Persulfate activation by subsurface minerals

Persulfate dynamics in the presence of subsurface minerals was investigated as a basis for understanding persulfate activation for in situ chemical oxidation (ISCO). The mineral-mediated decomposition of persulfate and generation of oxidants and reductants was investigated with four iron and mangane...

Full description

Saved in:
Bibliographic Details
Published in:Journal of contaminant hydrology Vol. 115; no. 1; pp. 34 - 45
Main Authors: Ahmad, Mushtaque, Teel, Amy L., Watts, Richard J.
Format: Journal Article
Language:English
Published: Kidlington Elsevier B.V 25-06-2010
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Persulfate dynamics in the presence of subsurface minerals was investigated as a basis for understanding persulfate activation for in situ chemical oxidation (ISCO). The mineral-mediated decomposition of persulfate and generation of oxidants and reductants was investigated with four iron and manganese oxides and two clay minerals at both low pH (< 7) and high pH (> 12). The manganese oxide birnessite was the most effective initiator of persulfate for degrading the oxidant probe nitrobenzene, indicating that oxidants are generated at both low and high pH regimes. The iron oxide goethite was the most effective mineral for degrading the reductant probe hexachloroethane. A natural soil and two soil fractions were used to confirm persulfate activation by synthetic minerals. The soil and soil fractions did not effectively promote the generation of oxidants or reductants. However, soil organic matter was found to promote reductant generation at high pH. The results of this research demonstrate that synthetic iron and manganese oxides can activate persulfate to generate reductants and oxidants; however, iron and manganese oxides in the natural soil studied do not show the same reactivity, most likely due to the lower masses of the metal oxides in the soil relative to the masses studied in isolated mineral systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0169-7722
1873-6009
DOI:10.1016/j.jconhyd.2010.04.002