922$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtqwzAQRUVpaR7tFxSKl904kWzrtSxp-oBAoKRrIUsjkmDLqWQvkq-vQ9wuuxoGzr3DnAm69o0HhB4InhGckbk2cVbuGrOFekZLTLAsrtCY0AynhZT0Go0xxizNJMMjNIlx368F5sUtGmVMCCKzbIz42iftFpIN1AcIuu0CJC9wAG_BG0galyz96VhDutCtro4nsMmnbiHeoRunqwj3w5yir9flZvGertZvH4vnVaoLytrUEY2JFk6Ak7nj3FgtS-eYLY3MgFkHhhIKxmFhBTNUUmO5MawoRc5yW-ZT9HTpPYTmu4PYqnoXDVSV9tB0URHOOeaCcdKj-QU1oYkxgFOHsKt1OCqC1dmY6o2pwZgajPWpx-FAV9Zg_zK_inpgfgHO6X3TBd__-2_lD1t3fEs
CitedBy_id crossref_primary_10_1111_nph_15283
crossref_primary_10_1016_j_jmb_2018_11_004
crossref_primary_10_1038_s41467_020_20338_2
crossref_primary_10_1016_j_fcr_2020_107735
crossref_primary_10_1038_s42004_022_00734_z
crossref_primary_10_1007_s11071_022_07967_6
crossref_primary_10_1039_D2TB01605B
crossref_primary_10_1021_acssuschemeng_0c00987
crossref_primary_10_1016_j_fcr_2019_107605
crossref_primary_10_2139_ssrn_4139900
crossref_primary_10_1021_acs_biochem_0c00530
crossref_primary_10_1111_gcb_15053
crossref_primary_10_3390_plants10122646
crossref_primary_10_1021_acscatal_1c04151
crossref_primary_10_52711_0974_360X_2021_00706
crossref_primary_10_1007_s11295_022_01537_y
crossref_primary_10_1038_s41570_017_0051
crossref_primary_10_1021_jacs_6b07852
crossref_primary_10_1016_j_bpc_2016_07_007
crossref_primary_10_1016_j_soilbio_2022_108800
crossref_primary_10_1063_5_0139055
crossref_primary_10_3390_ijms24108734
crossref_primary_10_1093_femsec_fiac081
crossref_primary_10_1002_chem_201902509
crossref_primary_10_1021_jacsau_1c00406
crossref_primary_10_1016_j_bej_2023_109183
crossref_primary_10_1016_j_scitotenv_2022_153558
crossref_primary_10_1111_gcb_15878
crossref_primary_10_1016_j_chaos_2022_112667
crossref_primary_10_1111_ele_14381
crossref_primary_10_1002_2016JG003343
crossref_primary_10_1021_acs_jpcb_1c10605
crossref_primary_10_1146_annurev_biophys_121219_081520
crossref_primary_10_1016_j_indcrop_2023_117550
crossref_primary_10_1039_C8CP05422C
crossref_primary_10_1080_17425255_2023_2237412
crossref_primary_10_1126_science_aah3717
crossref_primary_10_1021_acs_analchem_1c05356
crossref_primary_10_1371_journal_pone_0301254
crossref_primary_10_1007_s00249_022_01618_9
crossref_primary_10_1016_j_enzmictec_2021_109807
crossref_primary_10_1038_s42004_024_01165_8
crossref_primary_10_1016_j_pocean_2023_103064
crossref_primary_10_1002_chem_202001973
crossref_primary_10_1007_s11071_021_06907_0
crossref_primary_10_1111_pce_14778
crossref_primary_10_3389_fmolb_2018_00004
crossref_primary_10_1074_jbc_RA119_007525
crossref_primary_10_1021_acs_chemrev_8b00596
crossref_primary_10_3389_fmicb_2016_01821
crossref_primary_10_1021_acscatal_8b01025
crossref_primary_10_1016_j_cbpb_2020_110548
crossref_primary_10_1021_acscatal_0c01300
crossref_primary_10_2139_ssrn_4140016
crossref_primary_10_1016_j_apsusc_2022_155816
crossref_primary_10_1021_acs_chemrev_0c00983
crossref_primary_10_1016_j_biotechadv_2023_108203
crossref_primary_10_1038_s41467_020_16778_5
crossref_primary_10_1021_acscatal_3c05584
crossref_primary_10_1016_j_ijbiomac_2020_01_064
crossref_primary_10_1134_S1021443722060218
crossref_primary_10_1016_j_bbrc_2021_07_091
crossref_primary_10_1021_acs_chemrev_8b00369
crossref_primary_10_3389_fphys_2017_00575
crossref_primary_10_3390_app11062534
crossref_primary_10_1016_j_bpc_2018_10_002
crossref_primary_10_1021_acs_jpcb_0c09898
crossref_primary_10_2139_ssrn_3999054
crossref_primary_10_1093_treephys_tpac084
crossref_primary_10_1039_C9FD00044E
crossref_primary_10_1007_s00253_019_09659_5
crossref_primary_10_1002_ange_202211132
crossref_primary_10_3390_s20195594
crossref_primary_10_1111_nph_16964
crossref_primary_10_1002_evl3_299
crossref_primary_10_3390_biology11101444
crossref_primary_10_1111_nph_18900
crossref_primary_10_1029_2021MS002469
crossref_primary_10_1038_s41467_018_03597_y
crossref_primary_10_3390_su142013306
crossref_primary_10_1016_j_gca_2021_07_034
crossref_primary_10_1016_j_soilbio_2018_01_027
crossref_primary_10_1039_D2NA00742H
crossref_primary_10_1021_acscatal_1c01776
crossref_primary_10_3390_microorganisms9081706
crossref_primary_10_1021_acscatal_8b02810
crossref_primary_10_1007_s11120_023_01004_2
crossref_primary_10_1002_jcc_27048
crossref_primary_10_15252_msb_20209895
crossref_primary_10_1007_s00449_019_02170_1
crossref_primary_10_1111_1541_4337_12852
crossref_primary_10_1021_acs_jafc_8b04573
crossref_primary_10_1038_s41598_021_85611_w
crossref_primary_10_1007_s00203_018_1602_3
crossref_primary_10_1039_D0GC00337A
crossref_primary_10_1093_plphys_kiad167
crossref_primary_10_1029_2019GB006507
crossref_primary_10_1111_tpj_15867
crossref_primary_10_1002_cbic_202200028
crossref_primary_10_1021_acschembio_6b00885
crossref_primary_10_7554_eLife_72884
crossref_primary_10_1103_PhysRevE_107_064407
crossref_primary_10_1021_acscatal_7b00201
crossref_primary_10_1021_acs_biochem_3c00080
crossref_primary_10_1021_acsphotonics_3c01570
crossref_primary_10_2144_btn_2020_0131
crossref_primary_10_1016_j_lwt_2020_109444
crossref_primary_10_1016_j_agee_2019_106620
crossref_primary_10_1063_1_4997367
crossref_primary_10_1089_ast_2016_1628
crossref_primary_10_3390_catal13121515
crossref_primary_10_1016_j_bpc_2022_106856
crossref_primary_10_1021_acs_nanolett_3c02934
crossref_primary_10_1016_j_ecoleng_2023_107145
crossref_primary_10_4014_jmb_2008_08005
crossref_primary_10_3389_fpls_2020_628995
crossref_primary_10_1021_jacs_9b02731
crossref_primary_10_1021_acs_biochem_1c00470
crossref_primary_10_1002_kin_21163
crossref_primary_10_1126_science_aay2784
crossref_primary_10_1021_acscatal_1c04679
crossref_primary_10_1115_1_4054217
crossref_primary_10_1038_s41557_021_00763_6
crossref_primary_10_1007_s12010_020_03348_0
crossref_primary_10_1021_acs_chemrev_3c00042
crossref_primary_10_1111_evo_14016
crossref_primary_10_1007_s12274_022_4209_6
crossref_primary_10_3389_ffgc_2020_00005
crossref_primary_10_1016_j_ecoleng_2018_11_015
crossref_primary_10_1016_S1872_2067_23_64628_5
crossref_primary_10_1016_j_soilbio_2022_108879
crossref_primary_10_1016_j_ijhydene_2018_09_055
crossref_primary_10_1039_C7CE01053B
crossref_primary_10_1103_PhysRevE_100_032416
crossref_primary_10_1002_anie_202211132
crossref_primary_10_1016_j_foodchem_2022_132945
crossref_primary_10_1111_pce_13162
crossref_primary_10_1007_s11252_023_01450_9
crossref_primary_10_1016_j_bcab_2024_103068
crossref_primary_10_1039_D3RA01556D
crossref_primary_10_1186_s12934_023_02282_0
crossref_primary_10_1038_s41467_024_48281_6
crossref_primary_10_1039_C9NR04289J
crossref_primary_10_1016_j_foodchem_2022_133344
crossref_primary_10_1007_s40502_021_00616_x
crossref_primary_10_1016_j_bpc_2022_106825
crossref_primary_10_1007_s42770_023_01057_4
crossref_primary_10_1088_1402_4896_abfd65
crossref_primary_10_1016_j_ijfoodmicro_2022_109722
crossref_primary_10_1002_cbic_201900751
crossref_primary_10_1038_s41467_023_41096_x
crossref_primary_10_1038_s41598_018_28833_9
crossref_primary_10_3390_app13052759
crossref_primary_10_1002_biot_202300642
crossref_primary_10_1016_j_procbio_2022_07_031
crossref_primary_10_3390_catal12030339
crossref_primary_10_1016_j_pbiomolbio_2017_02_001
crossref_primary_10_1111_febs_14152
crossref_primary_10_1016_j_compbiolchem_2021_107449
crossref_primary_10_1007_s00792_019_01082_y
crossref_primary_10_1038_s41598_019_56469_w
crossref_primary_10_1021_acs_biochem_8b01099
crossref_primary_10_1146_annurev_biochem_061516_044432
crossref_primary_10_1021_acs_biochem_1c00156
crossref_primary_10_1021_acsanm_0c02580
crossref_primary_10_1021_acscatal_3c06260
crossref_primary_10_1002_pro_4719
crossref_primary_10_1016_j_jbiosc_2023_07_001
crossref_primary_10_1016_j_molliq_2018_06_087
crossref_primary_10_1126_sciadv_aay1052
crossref_primary_10_1038_s41558_023_01708_2
crossref_primary_10_1080_00268976_2018_1530464
crossref_primary_10_1093_protein_gzaa018
crossref_primary_10_1007_s10533_017_0314_0
crossref_primary_10_1111_gcb_13936
crossref_primary_10_3389_fpls_2022_1037720
crossref_primary_10_1093_protein_gzaa012
crossref_primary_10_1088_1674_1056_accd49
crossref_primary_10_1016_j_kjs_2023_11_005
crossref_primary_10_1021_acscatal_0c00754
crossref_primary_10_1016_j_jbc_2022_101903
crossref_primary_10_1016_j_cis_2023_102968
crossref_primary_10_1016_j_geoderma_2021_115128
crossref_primary_10_1021_acscatal_3c01906
crossref_primary_10_1042_BSR20210336
crossref_primary_10_1111_gcb_14342
crossref_primary_10_1007_s42106_022_00186_4
crossref_primary_10_1016_j_sbi_2020_06_001
crossref_primary_10_1128_mbio_01407_22
crossref_primary_10_1016_j_bpj_2022_12_033
crossref_primary_10_1111_gcb_16639
crossref_primary_10_1093_protein_gzw079
crossref_primary_10_1021_acs_biochem_9b00213
crossref_primary_10_1038_s41467_023_39779_6
crossref_primary_10_1021_acsanm_1c00176
crossref_primary_10_3390_molecules27154981
crossref_primary_10_1021_acscatal_9b03967
crossref_primary_10_1016_j_envres_2022_113755
crossref_primary_10_1111_1750_3841_16845
Cites_doi 10.1038/nchem.1223
10.1016/S0301-4622(97)00082-3
10.1021/cr0503106
10.1110/ps.9.6.1177
10.1021/ja501936d
10.1016/0968-0004(84)90221-4
10.1021/bi00806a045
10.1038/nrmicro773
10.1111/gcb.12596
10.1146/annurev.physchem.56.092503.141202
10.1093/molbev/msr253
10.1038/nchem.1244
10.1021/bi950967t
10.1021/bi00789a002
10.1016/j.sbi.2009.03.004
10.1074/jbc.M212508200
10.1371/journal.pcbi.1003813
10.1021/bi201321x
10.2174/156652407780598584
10.1073/pnas.97.22.11899
10.1016/j.jmb.2003.12.061
10.1155/2013/512840
10.1016/j.tibs.2013.11.001
10.1038/nchembio.202
10.1016/S0092-8674(02)00620-7
10.1002/prot.22654
10.1038/nature06407
10.1021/bi301504m
10.1016/j.tibs.2010.05.001
10.1021/ar000058i
10.1006/jmbi.1996.0647
10.1002/prot.340220410
10.1021/jacs.5b02202
10.1016/j.biochi.2012.05.013
10.1016/0968-0004(82)90104-9
10.1073/pnas.92.24.10869
10.1021/bi701732a
10.1074/jbc.R114.567081
10.1021/bi801177k
10.1073/pnas.1312437110
10.1006/jmbi.2001.5009
10.1021/bi700201w
10.1021/cb4005029
10.1016/j.febslet.2015.06.042
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID N~.
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1021/acs.biochem.5b01094
DatabaseName American Chemical Society (ACS) Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 1688
ExternalDocumentID 10_1021_acs_biochem_5b01094
26881922
a477935086
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L01386X/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L018756/1
GroupedDBID -
.K2
02
23N
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AJYGW
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
N~.
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
4.4
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
NPM
XSW
ZCA
~02
~KM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a456t-f1a01a8f8ef93f77cda9bff6dbc92e6dfec515ecf08d86c595cd7cc64b8363db3
IEDL.DBID ACS
ISSN 0006-2960
IngestDate Fri Aug 16 20:59:39 EDT 2024
Fri Aug 23 04:05:36 EDT 2024
Sat Sep 28 07:57:34 EDT 2024
Thu Aug 27 13:42:16 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a456t-f1a01a8f8ef93f77cda9bff6dbc92e6dfec515ecf08d86c595cd7cc64b8363db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1021/acs.biochem.5b01094
PMID 26881922
PQID 1777078671
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1777078671
crossref_primary_10_1021_acs_biochem_5b01094
pubmed_primary_26881922
acs_journals_10_1021_acs_biochem_5b01094
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
N~.
UI2
PublicationCentury 2000
PublicationDate 2016-03-29
PublicationDateYYYYMMDD 2016-03-29
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref19/cit19
  doi: 10.1038/nchem.1223
– ident: ref30/cit30
  doi: 10.1016/S0301-4622(97)00082-3
– ident: ref44/cit44
  doi: 10.1021/cr0503106
– ident: ref3/cit3
  doi: 10.1110/ps.9.6.1177
– ident: ref15/cit15
  doi: 10.1021/ja501936d
– ident: ref31/cit31
  doi: 10.1016/0968-0004(84)90221-4
– ident: ref34/cit34
  doi: 10.1021/bi00806a045
– ident: ref22/cit22
  doi: 10.1038/nrmicro773
– ident: ref5/cit5
  doi: 10.1111/gcb.12596
– ident: ref9/cit9
  doi: 10.1146/annurev.physchem.56.092503.141202
– ident: ref28/cit28
  doi: 10.1093/molbev/msr253
– ident: ref1/cit1
  doi: 10.1038/nchem.1244
– ident: ref39/cit39
  doi: 10.1021/bi950967t
– ident: ref35/cit35
  doi: 10.1021/bi00789a002
– ident: ref7/cit7
  doi: 10.1016/j.sbi.2009.03.004
– ident: ref24/cit24
  doi: 10.1074/jbc.M212508200
– ident: ref26/cit26
  doi: 10.1371/journal.pcbi.1003813
– ident: ref10/cit10
  doi: 10.1021/bi201321x
– ident: ref29/cit29
  doi: 10.2174/156652407780598584
– ident: ref21/cit21
  doi: 10.1073/pnas.97.22.11899
– ident: ref11/cit11
  doi: 10.1016/j.jmb.2003.12.061
– ident: ref27/cit27
  doi: 10.1155/2013/512840
– ident: ref40/cit40
  doi: 10.1016/j.tibs.2013.11.001
– ident: ref14/cit14
  doi: 10.1038/nchembio.202
– ident: ref37/cit37
  doi: 10.1016/S0092-8674(02)00620-7
– ident: ref16/cit16
  doi: 10.1002/prot.22654
– ident: ref17/cit17
  doi: 10.1038/nature06407
– ident: ref20/cit20
  doi: 10.1021/bi301504m
– ident: ref2/cit2
  doi: 10.1016/j.tibs.2010.05.001
– ident: ref12/cit12
  doi: 10.1021/ar000058i
– ident: ref36/cit36
  doi: 10.1006/jmbi.1996.0647
– ident: ref8/cit8
  doi: 10.1002/prot.340220410
– ident: ref43/cit43
  doi: 10.1021/jacs.5b02202
– ident: ref23/cit23
  doi: 10.1016/j.biochi.2012.05.013
– ident: ref32/cit32
  doi: 10.1016/0968-0004(82)90104-9
– ident: ref38/cit38
  doi: 10.1073/pnas.92.24.10869
– ident: ref41/cit41
  doi: 10.1021/bi701732a
– ident: ref13/cit13
  doi: 10.1074/jbc.R114.567081
– ident: ref25/cit25
  doi: 10.1021/bi801177k
– ident: ref42/cit42
  doi: 10.1073/pnas.1312437110
– ident: ref45/cit45
  doi: 10.1006/jmbi.2001.5009
– ident: ref18/cit18
  doi: 10.1021/bi700201w
– ident: ref4/cit4
  doi: 10.1021/cb4005029
– ident: ref6/cit6
  doi: 10.1016/j.febslet.2015.06.042
SSID ssj0004074
Score 2.6315122
Snippet One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 1681
SubjectTerms Animals
Bacillus subtilis - enzymology
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Catalysis
Cold Temperature
Enzymes - chemistry
Enzymes - metabolism
Hot Temperature
Kinetics
Protein Structure, Secondary
Thermodynamics
Title On the Temperature Dependence of Enzyme-Catalyzed Rates
URI http://dx.doi.org/10.1021/acs.biochem.5b01094
https://www.ncbi.nlm.nih.gov/pubmed/26881922
https://search.proquest.com/docview/1777078671
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL1oXejGR-ujvogg4sKpncxMklmWPuhKwVZwNyQ3CbjoVGy7aL_eZDpVBCu6DSETTjLcc3OScwGu0zSxjqfKgMoQg9jwKFDMuGTFhpYJ5NSif43cH_CHF9HpepucYI2CT8N7iZOGevXlo0aNRHklJ96ELcqbwudarfbg6xlkszRddkkydcx8ZTL08yA-HOHkezhawzGLWNPb--cs92G3JJWktdwFB7Bh8irUWrlLqEdzckOKa57F-XkVtturEm814I85cQSQDI0jz0tzZdIpq-KiIWNLuvliPjJB2x_yzBdGkyfPTQ_hudcdtvtBWUkhkI4gTQMbymYohRXGppHlHLVMlbVMK0ypYdoadLzGoG0KLRgmaYKaI7JYiYhFWkVHUMnHuTkBoi1TsUgRleKxVVx6iz0ME-0lNqpFHW4dFln5J0yyQuSmYeYbS4CyEqA63K2wz96W3hq_d79arU_mcPLChszNeOa-wbk3LWI8rMPxcuE-B6RMeM83evr3eZ3BjqNFzN80o-k5VKbvM3MBmxM9uyw23Aeql9OD
link.rule.ids 315,782,786,2771,27087,27935,27936,56750,56800
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5sPdSLj9ZHfa4g4sFos0l2N8fSBxVrBVvBW8i-wENTMe2h_fXupolFUBGvS5gMM7vMNzs73wBchGGgDU6NHRy7wvEV9RxOlElWtKsJExRrYbuRe0M6eGHtjqXJ8YteGKNEaiSlWRF_xS7g3to1_mqnSI1vAm4LOn4J1gODd-3AhmZruOqGbOTcyyZXxgagF1xD3wuxUUmkX6PSD1AzCzndrf8puw2bOcREzeWe2IE1lVSh1kxMej2eo0uUPfrMbtOrUGkVA99qQB8TZOAgGikDpZdUy6idz8gVCk006iSL-Vg5LXvlM18oiZ4sUt2F525n1Oo5-VwFJzZwaepoN264MdNM6dDTlAoZh1xrIrkIsSJSK2FQjhK6wSQjIggDIakQxOfMI57k3h6Uk0miDgBJTbjPQiE4p77mNLaEe8INpC24YcnqcGVsEeXnIo2ykjd2I7uYGyjKDVSH68IF0duSaeP3z88LN0XGTrbMESdqMjP_oNRSGBHq1mF_6b9PgZgwywCHD_-u1xlUeqOHftS_G9wfwYYBTMS-QcPhMZSn7zN1AqVUzk6zPfgBx__b6A
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58gHrxVR_1uYKIB6PNJtndHEsfKIqKreAtZF_goWkx9lB_vTtpoggq4nUJk2Fml_lmZ-cbgOM4jqzDqalHU195oeGBJ5lxyYr1LROKU6uwG_myx2-fRLuDNDmi6oVxSuROUl4U8fFUj7QtGQb8C1yXzzhJanAeSSzqhLMwHzEHehAUtXqfHZGNkn_Z5cvUgfSKb-h7IRiZVP41Mv0AN4uw0135v8KrsFxCTdKc7o01mDHZOtSamUuzBxNyQorHn8Wt-jostqrBbzXgdxlxsJD0jYPUU8pl0i5n5SpDhpZ0srfJwHgtvPqZvBlNHhCxbsBjt9NvXXrlfAUvdbDp1bN-2vBTYYWxcWA5VzqNpbVMSxVTw7Q1yqEdo2xDaMFUFEdKc6VYKEXAAi2DTZjLhpnZBqItk6GIlZKSh1byFIn3lB9pLLxRLepw6myRlOcjT4rSN_UTXCwNlJQGqsNZ5YZkNGXc-P3zo8pVibMTljvSzAzH7h-cI5UR434dtqY-_BBImUAmOLrzd70OYeG-3U1urm6vd2HJ4SaGT9FovAdzry9jsw-zuR4fFNvwHevC3mI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Temperature+Dependence+of+Enzyme-Catalyzed+Rates&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Arcus%2C+Vickery+L&rft.au=Prentice%2C+Erica+J&rft.au=Hobbs%2C+Joanne+K&rft.au=Mulholland%2C+Adrian+J&rft.date=2016-03-29&rft.eissn=1520-4995&rft.volume=55&rft.issue=12&rft.spage=1681&rft.epage=1688&rft_id=info:doi/10.1021%2Facs.biochem.5b01094&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon