ZnSe/ZnS Core/Shell Quantum Dots with Superior Optical Properties through Thermodynamic Shell Growth

Epitaxial growth of a protective semiconductor shell on a colloidal quantum dot (QD) core is the key strategy for achieving high fluorescence quantum efficiency and essential stability for optoelectronic applications and biotagging with emissive QDs. Herein we investigate the effect of shell growth...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters Vol. 20; no. 4; pp. 2387 - 2395
Main Authors: Ji, Botao, Koley, Somnath, Slobodkin, Ilya, Remennik, Sergei, Banin, Uri
Format: Journal Article
Language:English
Published: United States American Chemical Society 08-04-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Epitaxial growth of a protective semiconductor shell on a colloidal quantum dot (QD) core is the key strategy for achieving high fluorescence quantum efficiency and essential stability for optoelectronic applications and biotagging with emissive QDs. Herein we investigate the effect of shell growth rate on the structure and optical properties in blue-emitting ZnSe/ZnS QDs with narrow emission line width. Tuning the precursor reactivity modifies the growth mode of ZnS shells on ZnSe cores transforming from kinetic (fast) to thermodynamic (slow) growth regimes. In the thermodynamic growth regime, enhanced fluorescence quantum yields and reduced on–off blinking are achieved. This high performance is ascribed to the effective avoidance of traps at the interface between the core and the shell, which are detrimental to the emission properties. Our study points to a general strategy to obtain high-quality core/shell QDs with enhanced optical properties through controlled reactivity yielding shell growth in the thermodynamic limit.
AbstractList Epitaxial growth of a protective semiconductor shell on a colloidal quantum dot (QD) core is the key strategy for achieving high fluorescence quantum efficiency and essential stability for optoelectronic applications and biotagging with emissive QDs. Herein we investigate the effect of shell growth rate on the structure and optical properties in blue-emitting ZnSe/ZnS QDs with narrow emission line width. Tuning the precursor reactivity modifies the growth mode of ZnS shells on ZnSe cores transforming from kinetic (fast) to thermodynamic (slow) growth regimes. In the thermodynamic growth regime, enhanced fluorescence quantum yields and reduced on–off blinking are achieved. This high performance is ascribed to the effective avoidance of traps at the interface between the core and the shell, which are detrimental to the emission properties. Our study points to a general strategy to obtain high-quality core/shell QDs with enhanced optical properties through controlled reactivity yielding shell growth in the thermodynamic limit.
Epitaxial growth of a protective semiconductor shell on a colloidal quantum dot (QD) core is the key strategy for achieving high fluorescence quantum efficiency and essential stability for optoelectronic applications and biotagging with emissive QDs. Herein we investigate the effect of shell growth rate on the structure and optical properties in blue-emitting ZnSe/ZnS QDs with narrow emission line width. Tuning the precursor reactivity modifies the growth mode of ZnS shells on ZnSe cores transforming from kinetic (fast) to thermodynamic (slow) growth regimes. In the thermodynamic growth regime, enhanced fluorescence quantum yields and reduced on–off blinking are achieved. This high performance is ascribed to the effective avoidance of traps at the interface between the core and the shell, which are detrimental to the emission properties. Our study points to a general strategy to obtain high-quality core/shell QDs with enhanced optical properties through controlled reactivity yielding shell growth in the thermodynamic limit.
