Molecular Crowding Regulates the Structural Switch of the DNA G-Quadruplex

Almost all biochemical reactions in vitro have been investigated through numerous experiments conducted in dilute solutions containing low concentrations of solutes. However, biomacromolecules such as nucleic acids, proteins, and polysaccharides are designed to function and/or form their native stru...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) Vol. 41; no. 50; pp. 15017 - 15024
Main Authors: Miyoshi, Daisuke, Nakao, Akihiro, Sugimoto, Naoki
Format: Journal Article
Language:English
Published: United States American Chemical Society 17-12-2002
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Almost all biochemical reactions in vitro have been investigated through numerous experiments conducted in dilute solutions containing low concentrations of solutes. However, biomacromolecules such as nucleic acids, proteins, and polysaccharides are designed to function and/or form their native structures in a living cell containing high concentrations of biomacromolecules, substrates, cofactors, salts, and so on. In the present study, we have demonstrated quantitatively the effect of molecular crowding on structures and stabilities of the G-quadruplex of d(G4T4G4). Molecular crowding with poly(ethylene glycol) (PEG) induced a structural transition from the antiparallel to the parallel G-quadruplex of d(G4T4G4), while molecular crowding with polycations did not alter the structure of the antiparallel G-quadruplex. The binding constants of putrescine, one of the polycations, for d(G4T4G4) in the absence and presence of Na+ are calculated to be 277 and 2.5 M-1, respectively. This indicates that the polycations coordinate to d(G4T4G4) with electrostatic interactions. The thermodynamic parameters of the antiparallel G-quadruplex formation under the crowding and noncrowding conditions induced by putrescine were also estimated. The stability of the antiparallel G-quadruplex decreased (−ΔG°25 decreased from 28 to 22 kcal mol-1) with molecular crowding by putrescine. Also, enthalpy and entropy changes in the structural formation under crowding and noncrowding conditions clearly showed that destabilization was entropy-driven. These quantitative parameters indicated that both the volume excluded by PEG and chemical interactions such as electrostatic interaction with solute polycations are critical for determining how molecular crowding affects the structure and stability of highly ordered DNA structures.
AbstractList Almost all biochemical reactions in vitro have been investigated through numerous experiments conducted in dilute solutions containing low concentrations of solutes. However, biomacromolecules such as nucleic acids, proteins, and polysaccharides are designed to function and/or form their native structures in a living cell containing high concentrations of biomacromolecules, substrates, cofactors, salts, and so on. In the present study, we have demonstrated quantitatively the effect of molecular crowding on structures and stabilities of the G-quadruplex of d(G(4)T(4)G(4)). Molecular crowding with poly(ethylene glycol) (PEG) induced a structural transition from the antiparallel to the parallel G-quadruplex of d(G(4)T(4)G(4)), while molecular crowding with polycations did not alter the structure of the antiparallel G-quadruplex. The binding constants of putrescine, one of the polycations, for d(G(4)T(4)G(4)) in the absence and presence of Na(+) are calculated to be 277 and 2.5 M(-)(1), respectively. This indicates that the polycations coordinate to d(G(4)T(4)G(4)) with electrostatic interactions. The thermodynamic parameters of the antiparallel G-quadruplex formation under the crowding and noncrowding conditions induced by putrescine were also estimated. The stability of the antiparallel G-quadruplex decreased (-DeltaG degrees (25) decreased from 28 to 22 kcal mol(-)(1)) with molecular crowding by putrescine. Also, enthalpy and entropy changes in the structural formation under crowding and noncrowding conditions clearly showed that destabilization was entropy-driven. These quantitative parameters indicated that both the volume excluded by PEG and chemical interactions such as electrostatic interaction with solute polycations are critical for determining how molecular crowding affects the structure and stability of highly ordered DNA structures.
Almost all biochemical reactions in vitro have been investigated through numerous experiments conducted in dilute solutions containing low concentrations of solutes. However, biomacromolecules such as nucleic acids, proteins, and polysaccharides are designed to function and/or form their native structures in a living cell containing high concentrations of biomacromolecules, substrates, cofactors, salts, and so on. In the present study, we have demonstrated quantitatively the effect of molecular crowding on structures and stabilities of the G-quadruplex of d (G sub(4)T sub(4)G sub(4)). Molecular crowding with poly(ethylene glycol) (PEG) induced a structural transition from the antiparallel to the parallel G-quadruplex of d(G sub(4)T sub(4)G sub(4)), while molecular crowding with polycations did not alter the structure of the antiparallel G-quadruplex. The binding constants of putrescine, one of the polycations, for d(G sub(4)T sub(4)G sub(4)) in the absence and presence of Na super(+) are calculated to be 277 and 2.5 M super(-1), respectively. This indicates that the polycations coordinate to d(G sub(4)T sub(4)G sub(4)) with electrostatic interactions. The thermodynamic parameters of the antiparallel G-quadruplex formation under the crowding and noncrowding conditions induced by putrescine were also estimated. The stability of the antiparallel G-quadruplex decreased (- Delta G degree sub(25) decreased from 28 to 22 kcal mol super(-1)) with molecular crowding by putrescine. Also, enthalpy and entropy changes in the structural formation under crowding and noncrowding conditions clearly showed that destabilization was entropy-driven. These quantitative parameters indicated that both the volume excluded by PEG and chemical interactions such as electrostatic interaction with solute polycations are critical for determining how molecular crowding affects the structure and stability of highly ordered DNA structures.
Almost all biochemical reactions in vitro have been investigated through numerous experiments conducted in dilute solutions containing low concentrations of solutes. However, biomacromolecules such as nucleic acids, proteins, and polysaccharides are designed to function and/or form their native structures in a living cell containing high concentrations of biomacromolecules, substrates, cofactors, salts, and so on. In the present study, we have demonstrated quantitatively the effect of molecular crowding on structures and stabilities of the G-quadruplex of d(G4T4G4). Molecular crowding with poly(ethylene glycol) (PEG) induced a structural transition from the antiparallel to the parallel G-quadruplex of d(G4T4G4), while molecular crowding with polycations did not alter the structure of the antiparallel G-quadruplex. The binding constants of putrescine, one of the polycations, for d(G4T4G4) in the absence and presence of Na+ are calculated to be 277 and 2.5 M-1, respectively. This indicates that the polycations coordinate to d(G4T4G4) with electrostatic interactions. The thermodynamic parameters of the antiparallel G-quadruplex formation under the crowding and noncrowding conditions induced by putrescine were also estimated. The stability of the antiparallel G-quadruplex decreased (−ΔG°25 decreased from 28 to 22 kcal mol-1) with molecular crowding by putrescine. Also, enthalpy and entropy changes in the structural formation under crowding and noncrowding conditions clearly showed that destabilization was entropy-driven. These quantitative parameters indicated that both the volume excluded by PEG and chemical interactions such as electrostatic interaction with solute polycations are critical for determining how molecular crowding affects the structure and stability of highly ordered DNA structures.
Author Miyoshi, Daisuke
Sugimoto, Naoki
Nakao, Akihiro
Author_xml – sequence: 1
  givenname: Daisuke
  surname: Miyoshi
  fullname: Miyoshi, Daisuke
– sequence: 2
  givenname: Akihiro
  surname: Nakao
  fullname: Nakao, Akihiro
– sequence: 3
  givenname: Naoki
  surname: Sugimoto
  fullname: Sugimoto, Naoki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12475251$$D View this record in MEDLINE/PubMed
BookMark eNqF0E1PAjEQBuDGYATUg3_A7EUTD6vT0m7ZI0HBD_xEvTbdbhcWl11stwH_vVWIXkw8NTPzZJp526hRVqVG6ADDKQaCz5IcCFBMsi3UwoxASOOYNVALAKKQxBE0UdvamS8pcLqDmphQzgjDLXR9WxVauUKaoG-qZZqXk-BJT3yj1jaopzoY18ap2hlZBONlXqtpUGXfg_O7XjAMH51MjVsUerWHtjNZWL2_eXfRy-DiuX8Zju6HV_3eKJSURnWYKg40SXQGGCuaRTSRnW7my6RLJU0xUVEHdwlwf1NKSCwh4lpLnPl-ksbQ2UXH670LU707bWsxz63SRSFLXTkrOOEspgz_C3GXA2PkC56soTKVtUZnYmHyuTQfAoP4Slj8JOzt4WapS-Y6_ZWbSD0I1yC3tV79zKV5ExHvcCaeH8ZiNIhfH2-ebsSl90drL5UVs8qZ0of3x8efRamR4Q
CitedBy_id crossref_primary_10_3390_ijms21114172
crossref_primary_10_1093_nar_gkm445
crossref_primary_10_1002_anie_200502960
crossref_primary_10_1016_j_biochi_2015_06_002
crossref_primary_10_1016_j_bpj_2014_12_046
crossref_primary_10_1155_2014_934605
crossref_primary_10_1093_nar_gkq804
crossref_primary_10_1002_cbic_201800021
crossref_primary_10_1021_ja0463029
crossref_primary_10_1246_bcsj_82_1
crossref_primary_10_1016_j_ymeth_2012_02_011
crossref_primary_10_1002_cbic_200600554
crossref_primary_10_1016_j_cplett_2016_08_032
crossref_primary_10_1002_cbic_202000703
crossref_primary_10_1021_cr400113m
crossref_primary_10_1093_nar_gkn1081
crossref_primary_10_1016_j_biochi_2011_06_007
crossref_primary_10_1016_j_biochi_2022_12_019
crossref_primary_10_1021_ja101252n
crossref_primary_10_1002_biot_200500032
crossref_primary_10_1021_acs_jpclett_3c02453
crossref_primary_10_1016_j_biochi_2009_05_014
crossref_primary_10_1002_ange_201204850
crossref_primary_10_1021_acsomega_3c01169
crossref_primary_10_1039_c2sc20565c
crossref_primary_10_1016_j_ymeth_2012_02_001
crossref_primary_10_1155_2017_6513720
crossref_primary_10_1093_nar_gks152
crossref_primary_10_1021_jp406857s
crossref_primary_10_1021_acschembio_9b00428
crossref_primary_10_1093_nar_gky250
crossref_primary_10_1016_j_chembiol_2015_06_016
crossref_primary_10_1016_j_biochi_2015_12_012
crossref_primary_10_1021_ja0730462
crossref_primary_10_1080_07391102_2017_1375992
crossref_primary_10_1016_j_jmb_2005_04_001
crossref_primary_10_1039_b922050j
crossref_primary_10_1016_j_bbagen_2022_130252
crossref_primary_10_1039_C5RA12159K
crossref_primary_10_3390_molecules19010595
crossref_primary_10_1016_j_jphotobiol_2016_07_035
crossref_primary_10_1016_j_saa_2018_05_079
crossref_primary_10_1016_j_ymeth_2012_05_002
crossref_primary_10_1016_j_ymeth_2012_05_003
crossref_primary_10_1016_j_bmc_2005_01_041
crossref_primary_10_1093_nar_gkw160
crossref_primary_10_3390_ph15030300
crossref_primary_10_1021_ja9010749
crossref_primary_10_1002_1873_3468_13547
crossref_primary_10_1039_b925000j
crossref_primary_10_1517_17460441_2014_941353
crossref_primary_10_1016_j_biochi_2008_01_014
crossref_primary_10_1016_j_pnmrs_2010_11_002
crossref_primary_10_1093_nar_gkq639
crossref_primary_10_1021_ja312403b
crossref_primary_10_1093_nar_gkac811
crossref_primary_10_1038_s41598_019_44736_9
crossref_primary_10_1093_nar_gku710
crossref_primary_10_1155_2008_294756
crossref_primary_10_1016_j_tca_2003_11_052
crossref_primary_10_3390_ijms22020947
crossref_primary_10_1021_acs_chemrev_3c00615
crossref_primary_10_1128_MCB_00364_18
crossref_primary_10_1016_j_biochi_2021_08_005
crossref_primary_10_1016_j_bpc_2020_106473
crossref_primary_10_1021_bi101093a
crossref_primary_10_1093_nar_gkv1133
crossref_primary_10_1016_j_ab_2020_113744
crossref_primary_10_1021_ac060441m
crossref_primary_10_1039_C6CC04866H
crossref_primary_10_1016_j_bpc_2010_02_009
crossref_primary_10_1186_s13628_018_0048_y
crossref_primary_10_1039_b605739j
crossref_primary_10_1021_ja061267m
crossref_primary_10_1002_chem_201903015
crossref_primary_10_1021_acsabm_9b00892
crossref_primary_10_1016_j_bmc_2007_11_065
crossref_primary_10_1021_acsomega_1c04074
crossref_primary_10_1021_bi5014722
crossref_primary_10_1039_C7CC02304A
crossref_primary_10_1021_acs_jpcb_1c07852
crossref_primary_10_1002_anie_201204850
crossref_primary_10_1021_bi902099u
crossref_primary_10_1016_j_biochi_2008_02_009
crossref_primary_10_1371_journal_pone_0083796
crossref_primary_10_1002_adsc_201400818
crossref_primary_10_1007_s41061_021_00329_7
crossref_primary_10_1021_ja200786q
crossref_primary_10_1093_nar_gkw145
crossref_primary_10_1021_jp809486g
crossref_primary_10_1142_S1088424609001121
crossref_primary_10_1002_0471142700_nc1702s40
crossref_primary_10_1016_j_febslet_2015_06_025
crossref_primary_10_1016_j_talanta_2015_11_036
crossref_primary_10_1002_app_52360
crossref_primary_10_1021_ja0457516
crossref_primary_10_1021_bi1002822
crossref_primary_10_1021_ja305384c
crossref_primary_10_1021_acs_jpclett_3c00214
crossref_primary_10_1016_j_biochi_2008_10_012
crossref_primary_10_1016_j_cocis_2021_101500
crossref_primary_10_1111_j_1742_4658_2010_07758_x
crossref_primary_10_1016_j_bbapap_2017_02_018
crossref_primary_10_1016_j_bpc_2016_12_003
crossref_primary_10_1016_j_ica_2024_122126
crossref_primary_10_1039_b716543a
crossref_primary_10_1021_acs_bioconjchem_3c00170
crossref_primary_10_1021_ja1079578
crossref_primary_10_1039_c2cc31037f
crossref_primary_10_1021_ja305360q
crossref_primary_10_3390_molecules181012751
crossref_primary_10_3390_molecules23061400
crossref_primary_10_1002_chem_200800280
crossref_primary_10_3390_ijms23052407
crossref_primary_10_1016_j_tet_2015_05_081
crossref_primary_10_1038_s41598_019_52311_5
crossref_primary_10_1007_s00249_010_0625_8
crossref_primary_10_1016_j_bios_2021_113030
crossref_primary_10_1002_anie_201101759
crossref_primary_10_1002_anie_201605350
crossref_primary_10_1016_j_bpc_2008_05_005
crossref_primary_10_1016_j_bbagen_2016_11_036
crossref_primary_10_1021_jp209170v
crossref_primary_10_1016_j_ymeth_2013_11_002
crossref_primary_10_1007_s42452_020_2280_8
crossref_primary_10_1016_j_bpj_2009_07_025
crossref_primary_10_1021_ja9052027
crossref_primary_10_1155_2017_9170371
crossref_primary_10_1016_j_bbrc_2020_04_047
crossref_primary_10_1021_acs_biochem_2c00443
crossref_primary_10_5939_sjws_22006
crossref_primary_10_1002_ange_200502960
crossref_primary_10_1039_C4OB02681K
crossref_primary_10_1107_S1399004713028095
crossref_primary_10_1002_ange_200462667
crossref_primary_10_1093_nar_gkz071
crossref_primary_10_1371_journal_pone_0206359
crossref_primary_10_1039_C5CC09728B
crossref_primary_10_1246_cl_2008_864
crossref_primary_10_3390_genes11111340
crossref_primary_10_1186_1746_1448_4_6
crossref_primary_10_1002_ange_201101759
crossref_primary_10_1021_acs_jpcb_2c03153
crossref_primary_10_1021_ja0446202
crossref_primary_10_1002_ange_201605350
crossref_primary_10_1074_jbc_RA118_005240
crossref_primary_10_1002_anie_200462667
crossref_primary_10_3390_ijms25010634
crossref_primary_10_1080_15257770701490282
crossref_primary_10_1021_ac301864r
crossref_primary_10_1021_ac500112d
crossref_primary_10_4061_2010_820356
crossref_primary_10_1021_acs_chemrev_8b00629
Cites_doi 10.1016/S0014-5793(01)02416-4
10.1016/S0006-3495(99)77154-7
10.1016/S0959-440X(99)00045-7
10.1006/jmbi.1997.1292
10.1021/ja016577d
10.1016/S0009-2614(00)00004-X
10.1021/ja00156a038
10.1074/jbc.M110429200
10.1074/jbc.R100005200
10.1006/jmbi.1995.0417
10.1016/S0958-1669(97)80159-0
ContentType Journal Article
Copyright Copyright © 2002 American Chemical Society
Copyright_xml – notice: Copyright © 2002 American Chemical Society
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TM
7X8
DOI 10.1021/bi020412f
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Nucleic Acids Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 15024
ExternalDocumentID 10_1021_bi020412f
12475251
ark_67375_TPS_LF9VQKRK_H
a035891422
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
08R
23N
3O-
4.4
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
AAYJJ
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
ADKFC
AEESW
AENEX
AETEA
AFEFF
AFFDN
AFFNX
AFMIJ
AIDAL
AJYGW
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GJ
GNL
IH9
IHE
JG
JG~
K2
K78
KM
L7B
LG6
MVM
NHB
OHT
P2P
ROL
TN5
UI2
UNC
UQL
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
6TJ
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
XOL
XSW
YYP
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TM
7X8
ID FETCH-LOGICAL-a446t-dc704bbef011c4f64ba38fef0b84a4d12c6318207020d229a067eea1fc63bd903
IEDL.DBID ACS
ISSN 0006-2960
IngestDate Thu Oct 24 23:04:19 EDT 2024
Fri Oct 25 23:00:07 EDT 2024
Thu Sep 26 18:02:21 EDT 2024
Sat Sep 28 08:40:19 EDT 2024
Wed Oct 30 09:18:35 EDT 2024
Thu Aug 27 13:42:38 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a446t-dc704bbef011c4f64ba38fef0b84a4d12c6318207020d229a067eea1fc63bd903
Notes This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan, to N.S.
istex:57458D57D084F55089F5EA62F140245A7561FFCC
ark:/67375/TPS-LF9VQKRK-H
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 12475251
PQID 18705521
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_72759451
proquest_miscellaneous_18705521
crossref_primary_10_1021_bi020412f
pubmed_primary_12475251
istex_primary_ark_67375_TPS_LF9VQKRK_H
acs_journals_10_1021_bi020412f
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2002-12-17
PublicationDateYYYYMMDD 2002-12-17
PublicationDate_xml – month: 12
  year: 2002
  text: 2002-12-17
  day: 17
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2002
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Minton A. P. (bi020412fb00001/bi020412fb00001_1) 2001; 276
Martin J. (bi020412fb00011/bi020412fb00011_1) 2002
Fry M. (bi020412fb00017/bi020412fb00017_1) 1994
Winzor D. J. (bi020412fb00006/bi020412fb00006_1) 1995
Miura T. (bi020412fb00022/bi020412fb00022_1) 1995; 248
Sen D. (bi020412fb00021/bi020412fb00021_1) 1990
Goobes R. (bi020412fb00013/bi020412fb00013_1) 2001; 123
Flaugh S. L. (bi020412fb00009/bi020412fb00009_1) 2001
Parsegian V. A. (bi020412fb00007/bi020412fb00007_1) 2000
Berg O. (bi020412fb00004/bi020412fb00004_1) 1990
Spink C. H. (bi020412fb00012/bi020412fb00012_1) 1995; 117
Minton A. P. (bi020412fb00041/bi020412fb00041_1) 1981
Liu Y. (bi020412fb00005/bi020412fb00005_1) 1995
Simonson T. (bi020412fb00018/bi020412fb00018_1) 1998
Hatters D. M. (bi020412fb00010/bi020412fb00010_1) 2002; 277
Mayama H. (bi020412fb00033/bi020412fb00033_1) 2000; 318
Shtilerman M. D. (bi020412fb00044/bi020412fb00044_1) 2002
Wang Y. (bi020412fb00034/bi020412fb00034_1) 1995; 251
Conlon I. J. (bi020412fb00045/bi020412fb00045_1) 2001
Morar A. S. (bi020412fb00038/bi020412fb00038_1) 2001
Keniry M. A. (bi020412fb00019/bi020412fb00019_1) 2001
Minton A. P. (bi020412fb00008/bi020412fb00008_1) 2000; 10
Sugimoto N. (bi020412fb00024/bi020412fb00024_1) 2000
Minton A. P. (bi020412fb00036/bi020412fb00036_1) 1983; 22
Lu M. (bi020412fb00027/bi020412fb00027_1) 1993
Abbreviations (bi020412fn00001/bi020412fn00001_1)
Wyatt J. R. (bi020412fb00026/bi020412fb00026_1) 1996
bi020412fb00031/bi020412fb00031_1
Daniels G. A. (bi020412fb00016/bi020412fb00016_1) 1995
Petersheim M. (bi020412fb00028/bi020412fb00028_1) 1983
Williamson J. R. (bi020412fb00014/bi020412fb00014_1) 1989
Schultze P. (bi020412fb00023/bi020412fb00023_1) 1994
Lerman (bi020412fb00030/bi020412fb00030_1) 1886
Morar A. S. (bi020412fb00039/bi020412fb00039_1) 2002
Takahashi Y. (bi020412fb00043/bi020412fb00043_1) 2000
Balagurumoorthy P. (bi020412fb00025/bi020412fb00025_1) 1992
Wenner J. R. (bi020412fb00042/bi020412fb00042_1) 1999; 77
Ellis R. J. (bi020412fb00002/bi020412fb00002_1) 2001
Miyoshi D. (bi020412fb00020/bi020412fb00020_1) 2001; 496
Sugimoto N. (bi020412fb00029/bi020412fb00029_1) 1995
Kidokura S. (bi020412fb00032/bi020412fb00032_1) 1999
Ellis R. J. (bi020412fb00035/bi020412fb00035_1) 2001
Phillips K. (bi020412fb00040/bi020412fb00040_1) 1997; 273
Blackburn E. H. (bi020412fb00015/bi020412fb00015_1) 1995
Davis-Searles P. R. (bi020412fb00003/bi020412fb00003_1) 2001; 30
Minton A. P. (bi020412fb00037/bi020412fb00037_1) 1997; 8
References_xml – volume: 496
  year: 2001
  ident: bi020412fb00020/bi020412fb00020_1
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02416-4
  contributor:
    fullname: Miyoshi D.
– volume: 77
  year: 1999
  ident: bi020412fb00042/bi020412fb00042_1
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77154-7
  contributor:
    fullname: Wenner J. R.
– volume-title: Biochemistry 41, 5050−5055
  year: 2002
  ident: bi020412fb00011/bi020412fb00011_1
  contributor:
    fullname: Martin J.
– volume-title: Nucleic Acids Res. 26, 1167−1172
  year: 1998
  ident: bi020412fb00018/bi020412fb00018_1
  contributor:
    fullname: Simonson T.
– volume-title: Protein−Solvent Interactions
  year: 1995
  ident: bi020412fb00006/bi020412fb00006_1
  contributor:
    fullname: Winzor D. J.
– volume-title: Structure 2, 221−233
  year: 1994
  ident: bi020412fb00023/bi020412fb00023_1
  contributor:
    fullname: Schultze P.
– volume-title: Curr. Opin. Struct. Biol. 11, 114−119
  year: 2001
  ident: bi020412fb00002/bi020412fb00002_1
  contributor:
    fullname: Ellis R. J.
– volume: 10
  start-page: 39
  year: 2000
  ident: bi020412fb00008/bi020412fb00008_1
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/S0959-440X(99)00045-7
  contributor:
    fullname: Minton A. P.
– volume-title: Biochemistry 39, 11270−11281
  year: 2000
  ident: bi020412fb00024/bi020412fb00024_1
  contributor:
    fullname: Sugimoto N.
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 92, 5625−5629
  year: 1995
  ident: bi020412fb00016/bi020412fb00016_1
  contributor:
    fullname: Daniels G. A.
– volume-title: Curr. Opin. Struct. Biol. 11, 114−119
  year: 2001
  ident: bi020412fb00035/bi020412fb00035_1
  contributor:
    fullname: Ellis R. J.
– volume-title: Biopolymers 30, 1027−1037
  year: 1990
  ident: bi020412fb00004/bi020412fb00004_1
  contributor:
    fullname: Berg O.
– volume-title: Biochemistry 41, 547−551
  year: 2002
  ident: bi020412fb00039/bi020412fb00039_1
  contributor:
    fullname: Morar A. S.
– volume: 273
  year: 1997
  ident: bi020412fb00040/bi020412fb00040_1
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1997.1292
  contributor:
    fullname: Phillips K.
– volume-title: Nucleic Acids Res. 20, 4061−4067
  year: 1992
  ident: bi020412fb00025/bi020412fb00025_1
  contributor:
    fullname: Balagurumoorthy P.
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 97, 3987−3992
  year: 2000
  ident: bi020412fb00007/bi020412fb00007_1
  contributor:
    fullname: Parsegian V. A.
– volume-title: Cell 59, 871−880
  year: 1989
  ident: bi020412fb00014/bi020412fb00014_1
  contributor:
    fullname: Williamson J. R.
– volume-title: Biochemistry 35, 8002−8008
  year: 1996
  ident: bi020412fb00026/bi020412fb00026_1
  contributor:
    fullname: Wyatt J. R.
– volume: 123
  year: 2001
  ident: bi020412fb00013/bi020412fb00013_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja016577d
  contributor:
    fullname: Goobes R.
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 97, 12407−12408
  year: 2000
  ident: bi020412fb00043/bi020412fb00043_1
  contributor:
    fullname: Takahashi Y.
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 91, 4950−4954
  year: 1994
  ident: bi020412fb00017/bi020412fb00017_1
  contributor:
    fullname: Fry M.
– volume-title: Biochemistry 40, 281−285
  year: 2001
  ident: bi020412fb00038/bi020412fb00038_1
  contributor:
    fullname: Morar A. S.
– volume-title: Telomeres
  year: 1995
  ident: bi020412fb00015/bi020412fb00015_1
  contributor:
    fullname: Blackburn E. H.
– volume-title: Biopolymers 56, 123−146
  year: 2001
  ident: bi020412fb00019/bi020412fb00019_1
  contributor:
    fullname: Keniry M. A.
– volume-title: Biochemisry 41, 3855−1860
  year: 2002
  ident: bi020412fb00044/bi020412fb00044_1
  contributor:
    fullname: Shtilerman M. D.
– volume-title: Biochemistry 34, 11211−11216
  year: 1995
  ident: bi020412fb00029/bi020412fb00029_1
  contributor:
    fullname: Sugimoto N.
– volume-title: Biochemistry 34, 12884−12891
  year: 1995
  ident: bi020412fb00005/bi020412fb00005_1
  contributor:
    fullname: Liu Y.
– volume-title: Biomacromolecules 2, 538−540
  year: 2001
  ident: bi020412fb00009/bi020412fb00009_1
  contributor:
    fullname: Flaugh S. L.
– volume-title: Biochemistry 32, 598−601
  year: 1993
  ident: bi020412fb00027/bi020412fb00027_1
  contributor:
    fullname: Lu M.
– volume-title: Biochemistry 22, 256−263
  year: 1983
  ident: bi020412fb00028/bi020412fb00028_1
  contributor:
    fullname: Petersheim M.
– volume-title: Biopolymers 20
  year: 1981
  ident: bi020412fb00041/bi020412fb00041_1
  contributor:
    fullname: Minton A. P.
– volume: 318
  year: 2000
  ident: bi020412fb00033/bi020412fb00033_1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)00004-X
  contributor:
    fullname: Mayama H.
– volume: 117
  year: 1995
  ident: bi020412fb00012/bi020412fb00012_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00156a038
  contributor:
    fullname: Spink C. H.
– volume: 248
  year: 1995
  ident: bi020412fb00022/bi020412fb00022_1
  publication-title: J. Mol. Biol.
  contributor:
    fullname: Miura T.
– volume-title: L. S. (1971)
  year: 1886
  ident: bi020412fb00030/bi020412fb00030_1
  contributor:
    fullname: Lerman
– volume: 277
  year: 2002
  ident: bi020412fb00010/bi020412fb00010_1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110429200
  contributor:
    fullname: Hatters D. M.
– volume: 30
  year: 2001
  ident: bi020412fb00003/bi020412fb00003_1
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  contributor:
    fullname: Davis-Searles P. R.
– volume-title: Nature 344, 410−414
  year: 1990
  ident: bi020412fb00021/bi020412fb00021_1
  contributor:
    fullname: Sen D.
– volume: 276
  year: 2001
  ident: bi020412fb00001/bi020412fb00001_1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R100005200
  contributor:
    fullname: Minton A. P.
– volume: 251
  start-page: 94
  year: 1995
  ident: bi020412fb00034/bi020412fb00034_1
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1995.0417
  contributor:
    fullname: Wang Y.
– volume-title: Biophys. Chem. 76, 133−143
  year: 1999
  ident: bi020412fb00032/bi020412fb00032_1
  contributor:
    fullname: Kidokura S.
– volume: 8
  start-page: 69
  year: 1997
  ident: bi020412fb00037/bi020412fb00037_1
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/S0958-1669(97)80159-0
  contributor:
    fullname: Minton A. P.
– volume: 22
  start-page: 65
  year: 1983
  ident: bi020412fb00036/bi020412fb00036_1
  publication-title: Mol. Cell. Biochem.
  contributor:
    fullname: Minton A. P.
– ident: bi020412fb00031/bi020412fb00031_1
– volume-title: guanine quadruplex
  ident: bi020412fn00001/bi020412fn00001_1
  contributor:
    fullname: Abbreviations
– volume-title: Nat. Cell Biol. 3, 918−921
  year: 2001
  ident: bi020412fb00045/bi020412fb00045_1
  contributor:
    fullname: Conlon I. J.
SSID ssj0004074
Score 2.2076588
Snippet Almost all biochemical reactions in vitro have been investigated through numerous experiments conducted in dilute solutions containing low concentrations of...
