Role of GO and Photoinitiator Concentration on Curing Behavior of PEG-Based Polymer for DLP 3D Printing
Photocuring kinetics in photopolymerization-based three-dimensional (3D) printing processes have gained significant attention because they determine the final dimension accuracy of the printed structures. In this study, the curing kinetics of liquid-light-curable resins, including water-dispersed gr...
Saved in:
Published in: | ACS omega Vol. 9; no. 3; pp. 3287 - 3294 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
23-01-2024
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photocuring kinetics in photopolymerization-based three-dimensional (3D) printing processes have gained significant attention because they determine the final dimension accuracy of the printed structures. In this study, the curing kinetics of liquid-light-curable resins, including water-dispersed graphene oxide (GO) and ultraviolet (UV)-cured acrylic resins, were investigated during digital light processing (DLP) 3D printing. Various stable composites of water-dispersed GO and UV-cured acrylic resin were prepared to fabricate 3D structures for cure-depth measurements. Several factors, including the UV-exposure conditions, photoinitiator concentration, and composition of the photopolymer resin, were found to significantly affect the cure-depth characteristics of the printed structures. The photocuring depth of the polymeric resin system was investigated as a function of the photoinitiator concentration. In addition, the study showed that the introduction of GO played a significant role in controlling the performance of the highly cross-linked network and the thickness of the cured layer. The curing characteristics of functional photocurable polymer-based DLP 3D printing contribute to process development and improvement of the quality of printed microstructures for industrial applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.3c05378 |