Author Banin, Uri
Slobodkin, Ilya
Remennik, Sergei
Ji, Botao
Koley, Somnath
AuthorAffiliation Institute of Chemistry
The Center for Nanoscience and Nanotechnology
Westlake Institute for Advanced Study
Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University and Institute of Advanced Technology
AuthorAffiliation_xml – name: The Center for Nanoscience and Nanotechnology
– name: Westlake Institute for Advanced Study
– name: Institute of Chemistry
– name: Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University and Institute of Advanced Technology
Author_xml – sequence: 1
  givenname: Botao
  orcidid: 0000-0002-5775-7421
  surname: Ji
  fullname: Ji, Botao
  organization: Westlake Institute for Advanced Study
– sequence: 2
  givenname: Somnath
  orcidid: 0000-0002-6826-1501
  surname: Koley
  fullname: Koley, Somnath
  organization: The Center for Nanoscience and Nanotechnology
– sequence: 3
  givenname: Ilya
  surname: Slobodkin
  fullname: Slobodkin, Ilya
  organization: The Center for Nanoscience and Nanotechnology
– sequence: 4
  givenname: Sergei
  surname: Remennik
  fullname: Remennik, Sergei
  organization: The Center for Nanoscience and Nanotechnology
– sequence: 5
  givenname: Uri
  orcidid: 0000-0003-1698-2128
  surname: Banin
  fullname: Banin, Uri
  email: uri.banin@mail.huji.ac.il
  organization: The Center for Nanoscience and Nanotechnology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32134676$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PIyEcxonR-Lb7DYzhuJe2zMDAzGWTTV1fEhM1dS97IRT-42BmoAvMGr-9NK2NXrwAgef5Ac9zgvadd4DQWUGmBSmLmdJx6pTzPaQ0bZakIiXZQ8dFRcmEN025v1vX7AidxPhMCGloRQ7RES0Lyrjgx8j8dQuY5QHPfYDZooO-xw-jcmkc8IVPEb_Y1OHFuIJgfcB3q2S16vF98HknWYg4dcGPTx1-7CAM3rw6NViNN6Sr4F9S9w0dtKqP8H07n6I_l78f59eT27urm_mv24lirEmTuuXAmaq1AWBMsAZEW9aGmYpUFFgtlowXXImWcqi0UdSImtackAo0NyWjp-jnhrsalwMYDS4F1ctVsIMKr9IrKz-fONvJJ_9fihyG4HUG_NgCgv83QkxysFHnjygHfoyypILl4KpyLWUbqQ4-xgDt7pqCyHVBMhck3wuS24Ky7fzjE3em90aygGwEa_uzH4PLiX3NfAPtUqR-
CitedBy_id crossref_primary_10_1002_crat_202000177
crossref_primary_10_1021_acsphotonics_2c00155
crossref_primary_10_1002_adfm_202207662
crossref_primary_10_1002_cssc_202200346
crossref_primary_10_1016_j_cej_2024_151347
crossref_primary_10_1007_s11801_022_1188_5
crossref_primary_10_1021_acsnano_3c13159
crossref_primary_10_1002_slct_202301962
crossref_primary_10_1186_s12934_024_02417_x
crossref_primary_10_1016_j_jece_2024_113501
crossref_primary_10_1021_acs_nanolett_4c00734
crossref_primary_10_1007_s12596_023_01556_5
crossref_primary_10_1088_1402_4896_acb40a
crossref_primary_10_1093_nsr_nwac025
crossref_primary_10_1039_D3TC04165D
crossref_primary_10_1002_smll_202002109
crossref_primary_10_1021_acs_chemmater_1c02501
crossref_primary_10_1016_j_physe_2022_115157
crossref_primary_10_1021_acs_chemmater_1c03432