SourceID proquest
crossref
pubmed
istex
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 15017
SubjectTerms Animals
Biopolymers - chemistry
Cadaverine - chemistry
Circular Dichroism
DNA - chemistry
DNA, Protozoan - chemistry
G-Quadruplexes
Glycerol - chemistry
Nucleic Acid Conformation
Nucleic Acid Heteroduplexes - chemistry
Oxytricha - chemistry
Polyamines - chemistry
Polyethylene Glycols - chemistry
Putrescine - chemistry
Spermine - chemistry
Thermodynamics
Titrimetry
Title Molecular Crowding Regulates the Structural Switch of the DNA G-Quadruplex
URI http://dx.doi.org/10.1021/bi020412f
https://api.istex.fr/ark:/67375/TPS-LF9VQKRK-H/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/12475251
https://search.proquest.com/docview/18705521
https://search.proquest.com/docview/72759451
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB3RcoAL-1KWYgHiFpE4bh0fq0Kp2AQEELfIsR0JASlqiYC_Z-w2LBIVHJNMFHuerXkT228AdnUqfcOE8WioNSYovj2sLDMvNFopHM9KOe3ObszP76KDQyuTszNmBZ8G--m9Pb8Z0KwCk5T7kc2wWu346_CjP5JaxtSYIh8v5YO-v2pDjxr8CD2T1otv43mliy-d2X-1bA5mRvSRtIZ4z8OEyRdgsZVj6vz0TvaI29Dp_pQvwFS7LOa2CMdnZRlc0sbE2wYscjUsQ28GBEkgiZ2QrBXhIPHrPWJJepl7cHDeIkfeZSF1v3h-NG9LcNM5vG53vVEZBU9irvfiacV9lqYmw6msWNZkqQyjDC_TiEmmA6qaoZVx59gbTamQGMCMkUGG91Mt_HAZqnkvN6tAFPItYbhsCskZoyoykUIO0xSaIc0RsgZ19HMymgaDxK1w0yD59FQNtksIkuehnMZvRnsOnE8L2X-w-894I7m-iJPTjri9PLk6Sbo12CrRS9CfdqlD5qZX4IcjqxJEg_EWyNsagjXQYmUI-1d7KOMNpH1rf3VmHabL2jAB34Aq4mQ2oTLQRd0N0Q-aGtvr
link.rule.ids 315,782,786,2771,27087,27935,27936,56750,56800
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xOLAXnrtQnhZacYtIHKeJj1WhFFqqhXRXe7Mc25EqIEWECvj3jN2mBQmEOCaZJPaMrfnG9nwD8Ftn0jeMG4-GWmOA4ttkZZl7odFK4XhWynF3ttO49z85OZ3S5NhcGGxEiV8q3Sb-jF0gOM4GNo0zoPk8LEaIcm2ZhkYzneVA-hPGZYyQKcLyikXo7avWA6nynQdatMp8_hxeOjfTWvlOA1dheQImSWNs_TWYM8U6bDQKDKTvXsgRccc73br5Oiw1q9JuG3BxWRXFJU0Mw637ItfjovSmJAgJSepoZS0lB0mfBmhZMszdg5Neg5x5VyOpH0b3t-b5J_xtnfabbW9SVMGTGPk9elrFPssyk-PEViyvs0yGSY6XWcIk0wFV9dCSusfYG00pl-jOjJFBjvczzf3wFywUw8JsAVGIvriJZZ3LmDGqEpMoRDR1rhmCHi5rsI-KEpNJUQq3300DMdVUDQ4rS4j7MbnGR0JHzkZTCflwY0-jxZHo_0lFt8X_XXWuO6Jdg4PKiAL1aTc-ZGGGI_xxYjmDaPC5BKK4iLMIJTbH1p-1h7I4QhC4_VVnDmCp3b_siu55r7MDP6qqMUG8CwtoM7MH86Ue7btR-wr3aORQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED_xIcFeNr5XNsBCE2-BxHE-_Fi1lEKhAsIm3izHdqRqW1qRVYP_fmc34UMaQjwmuSTO3Vn3u9j3O4BvOpe-Ydx4NNQaExTfFivLwguNVgr9WSnH3dnPkuFt2j22NDmHTS0MDqLCJ1VuEd_O6okuaoaB4Cgf2VLOgBbzsBjFCHUsFOpkT3WQfs26jFkyRWjeMAk9v9VGIVW9iEKLVqH3r0NMF2p6n947yBX4WINK0p55wSrMmXIN1tslJtS_H8gBcds83f_zNVjuNC3e1uHsommOSzqYjtswRq5nzelNRRAakszRy1pqDpL9HaGFybhwF7rDNjnxrqZS300nv8z9BnzvHd90-l7dXMGTmAH-8bRKfJbnpsAJrlgRs1yGaYGHecok0wFVcWjJ3RP8Gk0plxjWjJFBgedzzf1wExbKcWk-A1GIwrhJZMxlwhhVqUkVIpuYa4bgh8sW7KKyRD05KuHWvWkgHjXVgv3GGmIyI9n4n9CBs9OjhLz7aXelJZG4uczEeY__uBpcD0S_BXuNIQXq0y6AyNKMp_ji1HIH0eB1CURzEWcRSmzNPOBpPJQlEYLB7bc-Zg-WLrs9cX46HHyBD03zmCD5CgtoMrMD85We7jrH_QeCCubK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Crowding+Regulates+the+Structural+Switch+of+the+DNA+G-Quadruplex&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Miyoshi%2C+Daisuke&rft.au=Nakao%2C+Akihiro&rft.au=Sugimoto%2C+Naoki&rft.date=2002-12-17&rft.issn=0006-2960&rft.volume=41&rft.issue=50&rft.spage=15017&rft.epage=15024&rft_id=info:doi/10.1021%2Fbi020412f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon