The Potential of Overlayers on Tin-based Perovskites for Water Splitting
Photoelectrochemical water splitting is a promising method of clean hydrogen production for green energy uses. Here, we report on a tin-based oxide perovskite combined with an overlayer that shows enhanced bifunctional hydrogen and oxygen evolution. In our first-principles study of tin-based perovsk...
Saved in:
Published in: | The journal of physical chemistry letters Vol. 11; no. 10; pp. 4124 - 4130 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
21-05-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photoelectrochemical water splitting is a promising method of clean hydrogen production for green energy uses. Here, we report on a tin-based oxide perovskite combined with an overlayer that shows enhanced bifunctional hydrogen and oxygen evolution. In our first-principles study of tin-based perovskites, based upon density functional theory, we investigate how the formation of a surface affects the electronic properties of these materials. We show that the best candidate, SrSnO3, possesses hydrogen and oxygen overpotentials of 0.75 and 0.72 eV, respectively, which are reduced to 0.35 and 0.54 eV with the inclusion of a ZrO2 overlayer. Furthermore, this overlayer promotes charge extraction, stabilizes the reaction pathways, and improves the band gap such that it straddles the overpotentials between pH 0 and pH 12. This result indicates that SrSnO3 with a ZrO2 overlayer has significant potential as a highly efficient bifunctional water splitter for producing hydrogen and oxygen gas on the same surface. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.0c00964 |