crossref_primary_10_1021_acsanm_4c00149
crossref_primary_10_1039_D1TC02285G
crossref_primary_10_1016_j_jphotochemrev_2023_100588
crossref_primary_10_1039_D0NA00619J
crossref_primary_10_1002_smll_202306602
crossref_primary_10_1021_acsenergylett_2c00017
crossref_primary_10_1088_1361_6528_ac73e9
crossref_primary_10_1021_acsenergylett_0c01560
crossref_primary_10_3390_nano11071726
crossref_primary_10_1016_j_jlumin_2021_118415
crossref_primary_10_2174_0113894501283669240123105250
crossref_primary_10_1002_solr_202200299
crossref_primary_10_1038_s44160_022_00210_5
crossref_primary_10_3390_app11020497
crossref_primary_10_1002_adfm_202302172
crossref_primary_10_3390_chemosensors9110318
crossref_primary_10_1016_j_cbpc_2021_109065
crossref_primary_10_1021_acs_nanolett_1c02284
crossref_primary_10_1002_lpor_202301167
crossref_primary_10_1016_j_cej_2021_132464
crossref_primary_10_1002_anie_202213065
crossref_primary_10_1142_S021886352350011X
crossref_primary_10_1021_acsnano_0c04660
crossref_primary_10_1021_acsphotonics_1c01493
crossref_primary_10_1039_D1CE00631B
crossref_primary_10_1021_acs_jpcc_2c05568
crossref_primary_10_1002_adom_202101767
crossref_primary_10_1039_D4TC00349G
crossref_primary_10_1007_s10812_021_01109_3
crossref_primary_10_1038_s41586_020_2791_x
crossref_primary_10_1039_D0CC08412C
crossref_primary_10_1039_D3TC02699J
crossref_primary_10_3390_ijms21145174
crossref_primary_10_1016_j_snb_2021_129940
crossref_primary_10_1021_acs_nanolett_4c01249
crossref_primary_10_1016_j_jpcs_2021_109951
crossref_primary_10_1016_j_jlumin_2022_119391
crossref_primary_10_1021_acs_nanolett_4c01606
crossref_primary_10_1016_j_cej_2021_133188
crossref_primary_10_1016_j_matt_2022_07_032
crossref_primary_10_1021_acsanm_3c03749
crossref_primary_10_1002_ange_202213065
crossref_primary_10_1021_acsanm_3c00679
crossref_primary_10_1021_acs_nanolett_1c02412
crossref_primary_10_3390_polym13234076
crossref_primary_10_1021_acs_chemrev_3c00097
crossref_primary_10_1021_acsami_0c15161
crossref_primary_10_1002_advs_202100513
crossref_primary_10_1002_jccs_202400109
crossref_primary_10_1016_j_jcrysgro_2023_127475
crossref_primary_10_1109_TNANO_2020_3034369
crossref_primary_10_1002_advs_202302906
crossref_primary_10_1038_s41598_022_19118_3
crossref_primary_10_1039_D4TC01979B
crossref_primary_10_1016_j_apsusc_2023_158524
crossref_primary_10_1002_adma_202106662
crossref_primary_10_1016_j_surfin_2023_102687
crossref_primary_10_1016_j_jlumin_2023_119766
crossref_primary_10_1021_acs_chemmater_0c03181
crossref_primary_10_1088_2631_6331_ad2868
crossref_primary_10_1002_smll_202105492
crossref_primary_10_1021_acs_chemmater_0c04588
crossref_primary_10_1021_acs_chemmater_1c00777
crossref_primary_10_1002_admi_202102334
crossref_primary_10_1002_slct_202303460
crossref_primary_10_2139_ssrn_4077244
crossref_primary_10_1002_adma_202205504
crossref_primary_10_1021_acs_nanolett_2c00118
crossref_primary_10_1039_D1TB01870A
Cites_doi 10.1021/acs.nanolett.7b03703
10.1021/acsnano.7b03407
10.1021/jacs.6b03834
10.1103/PhysRevB.53.R13242
10.1021/acs.nanolett.6b05118
10.1038/s41467-018-07837-z
10.1039/C0CS00055H
10.1002/anie.201003142
10.1126/science.aax3489
10.1002/ejic.201000734
10.1021/ar9700320
10.1021/jp9530562
10.1063/1.478161
10.1021/acs.nanolett.7b02634
10.1038/nmat2222
10.1038/nature05839
10.1039/b917674h
10.1038/nmat3539
10.1021/jacs.6b11431
10.1021/acscentsci.5b00327
10.1021/jp9810217
10.1103/PhysRevB.63.205316
10.1038/nature10569
10.1021/cr900137k
10.1021/nn3059168
10.1021/ja00072a025
10.1038/nmat1390
10.1021/ja805538p
10.1002/smll.200800841
10.1021/ja042939g
10.1063/1.480896
10.1126/science.aac5523
10.1038/s41563-018-0254-7
10.1038/s41566-019-0364-z
10.1021/ja711379k
10.1021/jp5064325
10.1002/anie.201708510
10.1038/nature13829
10.1126/science.1097830
10.1021/jp4002753
10.1021/acs.nanolett.7b00254
10.1021/ja056326v
10.1038/nnano.2016.140
10.1063/1.1377883
10.1103/RevModPhys.71.1125
10.1039/C4NR06593J
10.1021/acs.jpclett.5b01144
ContentType Journal Article
Copyright Copyright © 2020 American Chemical Society 2020 American Chemical Society
Copyright_xml – notice: Copyright © 2020 American Chemical Society 2020 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acs.nanolett.9b05020
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 2395
ExternalDocumentID 10_1021_acs_nanolett_9b05020
32134676
b656731268
Genre Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
ABJNI
ABQRX
ACBEA
ADHLV
AHGAQ
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a449t-8f6e64a8cdee44749e7f28d4d5053e487b4616a7f36e5cda3d78386005ec6d243
IEDL.DBID ACS
ISSN 1530-6984
IngestDate Tue Sep 17 21:07:02 EDT 2024
Sat Oct 05 06:11:44 EDT 2024
Fri Aug 23 02:07:18 EDT 2024
Sat Sep 28 08:31:07 EDT 2024
Thu Aug 27 22:07:27 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords thermodynamic
core/shell QDs
ZnSe/ZnS
heavy-metal-free
kinetic
Language English
License This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a449t-8f6e64a8cdee44749e7f28d4d5053e487b4616a7f36e5cda3d78386005ec6d243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5775-7421
0000-0003-1698-2128
0000-0002-6826-1501
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7467768
PMID 32134676
PQID 2374346528
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7467768
proquest_miscellaneous_2374346528
crossref_primary_10_1021_acs_nanolett_9b05020
pubmed_primary_32134676
acs_journals_10_1021_acs_nanolett_9b05020
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2020-04-08
PublicationDateYYYYMMDD 2020-04-08
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref44/cit44
  doi: 10.1021/acs.nanolett.7b03703
– ident: ref47/cit47
  doi: 10.1021/acsnano.7b03407
– ident: ref17/cit17
  doi: 10.1021/jacs.6b03834
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.53.R13242
– ident: ref38/cit38
  doi: 10.1021/acs.nanolett.6b05118
– ident: ref28/cit28
  doi: 10.1038/s41467-018-07837-z
– ident: ref13/cit13
  doi: 10.1039/C0CS00055H
– ident: ref9/cit9
  doi: 10.1002/anie.201003142
– ident: ref6/cit6
  doi: 10.1126/science.aax3489
– ident: ref16/cit16
  doi: 10.1002/ejic.201000734
– ident: ref33/cit33
  doi: 10.1021/ar9700320
– ident: ref10/cit10
  doi: 10.1021/jp9530562
– ident: ref32/cit32
  doi: 10.1063/1.478161
– ident: ref45/cit45
  doi: 10.1021/acs.nanolett.7b02634
– ident: ref36/cit36
  doi: 10.1038/nmat2222
– ident: ref5/cit5
  doi: 10.1038/nature05839
– ident: ref26/cit26
  doi: 10.1039/b917674h
– ident: ref30/cit30
  doi: 10.1038/nmat3539
– ident: ref11/cit11
  doi: 10.1021/jacs.6b11431
– ident: ref24/cit24
  doi: 10.1021/acscentsci.5b00327
– ident: ref29/cit29
  doi: 10.1021/jp9810217
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.63.205316
– ident: ref34/cit34
  doi: 10.1038/nature10569
– ident: ref2/cit2
  doi: 10.1021/cr900137k
– ident: ref31/cit31
  doi: 10.1021/nn3059168
– ident: ref1/cit1
  doi: 10.1021/ja00072a025
– ident: ref8/cit8
  doi: 10.1038/nmat1390
– ident: ref15/cit15
  doi: 10.1021/ja805538p
– ident: ref12/cit12
  doi: 10.1002/smll.200800841
– ident: ref18/cit18
  doi: 10.1021/ja042939g
– ident: ref41/cit41
  doi: 10.1063/1.480896
– ident: ref3/cit3
  doi: 10.1126/science.aac5523
– ident: ref39/cit39
– ident: ref20/cit20
  doi: 10.1038/s41563-018-0254-7
– ident: ref21/cit21
  doi: 10.1038/s41566-019-0364-z
– ident: ref37/cit37
  doi: 10.1021/ja711379k
– ident: ref23/cit23
  doi: 10.1021/jp5064325
– ident: ref4/cit4
  doi: 10.1002/anie.201708510
– ident: ref7/cit7
  doi: 10.1038/nature13829
– ident: ref46/cit46
  doi: 10.1126/science.1097830
– ident: ref14/cit14
  doi: 10.1021/jp4002753
– ident: ref22/cit22
  doi: 10.1021/acs.nanolett.7b00254
– ident: ref19/cit19
  doi: 10.1021/ja056326v
– ident: ref35/cit35
  doi: 10.1038/nnano.2016.140
– ident: ref42/cit42
  doi: 10.1063/1.1377883
– ident: ref40/cit40
  doi: 10.1103/RevModPhys.71.1125
– ident: ref25/cit25
  doi: 10.1039/C4NR06593J
– ident: ref27/cit27
  doi: 10.1021/acs.jpclett.5b01144
SSID ssj0009350
Score 2.6397834
Snippet Epitaxial growth of a protective semiconductor shell on a colloidal quantum dot (QD) core is the key strategy for achieving high fluorescence quantum...
Epitaxial growth of a protective semiconductor shell on a colloidal quantum dot (QD) core is the key strategy for achieving high fluorescence quantum...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2387
SubjectTerms Letter
Title ZnSe/ZnS Core/Shell Quantum Dots with Superior Optical Properties through Thermodynamic Shell Growth
URI http://dx.doi.org/10.1021/acs.nanolett.9b05020
https://www.ncbi.nlm.nih.gov/pubmed/32134676
https://search.proquest.com/docview/2374346528
https://pubmed.ncbi.nlm.nih.gov/PMC7467768
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BubCHXR670OUhI3HhkLK1Hds5ovI68VBAQlwiN3ZUDiSoSf7_ziRpoSCEuOSQWKN4xiN_4xl_A3CoEVNg1EClOJoCFBMGdqzTwBPbOPqWUU3x-GWsrx7M6RnR5Aw-yeDz4bFNy0Fu8wKnUQ2i8b8QAc4yrHCNcgkKjeJXkl3RdGRFJ8aQKDJydlXuEym0IaXl4ob0AWW-L5Z8s_uc__ruf6_Bzw5nspN2YazDks834Mcb9sFNcI957I_xwUbUHC6mklB2W6Oq62d2WlQlo0NaFtdEhlxM2fVLc-7Nbuj8fkpErKzr8sNwsU2fC9d2t2etpAsM8KvJb7g_P7sbXQZd04XAShlVgcmUV9Ka1HkvpZaR1xk3TjqESsJjeDOWaqiszoTyYeqscNoIg7Ap9KlyXIo_0MuL3G8Ds5bu_bqh5C6TiMuisdCZFDqMUmVNxvtwhEpKOqcpkyYfzocJvZxpLuk014dgZqXkpeXh-GL8wcyUCToMZUFs7ou6TLhA0CRVyE0ftlrTziUK4rdTWvVBLxh9PoDIuBe_5E-ThpSb2rZg6Pb3G3PagVVO0TvVAZld6FXT2u_Bcunq_WZd_wfqU_fY
link.rule.ids 230,315,782,786,887,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615VA4AC0UQim4EhcOYbuxYzvHarfbRfQBSitVXCJv7Gh7aFLl8f-ZyaPtghAqlxwca2TPeORv7PE3AJ8UYgqMGigVR1GAokPfLFTqO2IbR9_Ssk0en8fq7EpPj4gmJxzewuAgKpRUtZf49-wC4xG15SYvcDb1l2hxECLOWYcnoUQ8TIhoEt9z7fK2MCv6MkZGkRbDi7m_SKF9Ka1W96U_wObvOZMPNqHZi_8c_kt43qNOdtgtky1Yc_k2PHvARfgK7M88diP8sAmViospQZT9aFDxzQ2bFnXF6MiWxQ1RIxclO79tT8HZdzrNL4mWlfU1fxguvfKmsF2te9ZJOsZwv16-hsvZ0cVk7vclGHwjRFT7OpNOCqNT65wQSkROZYG2wiJw4g6DnYWQY2lUxqULU2u4VZprBFGhS6UNBN-BjbzI3VtgxtArYDsWgc0EorRowVUmuAqjVBqdBR58RiUlvQtVSXs7HowTahw0l_Sa88AfjJXcdqwc_-i_P1g0QfehOxGTu6KpkoAjhBIyDLQHbzoL30nkxHYnlfRArdj-rgNRc6_-ya-XLUU3FXHBQO7dI-b0ETbnF6cnycnXs2-78DSguJ4yhPR72KjLxu3BemWbD-1S_wXy2ABU
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkCo48Gh5LE9X4sIhhY0d2zmiXRYQFQUFpKqXyBs7ggPJapP8f2aS7JYFVajikoNjTTIej_yNPf4G4EghpsCogVJxFAUoOvDMUCWeI7Zx9C0t6-Txy0jd_Nb9c6LJmZb6wp8oUFJRH-KTV49s2jIMdE-oPTNZjhqVP8LhaYBYZx4WA4lfJFTUi_7y7fK6OCv6M0ZHoRaTW3P_kEJrU1LMrk3vAOfbvMlXC9Fg9RMqrMFKiz7ZWTNd1mHOZV9h-RUn4Tewf7LIneCD9ahkXESJouyuQgNUz6yflwWjrVsWVUSRnI_Zr1G9G85uaVd_TPSsrK39w3AKjp9z29S8Z42kCwz7y8cNeBic3_cuvbYUg2eECEtPp9JJYXRinRNCidCp1NdWWARQ3GHQMxSyK41KuXRBYg23SnONYCpwibS-4JuwkOWZ2wZmDN0Gtl3h21QgWguHXKWCqyBMpNGp34FjHKS4daUirk_J_W5MjZORi9uR64A3MVg8atg5Puj_fWLVGN2IzkZM5vKqiH2OUErIwNcd2GqsPJXIifVOKtkBNWP_aQei6J59kz091lTdVMwFA7qd_9DpEL7c9gfxz6ub611Y8im8p0QhvQcL5bhy-zBf2Oqgnu0vJzAC1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ZnSe%2FZnS+Core%2FShell+Quantum+Dots+with+Superior+Optical+Properties+through+Thermodynamic+Shell+Growth&rft.jtitle=Nano+letters&rft.au=Ji%2C+Botao&rft.au=Koley%2C+Somnath&rft.au=Slobodkin%2C+Ilya&rft.au=Remennik%2C+Sergei&rft.date=2020-04-08&rft.eissn=1530-6992&rft.volume=20&rft.issue=4&rft.spage=2387&rft.epage=2395&rft_id=info:doi/10.1021%2Facs.nanolett.9b05020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon