Tunneling Electrical Connection to the Interior of Metal–Organic Frameworks
Metal–organic frameworks (MOFs) are typically poor electrical conductors, which limits their uses in sensors, fuel cells, batteries, and other applications that require electrically conductive, high surface area materials. Although metal nanoclusters (NCs) are often added to MOFs, the electrical pro...
Saved in:
Published in: | Journal of the American Chemical Society Vol. 137; no. 25; pp. 8169 - 8175 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
01-07-2015
American Chemical Society (ACS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metal–organic frameworks (MOFs) are typically poor electrical conductors, which limits their uses in sensors, fuel cells, batteries, and other applications that require electrically conductive, high surface area materials. Although metal nanoclusters (NCs) are often added to MOFs, the electrical properties of these hybrid materials have not yet been explored. Here, we show that adding NCs to a MOF not only imparts moderate electrical conductivity to an otherwise insulating material but also renders it photoconductive, with conductivity increasing by up to 4 orders of magnitude upon light irradiation. Because charge transport occurs via tunneling between spatially separated NCs that occupy a small percent of the MOF’s volume, the pores remain largely open and accessible. While these phenomena are more pronounced in single-MOF crystals (here, Rb-CD-MOFs), they are also observed in films of smaller MOF crystallites (MIL-53). Additionally, we show that in the photoconductive MOFs, the effective diffusion coefficients of electrons can match the typical values of small molecules diffusing through MOFs; this property can open new vistas for the development of MOF electrodes and, in a wider context, of electroactive and light-harvesting MOFs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) SC0000989 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.5b03263 |