Ultrafast Charge- and Energy-Transfer Dynamics in Conjugated Polymer: Cadmium Selenide Nanocrystal Blends
Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystal...
Saved in:
Published in: | ACS nano Vol. 8; no. 2; pp. 1647 - 1654 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
25-02-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer–nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic–nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends. |
---|---|
AbstractList | Hybrid nanocrystal-polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenyle ne vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer-nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic-nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends. Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer–nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic–nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends. Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands ( n -butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer–nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic–nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends. |
Author | Vaynzof, Yana Rao, Akshay Böhm, Marcus L Kist, René J. P Morgenstern, Frederik S. F Greenham, Neil C |
AuthorAffiliation | Cavendish Laboratory University of Cambridge |
AuthorAffiliation_xml | – name: University of Cambridge – name: Cavendish Laboratory |
Author_xml | – sequence: 1 givenname: Frederik S. F surname: Morgenstern fullname: Morgenstern, Frederik S. F – sequence: 2 givenname: Akshay surname: Rao fullname: Rao, Akshay – sequence: 3 givenname: Marcus L surname: Böhm fullname: Böhm, Marcus L – sequence: 4 givenname: René J. P surname: Kist fullname: Kist, René J. P – sequence: 5 givenname: Yana surname: Vaynzof fullname: Vaynzof, Yana – sequence: 6 givenname: Neil C surname: Greenham fullname: Greenham, Neil C email: ncg11@cam.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24490650$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUuLFTEQhYOMOA9d-AckG0EXrXk_XAxoOz5gUMEZcBdyk-o7felOxqRb6H9vyx0vCoKrKqo-DnXqnKKjlBMg9JiSF5Qw-jIlQaTVpruHTqjlqiFGfTs69JIeo9Nad4RIbbR6gI6ZEJYoSU5Qfz1MxXe-Tri98WULDfYp4osEZbs0V8Wn2kHBb5fkxz5U3Cfc5rSbt36CiL_kYRmhvMKtj2M_j_grDJD6CPiTTzmUpU5-wG_WWawP0f3ODxUe3dUzdP3u4qr90Fx-fv-xfX3ZeMHN1ESgQWgdgjDglTWcGms15UYyFQhXWjAbFRUSVsvRCEKIERvSWSY3HSOUn6Hzve7tvBkhBkirwcHdln70ZXHZ9-7vTepv3Db_cNwKRbheBZ7dCZT8fYY6ubGvAYbBJ8hzdVQrRqRUnP0flYRxrpRQK_p8j4aSay3QHS6ixP1K0R1SXNknf1o4kL9jW4Gne8CH6nZ5Lmn96D-EfgJCG6Ux |
CitedBy_id | crossref_primary_10_1016_j_jphotochemrev_2014_05_001 crossref_primary_10_1002_ange_201803452 crossref_primary_10_1021_jp507080c crossref_primary_10_1021_acs_jpcc_5b10725 crossref_primary_10_1021_acs_chemrev_6b00036 crossref_primary_10_1021_acsami_7b03074 crossref_primary_10_1021_acs_jpclett_7b01936 crossref_primary_10_1039_C7DT04794K crossref_primary_10_1002_smll_201401508 crossref_primary_10_1021_acs_jpcc_6b09986 crossref_primary_10_1021_acs_jpcc_7b04984 crossref_primary_10_1021_acs_jpcc_5b12661 crossref_primary_10_1002_aenm_201400139 crossref_primary_10_1021_acs_chemmater_5b00313 crossref_primary_10_1021_acs_jpcc_6b07591 crossref_primary_10_1002_anie_201803452 crossref_primary_10_1063_5_0050464 crossref_primary_10_1002_slct_201700085 crossref_primary_10_1021_nl5046268 crossref_primary_10_1021_acs_chemrev_6b00102 crossref_primary_10_1016_j_molstruc_2018_01_046 crossref_primary_10_1038_nmat4865 crossref_primary_10_1002_cphc_201700174 crossref_primary_10_1038_srep19397 crossref_primary_10_1021_acs_jpcc_9b05307 crossref_primary_10_1039_C5CC04323A crossref_primary_10_1016_j_jpcs_2022_110603 crossref_primary_10_1021_acs_jpcc_0c02616 crossref_primary_10_1021_acs_jpcc_9b00697 crossref_primary_10_1002_adfm_201503556 crossref_primary_10_1063_1_5114932 crossref_primary_10_1002_adfm_201401841 crossref_primary_10_1021_acs_jpcc_6b12689 crossref_primary_10_1021_acs_jpclett_6b02490 |
Cites_doi | 10.1021/jp003088b 10.1021/nl104436j 10.1021/jp802572b 10.1021/jp102101f 10.1103/PhysRevB.54.17628 10.1146/annurev.matsci.30.1.475 10.1063/1.1512943 10.1039/c2ee24175g 10.1021/jp307668g 10.1021/jp0124589 10.1002/adfm.201002154 10.1021/ar1000428 10.1016/j.synthmet.2003.09.015 10.1002/adma.201001010 10.1103/PhysRevB.59.10622 10.1002/adfm.200902099 10.1016/S0009-2614(01)00431-6 10.1063/1.3561063 10.1021/nn201681s 10.1002/adma.200602373 10.1021/jp200466y 10.1080/713738793 10.1016/S0379-6779(98)00330-0 10.1021/jp904229q 10.1021/cr900289f 10.1016/j.solmat.2010.12.041 10.1016/j.solmat.2008.11.022 10.1002/adma.200390022 10.1021/jz301926u 10.1021/nl903406s |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society Copyright © 2014 American Chemical Society 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society – notice: Copyright © 2014 American Chemical Society 2014 American Chemical Society |
DBID | N~. NPM AAYXX CITATION 7X8 7QQ 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
DOI | 10.1021/nn405978f |
DatabaseName | American Chemical Society (ACS) Open Access PubMed CrossRef MEDLINE - Academic Ceramic Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Ceramic Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 1654 |
ExternalDocumentID | 10_1021_nn405978f 24490650 e41153350 |
Genre | Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 N~. P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH ABJNI ABQRX ACBEA ACGFO ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 7QQ 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
ID | FETCH-LOGICAL-a438t-de1c477cc48ea698318997138526c0367429d6145e059d8400084b0f925bf2013 |
IEDL.DBID | ACS |
ISSN | 1936-0851 |
IngestDate | Tue Sep 17 21:19:53 EDT 2024 Sat Aug 17 03:32:24 EDT 2024 Sat Aug 17 00:51:21 EDT 2024 Fri Aug 23 00:24:49 EDT 2024 Sat Sep 28 08:00:13 EDT 2024 Thu Aug 27 13:42:41 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | polymer hybrid photoluminescence nanocrystals CdSe charge transfer photovoltaics transient absorption |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html Terms of Use CC-BY |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a438t-de1c477cc48ea698318997138526c0367429d6145e059d8400084b0f925bf2013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1021/nn405978f |
PMID | 24490650 |
PQID | 1502336646 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3946037 proquest_miscellaneous_1762055632 proquest_miscellaneous_1502336646 crossref_primary_10_1021_nn405978f pubmed_primary_24490650 acs_journals_10_1021_nn405978f |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ N~. UI2 |
PublicationCentury | 2000 |
PublicationDate | 2014-02-25 |
PublicationDateYYYYMMDD | 2014-02-25 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | 23186016 - J Phys Chem B. 2013 Apr 25;117(16):4412-21 20945911 - Chem Rev. 2010 Nov 10;110(11):6873-90 20507144 - J Phys Chem B. 2010 Nov 18;114(45):14514-20 20942416 - Acc Chem Res. 2011 Jan 18;44(1):1-13 20000623 - Nano Lett. 2010 Jan;10(1):239-42 21384996 - J Chem Phys. 2011 Mar 7;134(9):094706 9985889 - Phys Rev B Condens Matter. 1996 Dec 15;54(24):17628-17637 26283435 - J Phys Chem Lett. 2013 Jan 17;4(2):280-4 21662980 - ACS Nano. 2011 Jul 26;5(7):5888-902 21265559 - Nano Lett. 2011 Feb 9;11(2):904-9 20564706 - Adv Mater. 2010 Sep 1;22(33):3672-6 Scharber M. (ref23/cit23) 2004; 141 Gélinas S. (ref25/cit25) 2011; 115 Offermans T. (ref31/cit31) 2005; 72 Jasieniak J. (ref27/cit27) 2011; 5 Olson J. D. (ref17/cit17) 2009; 93 Ginger D. (ref13/cit13) 1999; 101 Efros A. L. (ref16/cit16) 2000; 30 Burda C. (ref11/cit11) 2001; 105 Niu Y. H. (ref18/cit18) 2007; 19 Nozik A. J. (ref2/cit2) 2010; 110 Colbert A. E. (ref6/cit6) 2013; 4 Piris J. (ref8/cit8) 2009; 113 Hindson J. C. (ref15/cit15) 2011; 11 Li Z. (ref3/cit3) 2011; 21 Dayal S. (ref5/cit5) 2010; 10 Lee H. (ref1/cit1) 2008; 112 Tyagi P. (ref21/cit21) 2011; 134 McArthur E. A. (ref20/cit20) 2010; 114 Marsh R. A. (ref9/cit9) 2010; 22 Kambhampati P. (ref10/cit10) 2011; 44 Ginger D. (ref14/cit14) 1999; 59 Van Hal P. A. (ref30/cit30) 2003; 15 Greenham N. C. (ref7/cit7) 1996; 54 Montanari I. (ref22/cit22) 2002; 81 Bakulin A. A. (ref24/cit24) 2010; 20 Zhou Y. (ref4/cit4) 2011; 95 Mühlbacher D. (ref26/cit26) 2002; 385 Strein E. (ref28/cit28) 2013; 6 Brabec C. J. (ref29/cit29) 2001; 340 Saari J. I. (ref12/cit12) 2013; 117 Underwood D. F. (ref19/cit19) 2001; 105 |
References_xml | – volume: 105 start-page: 436 year: 2001 ident: ref19/cit19 publication-title: J. Phys. Chem. B doi: 10.1021/jp003088b contributor: fullname: Underwood D. F. – volume: 11 start-page: 904 year: 2011 ident: ref15/cit15 publication-title: Nano Lett. doi: 10.1021/nl104436j contributor: fullname: Hindson J. C. – volume: 112 start-page: 11600 year: 2008 ident: ref1/cit1 publication-title: J. Phys. Chem. C doi: 10.1021/jp802572b contributor: fullname: Lee H. – volume: 114 start-page: 14514 year: 2010 ident: ref20/cit20 publication-title: J. Phys. Chem. B doi: 10.1021/jp102101f contributor: fullname: McArthur E. A. – volume: 54 start-page: 17628 year: 1996 ident: ref7/cit7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.17628 contributor: fullname: Greenham N. C. – volume: 30 start-page: 475 year: 2000 ident: ref16/cit16 publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev.matsci.30.1.475 contributor: fullname: Efros A. L. – volume: 81 start-page: 3001 year: 2002 ident: ref22/cit22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1512943 contributor: fullname: Montanari I. – volume: 6 start-page: 769 year: 2013 ident: ref28/cit28 publication-title: Energy Environ. Sci doi: 10.1039/c2ee24175g contributor: fullname: Strein E. – volume: 117 start-page: 4412 year: 2013 ident: ref12/cit12 publication-title: J. Phys. Chem. B doi: 10.1021/jp307668g contributor: fullname: Saari J. I. – volume: 105 start-page: 12286 year: 2001 ident: ref11/cit11 publication-title: J. Phys. Chem. B doi: 10.1021/jp0124589 contributor: fullname: Burda C. – volume: 21 start-page: 1419 year: 2011 ident: ref3/cit3 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201002154 contributor: fullname: Li Z. – volume: 44 start-page: 1 year: 2011 ident: ref10/cit10 publication-title: Acc. Chem. Res. doi: 10.1021/ar1000428 contributor: fullname: Kambhampati P. – volume: 141 start-page: 109 year: 2004 ident: ref23/cit23 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2003.09.015 contributor: fullname: Scharber M. – volume: 22 start-page: 3672 year: 2010 ident: ref9/cit9 publication-title: Adv. Mater. doi: 10.1002/adma.201001010 contributor: fullname: Marsh R. A. – volume: 59 start-page: 10622 year: 1999 ident: ref14/cit14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.10622 contributor: fullname: Ginger D. – volume: 20 start-page: 1653 year: 2010 ident: ref24/cit24 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200902099 contributor: fullname: Bakulin A. A. – volume: 340 start-page: 232 year: 2001 ident: ref29/cit29 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(01)00431-6 contributor: fullname: Brabec C. J. – volume: 134 start-page: 094706 year: 2011 ident: ref21/cit21 publication-title: J. Chem. Phys. doi: 10.1063/1.3561063 contributor: fullname: Tyagi P. – volume: 5 start-page: 5888 year: 2011 ident: ref27/cit27 publication-title: ACS Nano doi: 10.1021/nn201681s contributor: fullname: Jasieniak J. – volume: 72 start-page: 1 year: 2005 ident: ref31/cit31 publication-title: Phys. Rev. B contributor: fullname: Offermans T. – volume: 19 start-page: 3371 year: 2007 ident: ref18/cit18 publication-title: Adv. Mater. doi: 10.1002/adma.200602373 contributor: fullname: Niu Y. H. – volume: 115 start-page: 7114 year: 2011 ident: ref25/cit25 publication-title: J. Phys. Chem. C doi: 10.1021/jp200466y contributor: fullname: Gélinas S. – volume: 385 start-page: 205 year: 2002 ident: ref26/cit26 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/713738793 contributor: fullname: Mühlbacher D. – volume: 101 start-page: 425 year: 1999 ident: ref13/cit13 publication-title: Synth. Met. doi: 10.1016/S0379-6779(98)00330-0 contributor: fullname: Ginger D. – volume: 113 start-page: 14500 year: 2009 ident: ref8/cit8 publication-title: J. Phys. Chem. C doi: 10.1021/jp904229q contributor: fullname: Piris J. – volume: 110 start-page: 6873 year: 2010 ident: ref2/cit2 publication-title: Chem. Rev. doi: 10.1021/cr900289f contributor: fullname: Nozik A. J. – volume: 95 start-page: 1232 year: 2011 ident: ref4/cit4 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.12.041 contributor: fullname: Zhou Y. – volume: 93 start-page: 519 year: 2009 ident: ref17/cit17 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2008.11.022 contributor: fullname: Olson J. D. – volume: 15 start-page: 118 year: 2003 ident: ref30/cit30 publication-title: Adv. Mater. doi: 10.1002/adma.200390022 contributor: fullname: Van Hal P. A. – volume: 4 start-page: 280 year: 2013 ident: ref6/cit6 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz301926u contributor: fullname: Colbert A. E. – volume: 10 start-page: 239 year: 2010 ident: ref5/cit5 publication-title: Nano Lett. doi: 10.1021/nl903406s contributor: fullname: Dayal S. |
SSID | ssj0057876 |
Score | 2.3365724 |
Snippet | Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly... Hybrid nanocrystal-polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly... |
SourceID | pubmedcentral proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1647 |
SubjectTerms | Blends Cadmium selenides Charge Dynamical systems Dynamics Nanocrystals Nanostructure Polymer blends Tuning |
Title | Ultrafast Charge- and Energy-Transfer Dynamics in Conjugated Polymer: Cadmium Selenide Nanocrystal Blends |
URI | http://dx.doi.org/10.1021/nn405978f https://www.ncbi.nlm.nih.gov/pubmed/24490650 https://search.proquest.com/docview/1502336646 https://search.proquest.com/docview/1762055632 https://pubmed.ncbi.nlm.nih.gov/PMC3946037 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JboMwELWa9NIeui_pErnLFTUYMNBbSxLlVFVKI_WGwEtLlZgKwiF_3zGEKOl-ZvA2Y88bj_2M0DXpUE5MyQwwEAhQTJPClBLS0Jc0JWNciFhvuA2G7sOz1-1pmpyrHzL4xLxRCjAFxDqygdaJCwhB459gWC-32uJolTqG0BjwQ00ftPyrdj0sX3U9X_Dk52ORS36mv_2vFu6grTmMxHeV3nfRmlB7aHOJXHAfJaMxlC-jfIp1Tv1FGDhSHPfKy35G6aOkyHC3epI-x4nCQareCr2vxvFjOp5NRHaLg4hPkmKCh9o_JVxgWI9Tls0AVY7x_VifqD1Ao37vKRgY84cVjMi2vKnBhcls12XM9kREfQ_mNajGtDyHUAYuDcJln4PfdgT0i0MIqFn34470iRNLQAzWIWqqVIljhE0puC8A1YBWbUAXvoSIiHAtxZ2YkhZqw8iH84mRh2XOm5jhYsxa6LJWSvheEWx8J3RRqysE89c5jUiJtIDyHAAdFqU2_UUGFvySCA1ac1SpeFEVoBtfo9QWcleUvxDQ9NurX1TyWtJwW75NO5Z78lcPT9EGjIZd3oN3zlBzmhXiHDVyXrRLS_4Ak9rr3w |
link.rule.ids | 230,315,782,786,887,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xOLQ9FOiL8NyiXq3Gr7XNDUJQKiiqFJB6s5x9FKNkjeL4wL_vt3YSkoJAPXu9r5nd-WZn51uib16bS8_VwoGCwEFxXY4lpbRjkzS1EFKpgT1w6_Wjq9_xWXdOk2NzYdCJEjWVdRD_kV3A_W4MoAVcHr1K6yEHCLYwqNOf7bpW8XgTQYaHDBgxYxFa_NVaIFEuW6AnsPLf25EL5uZ84386uknvp6CSnTRasEUrynygdwtUgx8pvxmiGZ2VE2Yj7H-UwzIjWbdO_XNqi6XVmJ01D9SXLDesU5i7yp6ySfarGD6M1PiYdTI5yqsR61trlUvFsDsXYvwAjDlkp0N7v_YT3Zx3rzs9Z_rMgpMFfjxxpHJFEEVCBLHKeBJjlUNQrh-HHhcwcHCeEwkrHiqMS8IhtBz8g7ZOvHCggR_8z7RmCqO2iblayUQB40DGAbBGouEfedKWkuGAey06wJSl02VSpnUE3HPT-Zy16Ggmm_S-odt4rtDXmdRSLAYb4ciMKirUFwKC-JwH_IUy2P5rWjT05ksj6XlTwDqJxawtipZ0YF7AknEvfzH5bU3K7ScBb_vRzmsjPKQ3veufl-nlj6uLXXqLmQnqDPlwj9Ym40rt02opq4Nauf8Cmif0TA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1RkBAc2JeyGsQ10GxOwg26CASqKpVK3KLUCwS1DmqaA3_POGmqFhCIcxxvM-N547GfAS6sGuWWKZmBCoIBimlSNCkhDX1JUzLGhejrDbe7rtd-9htNTZNzWd6FwU6kWFOaJ_G1Vb9zOWEYMK-UQniBYY-swJJLvUAHWzf1brnyauWjRRYZo2SEEiWT0Oyv2guxdN4LfYOWX09Izric1vp_O7sBaxNwSW4KbdiEBaG2YHWGcnAb4t4Am5JROiY60_4iDBIpTpr5FUAj91xSjEijeKg-JbEi9US9ZXq3jZNOMvgYitE1qUd8GGdD0tVeK-aC4CqdsNEHYs0BuR3oc7Y70Gs1n-p3xuS5BSNybH9scGEyx_MYc3wR0cBHa0eBmbbvWpSho8MgOuDozV2B4-IYGGou_n5NBpbbl4gj7F1YVIkS-0BMKXggEOugrB3EHIHEOMniuhR3-9SqwglOWzgxlzTMM-GWGU7nrArnpXzC94J246dCZ6XkQjQKnemIlEgyrM9FKGJT6tBfyqAbyOnRsDd7hbSnTSHmCTR2rYI3pwfTApqUe_6Lil9zcm47cGjN9g7-GuEpLHcarfDxvv1wCCs4MU5-Ud49gsXxKBPHUEl5dpLr9yec4_bP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Charge-+and+Energy-Transfer+Dynamics+in+Conjugated+Polymer%3A+Cadmium+Selenide+Nanocrystal+Blends&rft.jtitle=ACS+nano&rft.au=Morgenstern%2C+Frederik+SF&rft.au=Rao%2C+Akshay&rft.au=Bohm%2C+Marcus+L&rft.au=Kist%2C+Rene+JP&rft.date=2014-02-25&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=8&rft.issue=2&rft.spage=1647&rft.epage=1654-1647-1654&rft_id=info:doi/10.1021%2Fnn405978f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |