Ultrafast Charge- and Energy-Transfer Dynamics in Conjugated Polymer: Cadmium Selenide Nanocrystal Blends

Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystal...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano Vol. 8; no. 2; pp. 1647 - 1654
Main Authors: Morgenstern, Frederik S. F, Rao, Akshay, Böhm, Marcus L, Kist, René J. P, Vaynzof, Yana, Greenham, Neil C
Format: Journal Article
Language:English
Published: United States American Chemical Society 25-02-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer–nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic–nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends.
AbstractList Hybrid nanocrystal-polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenyle ne vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer-nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic-nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends.
Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer–nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic–nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends.
Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands ( n -butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer–nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic–nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends.
Author Vaynzof, Yana
Rao, Akshay
Böhm, Marcus L
Kist, René J. P
Morgenstern, Frederik S. F
Greenham, Neil C
AuthorAffiliation Cavendish Laboratory
University of Cambridge
AuthorAffiliation_xml – name: University of Cambridge
– name: Cavendish Laboratory
Author_xml – sequence: 1
  givenname: Frederik S. F
  surname: Morgenstern
  fullname: Morgenstern, Frederik S. F
– sequence: 2
  givenname: Akshay
  surname: Rao
  fullname: Rao, Akshay
– sequence: 3
  givenname: Marcus L
  surname: Böhm
  fullname: Böhm, Marcus L
– sequence: 4
  givenname: René J. P
  surname: Kist
  fullname: Kist, René J. P
– sequence: 5
  givenname: Yana
  surname: Vaynzof
  fullname: Vaynzof, Yana
– sequence: 6
  givenname: Neil C
  surname: Greenham
  fullname: Greenham, Neil C
  email: ncg11@cam.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24490650$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuLFTEQhYOMOA9d-AckG0EXrXk_XAxoOz5gUMEZcBdyk-o7felOxqRb6H9vyx0vCoKrKqo-DnXqnKKjlBMg9JiSF5Qw-jIlQaTVpruHTqjlqiFGfTs69JIeo9Nad4RIbbR6gI6ZEJYoSU5Qfz1MxXe-Tri98WULDfYp4osEZbs0V8Wn2kHBb5fkxz5U3Cfc5rSbt36CiL_kYRmhvMKtj2M_j_grDJD6CPiTTzmUpU5-wG_WWawP0f3ODxUe3dUzdP3u4qr90Fx-fv-xfX3ZeMHN1ESgQWgdgjDglTWcGms15UYyFQhXWjAbFRUSVsvRCEKIERvSWSY3HSOUn6Hzve7tvBkhBkirwcHdln70ZXHZ9-7vTepv3Db_cNwKRbheBZ7dCZT8fYY6ubGvAYbBJ8hzdVQrRqRUnP0flYRxrpRQK_p8j4aSay3QHS6ixP1K0R1SXNknf1o4kL9jW4Gne8CH6nZ5Lmn96D-EfgJCG6Ux
CitedBy_id crossref_primary_10_1016_j_jphotochemrev_2014_05_001
crossref_primary_10_1002_ange_201803452
crossref_primary_10_1021_jp507080c
crossref_primary_10_1021_acs_jpcc_5b10725
crossref_primary_10_1021_acs_chemrev_6b00036
crossref_primary_10_1021_acsami_7b03074
crossref_primary_10_1021_acs_jpclett_7b01936
crossref_primary_10_1039_C7DT04794K
crossref_primary_10_1002_smll_201401508
crossref_primary_10_1021_acs_jpcc_6b09986
crossref_primary_10_1021_acs_jpcc_7b04984
crossref_primary_10_1021_acs_jpcc_5b12661
crossref_primary_10_1002_aenm_201400139
crossref_primary_10_1021_acs_chemmater_5b00313
crossref_primary_10_1021_acs_jpcc_6b07591
crossref_primary_10_1002_anie_201803452
crossref_primary_10_1063_5_0050464
crossref_primary_10_1002_slct_201700085
crossref_primary_10_1021_nl5046268
crossref_primary_10_1021_acs_chemrev_6b00102
crossref_primary_10_1016_j_molstruc_2018_01_046
crossref_primary_10_1038_nmat4865
crossref_primary_10_1002_cphc_201700174
crossref_primary_10_1038_srep19397
crossref_primary_10_1021_acs_jpcc_9b05307
crossref_primary_10_1039_C5CC04323A
crossref_primary_10_1016_j_jpcs_2022_110603
crossref_primary_10_1021_acs_jpcc_0c02616
crossref_primary_10_1021_acs_jpcc_9b00697
crossref_primary_10_1002_adfm_201503556
crossref_primary_10_1063_1_5114932
crossref_primary_10_1002_adfm_201401841
crossref_primary_10_1021_acs_jpcc_6b12689
crossref_primary_10_1021_acs_jpclett_6b02490
Cites_doi 10.1021/jp003088b
10.1021/nl104436j
10.1021/jp802572b
10.1021/jp102101f
10.1103/PhysRevB.54.17628
10.1146/annurev.matsci.30.1.475
10.1063/1.1512943
10.1039/c2ee24175g
10.1021/jp307668g
10.1021/jp0124589
10.1002/adfm.201002154
10.1021/ar1000428
10.1016/j.synthmet.2003.09.015
10.1002/adma.201001010
10.1103/PhysRevB.59.10622
10.1002/adfm.200902099
10.1016/S0009-2614(01)00431-6
10.1063/1.3561063
10.1021/nn201681s
10.1002/adma.200602373
10.1021/jp200466y
10.1080/713738793
10.1016/S0379-6779(98)00330-0
10.1021/jp904229q
10.1021/cr900289f
10.1016/j.solmat.2010.12.041
10.1016/j.solmat.2008.11.022
10.1002/adma.200390022
10.1021/jz301926u
10.1021/nl903406s
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright © 2014 American Chemical Society 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
– notice: Copyright © 2014 American Chemical Society 2014 American Chemical Society
DBID N~.
NPM
AAYXX
CITATION
7X8
7QQ
7SR
7U5
8BQ
8FD
JG9
L7M
5PM
DOI 10.1021/nn405978f
DatabaseName American Chemical Society (ACS) Open Access
PubMed
CrossRef
MEDLINE - Academic
Ceramic Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

PubMed

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 1654
ExternalDocumentID 10_1021_nn405978f
24490650
e41153350
Genre Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
N~.
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
7QQ
7SR
7U5
8BQ
8FD
JG9
L7M
5PM
ID FETCH-LOGICAL-a438t-de1c477cc48ea698318997138526c0367429d6145e059d8400084b0f925bf2013
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Tue Sep 17 21:19:53 EDT 2024
Sat Aug 17 03:32:24 EDT 2024
Sat Aug 17 00:51:21 EDT 2024
Fri Aug 23 00:24:49 EDT 2024
Sat Sep 28 08:00:13 EDT 2024
Thu Aug 27 13:42:41 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords polymer
hybrid
photoluminescence
nanocrystals
CdSe
charge transfer
photovoltaics
transient absorption
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
Terms of Use CC-BY
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a438t-de1c477cc48ea698318997138526c0367429d6145e059d8400084b0f925bf2013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1021/nn405978f
PMID 24490650
PQID 1502336646
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3946037
proquest_miscellaneous_1762055632
proquest_miscellaneous_1502336646
crossref_primary_10_1021_nn405978f
pubmed_primary_24490650
acs_journals_10_1021_nn405978f
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
N~.
UI2
PublicationCentury 2000
PublicationDate 2014-02-25
PublicationDateYYYYMMDD 2014-02-25
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References 23186016 - J Phys Chem B. 2013 Apr 25;117(16):4412-21
20945911 - Chem Rev. 2010 Nov 10;110(11):6873-90
20507144 - J Phys Chem B. 2010 Nov 18;114(45):14514-20
20942416 - Acc Chem Res. 2011 Jan 18;44(1):1-13
20000623 - Nano Lett. 2010 Jan;10(1):239-42
21384996 - J Chem Phys. 2011 Mar 7;134(9):094706
9985889 - Phys Rev B Condens Matter. 1996 Dec 15;54(24):17628-17637
26283435 - J Phys Chem Lett. 2013 Jan 17;4(2):280-4
21662980 - ACS Nano. 2011 Jul 26;5(7):5888-902
21265559 - Nano Lett. 2011 Feb 9;11(2):904-9
20564706 - Adv Mater. 2010 Sep 1;22(33):3672-6
Scharber M. (ref23/cit23) 2004; 141
Gélinas S. (ref25/cit25) 2011; 115
Offermans T. (ref31/cit31) 2005; 72
Jasieniak J. (ref27/cit27) 2011; 5
Olson J. D. (ref17/cit17) 2009; 93
Ginger D. (ref13/cit13) 1999; 101
Efros A. L. (ref16/cit16) 2000; 30
Burda C. (ref11/cit11) 2001; 105
Niu Y. H. (ref18/cit18) 2007; 19
Nozik A. J. (ref2/cit2) 2010; 110
Colbert A. E. (ref6/cit6) 2013; 4
Piris J. (ref8/cit8) 2009; 113
Hindson J. C. (ref15/cit15) 2011; 11
Li Z. (ref3/cit3) 2011; 21
Dayal S. (ref5/cit5) 2010; 10
Lee H. (ref1/cit1) 2008; 112
Tyagi P. (ref21/cit21) 2011; 134
McArthur E. A. (ref20/cit20) 2010; 114
Marsh R. A. (ref9/cit9) 2010; 22
Kambhampati P. (ref10/cit10) 2011; 44
Ginger D. (ref14/cit14) 1999; 59
Van Hal P. A. (ref30/cit30) 2003; 15
Greenham N. C. (ref7/cit7) 1996; 54
Montanari I. (ref22/cit22) 2002; 81
Bakulin A. A. (ref24/cit24) 2010; 20
Zhou Y. (ref4/cit4) 2011; 95
Mühlbacher D. (ref26/cit26) 2002; 385
Strein E. (ref28/cit28) 2013; 6
Brabec C. J. (ref29/cit29) 2001; 340
Saari J. I. (ref12/cit12) 2013; 117
Underwood D. F. (ref19/cit19) 2001; 105
References_xml – volume: 105
  start-page: 436
  year: 2001
  ident: ref19/cit19
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp003088b
  contributor:
    fullname: Underwood D. F.
– volume: 11
  start-page: 904
  year: 2011
  ident: ref15/cit15
  publication-title: Nano Lett.
  doi: 10.1021/nl104436j
  contributor:
    fullname: Hindson J. C.
– volume: 112
  start-page: 11600
  year: 2008
  ident: ref1/cit1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp802572b
  contributor:
    fullname: Lee H.
– volume: 114
  start-page: 14514
  year: 2010
  ident: ref20/cit20
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp102101f
  contributor:
    fullname: McArthur E. A.
– volume: 54
  start-page: 17628
  year: 1996
  ident: ref7/cit7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.17628
  contributor:
    fullname: Greenham N. C.
– volume: 30
  start-page: 475
  year: 2000
  ident: ref16/cit16
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.matsci.30.1.475
  contributor:
    fullname: Efros A. L.
– volume: 81
  start-page: 3001
  year: 2002
  ident: ref22/cit22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1512943
  contributor:
    fullname: Montanari I.
– volume: 6
  start-page: 769
  year: 2013
  ident: ref28/cit28
  publication-title: Energy Environ. Sci
  doi: 10.1039/c2ee24175g
  contributor:
    fullname: Strein E.
– volume: 117
  start-page: 4412
  year: 2013
  ident: ref12/cit12
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp307668g
  contributor:
    fullname: Saari J. I.
– volume: 105
  start-page: 12286
  year: 2001
  ident: ref11/cit11
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0124589
  contributor:
    fullname: Burda C.
– volume: 21
  start-page: 1419
  year: 2011
  ident: ref3/cit3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201002154
  contributor:
    fullname: Li Z.
– volume: 44
  start-page: 1
  year: 2011
  ident: ref10/cit10
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar1000428
  contributor:
    fullname: Kambhampati P.
– volume: 141
  start-page: 109
  year: 2004
  ident: ref23/cit23
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2003.09.015
  contributor:
    fullname: Scharber M.
– volume: 22
  start-page: 3672
  year: 2010
  ident: ref9/cit9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001010
  contributor:
    fullname: Marsh R. A.
– volume: 59
  start-page: 10622
  year: 1999
  ident: ref14/cit14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.10622
  contributor:
    fullname: Ginger D.
– volume: 20
  start-page: 1653
  year: 2010
  ident: ref24/cit24
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200902099
  contributor:
    fullname: Bakulin A. A.
– volume: 340
  start-page: 232
  year: 2001
  ident: ref29/cit29
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(01)00431-6
  contributor:
    fullname: Brabec C. J.
– volume: 134
  start-page: 094706
  year: 2011
  ident: ref21/cit21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3561063
  contributor:
    fullname: Tyagi P.
– volume: 5
  start-page: 5888
  year: 2011
  ident: ref27/cit27
  publication-title: ACS Nano
  doi: 10.1021/nn201681s
  contributor:
    fullname: Jasieniak J.
– volume: 72
  start-page: 1
  year: 2005
  ident: ref31/cit31
  publication-title: Phys. Rev. B
  contributor:
    fullname: Offermans T.
– volume: 19
  start-page: 3371
  year: 2007
  ident: ref18/cit18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602373
  contributor:
    fullname: Niu Y. H.
– volume: 115
  start-page: 7114
  year: 2011
  ident: ref25/cit25
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp200466y
  contributor:
    fullname: Gélinas S.
– volume: 385
  start-page: 205
  year: 2002
  ident: ref26/cit26
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/713738793
  contributor:
    fullname: Mühlbacher D.
– volume: 101
  start-page: 425
  year: 1999
  ident: ref13/cit13
  publication-title: Synth. Met.
  doi: 10.1016/S0379-6779(98)00330-0
  contributor:
    fullname: Ginger D.
– volume: 113
  start-page: 14500
  year: 2009
  ident: ref8/cit8
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp904229q
  contributor:
    fullname: Piris J.
– volume: 110
  start-page: 6873
  year: 2010
  ident: ref2/cit2
  publication-title: Chem. Rev.
  doi: 10.1021/cr900289f
  contributor:
    fullname: Nozik A. J.
– volume: 95
  start-page: 1232
  year: 2011
  ident: ref4/cit4
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.12.041
  contributor:
    fullname: Zhou Y.
– volume: 93
  start-page: 519
  year: 2009
  ident: ref17/cit17
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2008.11.022
  contributor:
    fullname: Olson J. D.
– volume: 15
  start-page: 118
  year: 2003
  ident: ref30/cit30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200390022
  contributor:
    fullname: Van Hal P. A.
– volume: 4
  start-page: 280
  year: 2013
  ident: ref6/cit6
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz301926u
  contributor:
    fullname: Colbert A. E.
– volume: 10
  start-page: 239
  year: 2010
  ident: ref5/cit5
  publication-title: Nano Lett.
  doi: 10.1021/nl903406s
  contributor:
    fullname: Dayal S.
SSID ssj0057876
Score 2.3365724
Snippet Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly...
Hybrid nanocrystal-polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1647
SubjectTerms Blends
Cadmium selenides
Charge
Dynamical systems
Dynamics
Nanocrystals
Nanostructure
Polymer blends
Tuning
Title Ultrafast Charge- and Energy-Transfer Dynamics in Conjugated Polymer: Cadmium Selenide Nanocrystal Blends
URI http://dx.doi.org/10.1021/nn405978f
https://www.ncbi.nlm.nih.gov/pubmed/24490650
https://search.proquest.com/docview/1502336646
https://search.proquest.com/docview/1762055632
https://pubmed.ncbi.nlm.nih.gov/PMC3946037
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JboMwELWa9NIeui_pErnLFTUYMNBbSxLlVFVKI_WGwEtLlZgKwiF_3zGEKOl-ZvA2Y88bj_2M0DXpUE5MyQwwEAhQTJPClBLS0Jc0JWNciFhvuA2G7sOz1-1pmpyrHzL4xLxRCjAFxDqygdaJCwhB459gWC-32uJolTqG0BjwQ00ftPyrdj0sX3U9X_Dk52ORS36mv_2vFu6grTmMxHeV3nfRmlB7aHOJXHAfJaMxlC-jfIp1Tv1FGDhSHPfKy35G6aOkyHC3epI-x4nCQareCr2vxvFjOp5NRHaLg4hPkmKCh9o_JVxgWI9Tls0AVY7x_VifqD1Ao37vKRgY84cVjMi2vKnBhcls12XM9kREfQ_mNajGtDyHUAYuDcJln4PfdgT0i0MIqFn34470iRNLQAzWIWqqVIljhE0puC8A1YBWbUAXvoSIiHAtxZ2YkhZqw8iH84mRh2XOm5jhYsxa6LJWSvheEWx8J3RRqysE89c5jUiJtIDyHAAdFqU2_UUGFvySCA1ac1SpeFEVoBtfo9QWcleUvxDQ9NurX1TyWtJwW75NO5Z78lcPT9EGjIZd3oN3zlBzmhXiHDVyXrRLS_4Ak9rr3w
link.rule.ids 230,315,782,786,887,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xOLQ9FOiL8NyiXq3Gr7XNDUJQKiiqFJB6s5x9FKNkjeL4wL_vt3YSkoJAPXu9r5nd-WZn51uib16bS8_VwoGCwEFxXY4lpbRjkzS1EFKpgT1w6_Wjq9_xWXdOk2NzYdCJEjWVdRD_kV3A_W4MoAVcHr1K6yEHCLYwqNOf7bpW8XgTQYaHDBgxYxFa_NVaIFEuW6AnsPLf25EL5uZ84386uknvp6CSnTRasEUrynygdwtUgx8pvxmiGZ2VE2Yj7H-UwzIjWbdO_XNqi6XVmJ01D9SXLDesU5i7yp6ySfarGD6M1PiYdTI5yqsR61trlUvFsDsXYvwAjDlkp0N7v_YT3Zx3rzs9Z_rMgpMFfjxxpHJFEEVCBLHKeBJjlUNQrh-HHhcwcHCeEwkrHiqMS8IhtBz8g7ZOvHCggR_8z7RmCqO2iblayUQB40DGAbBGouEfedKWkuGAey06wJSl02VSpnUE3HPT-Zy16Ggmm_S-odt4rtDXmdRSLAYb4ciMKirUFwKC-JwH_IUy2P5rWjT05ksj6XlTwDqJxawtipZ0YF7AknEvfzH5bU3K7ScBb_vRzmsjPKQ3veufl-nlj6uLXXqLmQnqDPlwj9Ym40rt02opq4Nauf8Cmif0TA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1RkBAc2JeyGsQ10GxOwg26CASqKpVK3KLUCwS1DmqaA3_POGmqFhCIcxxvM-N547GfAS6sGuWWKZmBCoIBimlSNCkhDX1JUzLGhejrDbe7rtd-9htNTZNzWd6FwU6kWFOaJ_G1Vb9zOWEYMK-UQniBYY-swJJLvUAHWzf1brnyauWjRRYZo2SEEiWT0Oyv2guxdN4LfYOWX09Izric1vp_O7sBaxNwSW4KbdiEBaG2YHWGcnAb4t4Am5JROiY60_4iDBIpTpr5FUAj91xSjEijeKg-JbEi9US9ZXq3jZNOMvgYitE1qUd8GGdD0tVeK-aC4CqdsNEHYs0BuR3oc7Y70Gs1n-p3xuS5BSNybH9scGEyx_MYc3wR0cBHa0eBmbbvWpSho8MgOuDozV2B4-IYGGou_n5NBpbbl4gj7F1YVIkS-0BMKXggEOugrB3EHIHEOMniuhR3-9SqwglOWzgxlzTMM-GWGU7nrArnpXzC94J246dCZ6XkQjQKnemIlEgyrM9FKGJT6tBfyqAbyOnRsDd7hbSnTSHmCTR2rYI3pwfTApqUe_6Lil9zcm47cGjN9g7-GuEpLHcarfDxvv1wCCs4MU5-Ud49gsXxKBPHUEl5dpLr9yec4_bP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Charge-+and+Energy-Transfer+Dynamics+in+Conjugated+Polymer%3A+Cadmium+Selenide+Nanocrystal+Blends&rft.jtitle=ACS+nano&rft.au=Morgenstern%2C+Frederik+SF&rft.au=Rao%2C+Akshay&rft.au=Bohm%2C+Marcus+L&rft.au=Kist%2C+Rene+JP&rft.date=2014-02-25&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=8&rft.issue=2&rft.spage=1647&rft.epage=1654-1647-1654&rft_id=info:doi/10.1021%2Fnn405978f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon