Connectivity-Dependent Conductance of 2,2′-Bipyridine-Based Metal Complexes
The present work provides an insight into the effect of connectivity isomerization of metal-2,2′-bipyridine complexes. For that purpose, two new 2,2′-bipyridine (bpy) ligand systems, 4,4′-bis(4-(methylthio)phenyl)-2,2′-bipyridine (Lmeta) and 5,5′-bis(3,3-dimethyl-2,3-dihydrobenzothiophen-5-yl)-2,...
Saved in:
Published in: | ACS omega Vol. 8; no. 51; pp. 48958 - 48965 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
26-12-2023
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present work provides an insight into the effect of connectivity isomerization of metal-2,2′-bipyridine complexes. For that purpose, two new 2,2′-bipyridine (bpy) ligand systems, 4,4′-bis(4-(methylthio)phenyl)-2,2′-bipyridine (Lmeta) and 5,5′-bis(3,3-dimethyl-2,3-dihydrobenzothiophen-5-yl)-2,2′-bipyridine (Lpara) were synthesized and coordinated to rhenium and manganese to obtain the corresponding complexes MnLmeta(CO)3Br, ReLmeta(CO)3Br, MnLpara(CO)3Br, MoLpara(CO)4 and ReLpara(CO)3Br. The experimental and theoretical results revealed that coordination to the para system, i.e., the metal ion peripheral to the conductance path, gave a slightly increased conductance compared to the free ligand attributed to the reduced highest occupied molecular orbital (HOMO)–least unoccupied molecular orbital (LUMO) gap. The meta-based system formed a destructive quantum interference feature that reduced the conductance of a S···S contacted junction to below 10–5.5 G o, reinforcing the importance of contact group connectivity for molecular wire conductance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.3c06555 |