Glass–water interaction: Effect of high-valence cations on glass structure and chemical durability
Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid-fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste gl...
Saved in:
Published in: | Geochimica et cosmochimica acta Vol. 181; pp. 54 - 71 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier
15-05-2016
The Geochemical Society; The Meteoritical Society |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid-fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste glasses. In this study, spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high-valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), with the addition of the HVC element hafnium in the Na sub(2)O-Al sub(2)O sub(3)-B sub(2)O sub(3)-HfO sub(2)-SiO sub(2) system (e.g., Na/[Al + B] = 1.0 and HfO sub(2)/SiO sub(2) from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N sub(4) (tetrahedral boron/total boron) and increases the amount of Si-O-Hf moieties in the glass. Results from flow-through experiments conducted under dilute and near-saturated conditions show a decrease of approximately 100 or more in the dissolution rate over the series from 0 to 20 mol% HfO sub(2). Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveals a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the stronger binding of Si sites that deposit on the surface from the influent when Hf is present in the glass. As a result, the residence time at the glass surface of these newly-formed Si sites is longer in the presence of Hf, which increases the density of anchor sites from which altered layers with higher Si densities can form. These results illustrate the importance of understanding solid-water/solid-fluid interactions by linking macroscopic reaction kinetics to nanometer scale interfacial processes. |
---|---|
AbstractList | Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid-fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste glasses. In this study, spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high-valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), with the addition of the HVC element hafnium in the Na sub(2)O-Al sub(2)O sub(3)-B sub(2)O sub(3)-HfO sub(2)-SiO sub(2) system (e.g., Na/[Al + B] = 1.0 and HfO sub(2)/SiO sub(2) from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N sub(4) (tetrahedral boron/total boron) and increases the amount of Si-O-Hf moieties in the glass. Results from flow-through experiments conducted under dilute and near-saturated conditions show a decrease of approximately 100 or more in the dissolution rate over the series from 0 to 20 mol% HfO sub(2). Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveals a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the stronger binding of Si sites that deposit on the surface from the influent when Hf is present in the glass. As a result, the residence time at the glass surface of these newly-formed Si sites is longer in the presence of Hf, which increases the density of anchor sites from which altered layers with higher Si densities can form. These results illustrate the importance of understanding solid-water/solid-fluid interactions by linking macroscopic reaction kinetics to nanometer scale interfacial processes. Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid-fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste glasses. In this study, spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high–valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), with the addition of the HVC element hafnium in the Na2O–Al2O3–B2O3–HfO2–SiO2 system (e.g., Na/[Al+B] = 1.0 and HfO2/SiO2 from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N4 (tetrahedral boron/total boron) and increases the amount of Si—O—Hf moieties in the glass. Results from flow–through experiments conducted under dilute and near–saturated conditions show a decrease of approximately 100× or more in the dissolution rate over the series from 0 to 20 mol% HfO2. Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveals a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the stronger binding of Si sites that deposit on the surface from the influent when Hf is present in the glass. As a result, the residence time at the glass surface of these newly-formed Si sites is longer in the presence of Hf, which increases the density of anchor sites from which altered layers with higher Si densities can form. These results illustrate the importance of understanding solid–water/solid-fluid interactions by linking macroscopic reaction kinetics to nanometer scale interfacial processes. Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid–fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste glasses. In this study, spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high-valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), with the addition of the HVC element hafnium in the Na 2 O–Al 2 O 3 –B 2 O 3 –HfO 2 –SiO 2 system (e.g., Na/[Al + B] = 1.0 and HfO 2 /SiO 2 from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N 4 (tetrahedral boron/total boron) and increases the amount of Si–O–Hf moieties in the glass. Results from flow-through experiments conducted under dilute and near-saturated conditions show a decrease of approximately 100Â or more in the dissolution rate over the series from 0 to 20 mol% HfO 2. Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveals a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the stronger binding of Si sites that deposit on the surface from the influent when Hf is present in the glass. As a result, the residence time at the glass surface of these newly-formed Si sites is longer in the presence of Hf, which increases the density of anchor sites from which altered layers with higher |
Author | Windischb, C F Hopfa, J Icenhowere, J P Burtong, S D McGrailf, B P Piercea, E M Kerisitb, S N Angelic, F Charpentierd, T |
Author_xml | – sequence: 1 givenname: J surname: Hopfa fullname: Hopfa, J – sequence: 2 givenname: S surname: Kerisitb middlename: N fullname: Kerisitb, S N – sequence: 3 givenname: F surname: Angelic fullname: Angelic, F – sequence: 4 givenname: T surname: Charpentierd fullname: Charpentierd, T – sequence: 5 givenname: J surname: Icenhowere middlename: P fullname: Icenhowere, J P – sequence: 6 givenname: B surname: McGrailf middlename: P fullname: McGrailf, B P – sequence: 7 givenname: C surname: Windischb middlename: F fullname: Windischb, C F – sequence: 8 givenname: S surname: Burtong middlename: D fullname: Burtong, S D – sequence: 9 givenname: E surname: Piercea middlename: M fullname: Piercea, E M |
BackLink | https://cea.hal.science/cea-01287715$$DView record in HAL https://www.osti.gov/biblio/1253843$$D View this record in Osti.gov |
BookMark | eNqFkc1q3DAUhUVJoZNJHiA70VW78FQ_9kjqLoT8FAa6Sdfi-loea_BIqSWnZJd36BvmSSozpdvCRbrifPdyxDknZyEGR8gVZxvO-PbLYbNH2IjSbpgoJd-RFddKVKaR8oysWFEqxaT6QM5TOjDGVNOwFenuR0jp7fX3L8huoj6UEzD7GL7S2753mGns6eD3Q_UMowvoKMIiJxoD3S_DNOVpxjxPjkLoKA7u6BFG2s0TtH70-eWCvO9hTO7y770mP-5uH28eqt33-28317sKaqlz1cpWOGW4hmJOd60RW80U8l7XrShPIxun2wYkN73hNfLa1K4zrEWNoHEr1-TjaW9M2duEPjscMIZQvmG5aKSuZYE-n6ABRvs0-SNMLzaCtw_XO4sOLONCK8WbZ17YTyf2aYo_Z5eyPfqEbhwhuDgnyzUzWyE4k_9HlWFGmMXFmvATilNMaXL9Pxuc2SVNe7AlTbukaZkoJeUf792VCA |
CitedBy_id | crossref_primary_10_1016_j_gca_2018_01_035 crossref_primary_10_1016_j_gca_2018_08_007 crossref_primary_10_1016_j_gca_2022_06_033 crossref_primary_10_1063_1_4992799 crossref_primary_10_1111_jace_17876 crossref_primary_10_1016_j_jnucmat_2023_154674 crossref_primary_10_1021_acs_jpcb_6b11371 crossref_primary_10_1016_j_actamat_2022_118468 crossref_primary_10_1016_j_jnoncrysol_2020_120271 crossref_primary_10_1021_acs_jpcc_7b06094 crossref_primary_10_1016_j_gca_2018_02_001 crossref_primary_10_1016_j_jnoncrysol_2020_120513 crossref_primary_10_1038_s41529_022_00298_2 crossref_primary_10_1016_j_jnoncrysol_2020_120555 crossref_primary_10_1038_s41529_018_0042_5 crossref_primary_10_1038_s41598_018_22015_3 crossref_primary_10_1016_j_jnoncrysol_2018_10_002 crossref_primary_10_1016_j_jnoncrysol_2017_10_001 crossref_primary_10_1016_j_jnoncrysol_2023_122630 crossref_primary_10_1016_j_jnucmat_2017_06_035 crossref_primary_10_1021_acs_jpcb_7b04535 crossref_primary_10_1016_j_jnoncrysol_2021_121278 crossref_primary_10_1016_j_nocx_2019_100033 crossref_primary_10_1016_j_jnoncrysol_2016_08_026 crossref_primary_10_1080_05704928_2016_1244069 crossref_primary_10_1016_j_gca_2019_10_010 crossref_primary_10_1111_jace_16550 crossref_primary_10_1016_j_jnoncrysol_2018_07_049 crossref_primary_10_1039_D0CP06425D crossref_primary_10_2478_amt_2018_0004 crossref_primary_10_1038_s41529_018_0050_5 crossref_primary_10_1038_s41529_018_0052_3 crossref_primary_10_1016_j_jnoncrysol_2022_121694 crossref_primary_10_1016_j_jnucmat_2019_03_037 |
Cites_doi | 10.1111/j.1551-2916.2010.03771.x 10.1016/j.jnoncrysol.2013.09.013 10.1016/j.mspro.2014.10.022 10.1021/es102001w 10.1016/j.jnoncrysol.2005.08.033 10.1016/j.gca.2011.06.036 10.1557/PROC-333-069 10.2138/am.2006.1709 10.1016/S0022-3115(01)00619-5 10.1016/S0022-3115(00)00039-8 10.1016/S0016-7037(03)00417-4 10.1038/nmat4172 10.1021/ja00407a002 10.1016/j.jnoncrysol.2010.07.065 10.1021/jp111458f 10.1016/j.jnoncrysol.2004.06.007 10.1016/j.jnoncrysol.2008.07.023 10.1557/PROC-663-237 10.13182/NT11-A12540 10.1016/j.mattod.2013.06.008 10.1557/PROC-26-635 10.1016/S0022-3093(86)80080-1 10.1039/DT9930002849 10.1016/j.mspro.2014.10.005 10.1016/S0022-3093(01)00890-0 10.1016/S0009-2614(02)00520-1 10.1071/EN07058 10.1038/nmat4198 10.1016/0016-7037(94)90421-9 10.1016/j.gca.2010.06.033 10.1016/S0022-3093(02)01016-5 10.1038/nmat2301 10.1029/2006WR005031 10.1016/j.jnoncrysol.2013.07.014 10.1016/S0022-3093(03)00479-4 10.1016/S0022-3115(01)00573-6 10.1016/0098-3004(92)90029-Q 10.1016/j.epsl.2005.09.017 10.1016/j.cplett.2007.04.036 10.1111/j.1151-2916.1999.tb02065.x 10.1007/s00723-007-0041-0 10.1016/j.jnoncrysol.2011.01.005 10.13182/NSE06-A2614 10.2138/am.2006.1807 10.1021/ja01269a023 10.2113/gselements.2.6.357 10.1016/j.gca.2008.02.026 10.1107/S0567739476001551 10.1103/PhysRevB.85.054110 10.1021/ja00535a008 10.1238/Physica.Topical.115a00342 10.1016/S0022-3093(02)01604-6 10.1111/ijag.12077 10.1016/j.jnoncrysol.2011.02.046 10.1016/S0022-3115(97)00213-4 10.1103/PhysRevB.61.14495 10.1038/ncomms7360 10.1016/j.jnoncrysol.2012.03.003 10.1016/j.gca.2009.09.006 10.1016/S0022-3093(01)00876-6 10.1557/PROC-556-409 10.1016/j.jnoncrysol.2008.03.046 10.1016/j.mspro.2014.10.028 10.1016/j.jmr.2006.05.007 10.1002/mrc.2673 10.1016/j.jnoncrysol.2007.06.095 10.1023/A:1017591100985 10.1016/j.jnucmat.2005.05.012 10.1016/S0022-3093(99)00517-7 10.1016/j.jnoncrysol.2014.07.020 10.1021/ja01379a006 10.1016/j.apgeochem.2011.03.024 10.1021/cm034427r 10.1016/j.jnucmat.2005.06.023 10.1016/0016-7037(91)90128-R 10.1016/S0022-3093(99)00691-2 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL) |
DBID | AAYXX CITATION 7TG 7UA C1K F1W H96 KL. L.G 7SE 8FD H8D JG9 L7M 1XC OTOTI |
DOI | 10.1016/j.gca.2016.02.023 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Corrosion Abstracts Technology Research Database Aerospace Database Materials Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) OSTI.GOV |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Materials Research Database Aerospace Database Technology Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9533 |
EndPage | 71 |
ExternalDocumentID | 1253843 oai_HAL_cea_01287715v1 10_1016_j_gca_2016_02_023 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYXX ABEFU ABFNM ABMAC ABPPZ ABQEM ABQYD ABXDB ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEP SES SEW SPC SSE SSZ T5K TN5 TWZ UQL VH1 VOH WUQ XJT XOL XSW ZKB ZMT ~02 ~G- 7TG 7UA C1K F1W H96 KL. L.G 7SE 8FD H8D JG9 L7M 1XC AAIAV AAPBV ABPIF ABPTK ABYKQ AJBFU OTOTI |
ID | FETCH-LOGICAL-a438t-b3b2e7918a0758db926807c1f84b2db9935e8b5a319f914c1494ed90bc8ca8c63 |
ISSN | 0016-7037 |
IngestDate | Wed Nov 29 06:10:45 EST 2023 Sat Sep 28 06:40:07 EDT 2024 Fri Oct 25 23:22:44 EDT 2024 Fri Oct 25 23:25:07 EDT 2024 Thu Sep 26 19:48:24 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a438t-b3b2e7918a0758db926807c1f84b2db9935e8b5a319f914c1494ed90bc8ca8c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC05-76RL01830 PNNL-SA-116892 |
ORCID | 0000-0002-4951-1931 |
OpenAccessLink | http://manuscript.elsevier.com/S0016703716300692/pdf/S0016703716300692.pdf |
PQID | 1790929125 |
PQPubID | 23462 |
PageCount | 18 |
ParticipantIDs | osti_scitechconnect_1253843 hal_primary_oai_HAL_cea_01287715v1 proquest_miscellaneous_1809622103 proquest_miscellaneous_1790929125 crossref_primary_10_1016_j_gca_2016_02_023 |
PublicationCentury | 2000 |
PublicationDate | 2016-05-15 |
PublicationDateYYYYMMDD | 2016-05-15 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Geochimica et cosmochimica acta |
PublicationYear | 2016 |
Publisher | Elsevier The Geochemical Society; The Meteoritical Society |
Publisher_xml | – name: Elsevier – name: The Geochemical Society; The Meteoritical Society |
References | Caulder (10.1016/j.gca.2016.02.023_b0085) 2000 Du (10.1016/j.gca.2016.02.023_b0135) 2003; 315 Motevalli (10.1016/j.gca.2016.02.023_b0360) 1993 Angeli (10.1016/j.gca.2016.02.023_b0015) 2010; 93 Grambow (10.1016/j.gca.2016.02.023_b0190) 1985 Gin (10.1016/j.gca.2016.02.023_b0170) 2014; 7 Calas (10.1016/j.gca.2016.02.023_b0080) 2014; 7 Angeli (10.1016/j.gca.2016.02.023_b0020) 2007; 440 Icenhower (10.1016/j.gca.2016.02.023_b0250) 2006; 91 Pierce (10.1016/j.gca.2016.02.023_b0380) 2009 Herndon (10.1016/j.gca.2016.02.023_b0225) 2011; 26 Kerisit (10.1016/j.gca.2016.02.023_b0280) 2012; 358 Quintas (10.1016/j.gca.2016.02.023_b0415) 2007; 32 Shannon (10.1016/j.gca.2016.02.023_b0425) 1976; A32 Connelly (10.1016/j.gca.2016.02.023_b0100) 2011; 357 Nanba (10.1016/j.gca.2016.02.023_b0365) 2009; 50 Arab (10.1016/j.gca.2016.02.023_b0030) 2008; 354 Hålenius (10.1016/j.gca.2016.02.023_b0205) 2010; 74 Steefel (10.1016/j.gca.2016.02.023_b0440) 2005; 240 Hellman (10.1016/j.gca.2016.02.023_b0220) 2015; 14 Lippmaa (10.1016/j.gca.2016.02.023_b0305) 1980; 102 Frugier (10.1016/j.gca.2016.02.023_b0160) 2005; 346 Brown (10.1016/j.gca.2016.02.023_b0050) 2012; 1 Cailleteau (10.1016/j.gca.2016.02.023_b0070) 2008; 7 Liu (10.1016/j.gca.2016.02.023_b0315) 2006; 42 Du (10.1016/j.gca.2016.02.023_b0140) 2005; 351 Grambow (10.1016/j.gca.2016.02.023_b0200) 2001; 298 Connelly (10.1016/j.gca.2016.02.023_b0095) 2011; 52 Bourcier (10.1016/j.gca.2016.02.023_b0045) 1994; 333 Strachan (10.1016/j.gca.2016.02.023_b0450) 2001 Helgeson (10.1016/j.gca.2016.02.023_b0215) 1978; 278 Pierce (10.1016/j.gca.2016.02.023_b0400) 2010; 74 Wolery (10.1016/j.gca.2016.02.023_b0465) 1992 Lobanova (10.1016/j.gca.2016.02.023_b0325) 2001; 663 Johnson (10.1016/j.gca.2016.02.023_b0260) 1992; 18 Zhang (10.1016/j.gca.2016.02.023_b9000) 2001; 296 Hazen (10.1016/j.gca.2016.02.023_b0210) 1979; 64 Ellison (10.1016/j.gca.2016.02.023_b0150) 1994; 58 Ledieu (10.1016/j.gca.2016.02.023_b0300) 2006; 153 Steefel (10.1016/j.gca.2016.02.023_b0445) 2009 Bacon (10.1016/j.gca.2016.02.023_b0035) 2011 Gin (10.1016/j.gca.2016.02.023_b0175) 2013; 16 Bunker (10.1016/j.gca.2016.02.023_b0065) 1986; 87 Zachara (10.1016/j.gca.2016.02.023_b0470) 2004; 68 Icenhower (10.1016/j.gca.2016.02.023_b0245) 2008; 72 Angeli (10.1016/j.gca.2016.02.023_b0025) 2012; 85 Lobanova (10.1016/j.gca.2016.02.023_b0320) 2002 Wellman (10.1016/j.gca.2016.02.023_b0455) 2006; 91 Pierce (10.1016/j.gca.2016.02.023_b0385) 2011; 176 Davis (10.1016/j.gca.2016.02.023_b0110) 1990 Devreux (10.1016/j.gca.2016.02.023_b0120) 2001; 36 Grambow (10.1016/j.gca.2016.02.023_b0195) 2006; 2 Pierce (10.1016/j.gca.2016.02.023_b0390) 2014; 5 Speer (10.1016/j.gca.2016.02.023_b0435) 1982; 67 Jegou (10.1016/j.gca.2016.02.023_b0255) 2000; 280 Kerisit (10.1016/j.gca.2016.02.023_b0275) 2011; 75 McKeown (10.1016/j.gca.2016.02.023_b0350) 2000; 262 Bergeron (10.1016/j.gca.2016.02.023_b0040) 2010; 356 Du (10.1016/j.gca.2016.02.023_b0130) 2003; 15 Pauling (10.1016/j.gca.2016.02.023_b0375) 1929; 51 Cormier (10.1016/j.gca.2016.02.023_b0105) 2000; 61 Farges (10.1016/j.gca.2016.02.023_b0155) 1991; 55 Hochella (10.1016/j.gca.2016.02.023_b0235) 1990 Angeli (10.1016/j.gca.2016.02.023_b0010) 2008; 354 Putnis (10.1016/j.gca.2016.02.023_b0410) 2015; 14 Kerisit (10.1016/j.gca.2016.02.023_b0290) 2013; 378 McKeown (10.1016/j.gca.2016.02.023_b0355) 1999; 258 Windisch (10.1016/j.gca.2016.02.023_b0460) 2011; 357 Massiot (10.1016/j.gca.2016.02.023_b0335) 2006; 181 Gin (10.1016/j.gca.2016.02.023_b0180) 2015; 6 Rossano (10.1016/j.gca.2016.02.023_b0420) 2002; 304 Oelkers (10.1016/j.gca.2016.02.023_b0370) 2009 Aertsens (10.1016/j.gca.2016.02.023_b0005) 1999; 556 Galoisy (10.1016/j.gca.2016.02.023_b0165) 1999; 82 Soleilhavoup (10.1016/j.gca.2016.02.023_b0430) 2010; 48 Devreux (10.1016/j.gca.2016.02.023_b0125) 2004; 343 El-Damrawi (10.1016/j.gca.2016.02.023_b0145) 1993; 34 Lopez (10.1016/j.gca.2016.02.023_b0330) 2005; T115 Jollivet (10.1016/j.gca.2016.02.023_b0270) 2013; 381 Pierce (10.1016/j.gca.2016.02.023_b0395) 2005; 345 Chick (10.1016/j.gca.2016.02.023_b0090) 1984; 26 Cailleteau (10.1016/j.gca.2016.02.023_b0075) 2011; 115 Gin (10.1016/j.gca.2016.02.023_b0185) 2001; 298 Hopf (10.1016/j.gca.2016.02.023_b0240) 2014; 7 McGrail (10.1016/j.gca.2016.02.023_b0345) 2001; 296 Lippmaa (10.1016/j.gca.2016.02.023_b0310) 1981; 103 Davis (10.1016/j.gca.2016.02.023_b0115) 2003; 328 Brown (10.1016/j.gca.2016.02.023_b0055) 1981 Brunauer (10.1016/j.gca.2016.02.023_b0060) 1938; 60 Pierce (10.1016/j.gca.2016.02.023_b0405) 2008; 5 Kerisit (10.1016/j.gca.2016.02.023_b0285) 2015; 408 McGrail (10.1016/j.gca.2016.02.023_b0340) 1997; 249 Zhao (10.1016/j.gca.2016.02.023_b0475) 2000 Larsen (10.1016/j.gca.2016.02.023_b0295) 2002; 357 Jollivet (10.1016/j.gca.2016.02.023_b0265) 2008; 354 Herndon (10.1016/j.gca.2016.02.023_b0230) 2011; 45 |
References_xml | – volume: 93 start-page: 2693 year: 2010 ident: 10.1016/j.gca.2016.02.023_b0015 article-title: Boron speciation in soda lime borosilicate glasses containing zirconium publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2010.03771.x contributor: fullname: Angeli – volume: 381 start-page: 40 year: 2013 ident: 10.1016/j.gca.2016.02.023_b0270 article-title: An enhanced resolution of the structural environment of zirconium in borosilicate glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2013.09.013 contributor: fullname: Jollivet – start-page: 177 year: 1990 ident: 10.1016/j.gca.2016.02.023_b0110 article-title: Surface complexation modeling in aqueous geochemistry contributor: fullname: Davis – volume: 7 start-page: 163 year: 2014 ident: 10.1016/j.gca.2016.02.023_b0170 article-title: Open scientific questions about nuclear glass corrosion publication-title: Proc. Mater. Sci. doi: 10.1016/j.mspro.2014.10.022 contributor: fullname: Gin – volume: 45 start-page: 241 year: 2011 ident: 10.1016/j.gca.2016.02.023_b0230 article-title: Soils reveal widespread manganese enrichment from industrial inputs publication-title: Environ. Sci. Technol. doi: 10.1021/es102001w contributor: fullname: Herndon – volume: 351 start-page: 3508 year: 2005 ident: 10.1016/j.gca.2016.02.023_b0140 article-title: Network connectivity in aluminoborosilicate glasses: a high-resolution 11B, 27Al, and 17O NMR study publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2005.08.033 contributor: fullname: Du – volume: 75 start-page: 5296 year: 2011 ident: 10.1016/j.gca.2016.02.023_b0275 article-title: Monte Carlo simulations of the dissolution of borosilicate and aluminoborosilicate glasses in dilute aqueous solutions publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.06.036 contributor: fullname: Kerisit – volume: 333 start-page: 69 year: 1994 ident: 10.1016/j.gca.2016.02.023_b0045 article-title: Waste glass corrosion modeling: comparison with experimental results publication-title: Mat. Res. Soc. Symp. Proc. doi: 10.1557/PROC-333-069 contributor: fullname: Bourcier – volume: 91 start-page: 39 year: 2006 ident: 10.1016/j.gca.2016.02.023_b0250 article-title: Dissolution kinetics of pyrochlore ceramics for the disposition of plutonium publication-title: Am. Mineral. doi: 10.2138/am.2006.1709 contributor: fullname: Icenhower – volume: 298 start-page: 112 year: 2001 ident: 10.1016/j.gca.2016.02.023_b0200 article-title: First-order dissolution rate law and the role of surface layers in glass performance assessment publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(01)00619-5 contributor: fullname: Grambow – volume: 280 start-page: 216 year: 2000 ident: 10.1016/j.gca.2016.02.023_b0255 article-title: Alteration kinetics of a simplified nuclear glass in an aqueous medium: effects of solution chemistry and of protective gel properties on diminishing the alteration rate publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(00)00039-8 contributor: fullname: Jegou – volume: 68 start-page: 13 year: 2004 ident: 10.1016/j.gca.2016.02.023_b0470 article-title: Chromium speciation and mobility in a high level nuclear waste vadose zone plume publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(03)00417-4 contributor: fullname: Zachara – volume: 14 start-page: 307 year: 2015 ident: 10.1016/j.gca.2016.02.023_b0220 article-title: Nanometre-scale evidence for interfacial dissolution–reprecipitation control of silicate glass corrosion publication-title: Nat. Mater. doi: 10.1038/nmat4172 contributor: fullname: Hellman – volume: 103 start-page: 4992 year: 1981 ident: 10.1016/j.gca.2016.02.023_b0310 article-title: Investigation of the structure of zeolites by solid-state high-resolution 29Si NMR spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00407a002 contributor: fullname: Lippmaa – volume: 356 start-page: 2315 year: 2010 ident: 10.1016/j.gca.2016.02.023_b0040 article-title: First investigations of the influence of IVB elements (Ti, Zr, and Hf) on the chemical durability of soda-lime borosilicate glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2010.07.065 contributor: fullname: Bergeron – volume: 115 start-page: 5846 year: 2011 ident: 10.1016/j.gca.2016.02.023_b0075 article-title: Why do certain glasses with a high dissolution rate undergo a low degree of corrosion? publication-title: J. Phys. Chem. C doi: 10.1021/jp111458f contributor: fullname: Cailleteau – start-page: 15 year: 1985 ident: 10.1016/j.gca.2016.02.023_b0190 article-title: A general rate equation for nuclear waste glass corrosion contributor: fullname: Grambow – volume: 343 start-page: 13 year: 2004 ident: 10.1016/j.gca.2016.02.023_b0125 article-title: Leaching of borosilicate glasses. II. Model and Monte-Carlo simulations publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2004.06.007 contributor: fullname: Devreux – start-page: 485 year: 2009 ident: 10.1016/j.gca.2016.02.023_b0445 article-title: Fluid-rock interaction: a reactive transport approach contributor: fullname: Steefel – volume: 354 start-page: 4952 year: 2008 ident: 10.1016/j.gca.2016.02.023_b0265 article-title: Investigation of gel porosity clogging during glass leaching publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2008.07.023 contributor: fullname: Jollivet – volume: 663 start-page: 237 year: 2001 ident: 10.1016/j.gca.2016.02.023_b0325 article-title: Monte Carlo modelling of glass dissolution: comparison with experiments publication-title: Mater. Res. Soc. Symp. Proc. doi: 10.1557/PROC-663-237 contributor: fullname: Lobanova – volume: 176 start-page: 22 year: 2011 ident: 10.1016/j.gca.2016.02.023_b0385 article-title: Combined experimental and computational approach to predict the glass–water reaction publication-title: Nucl. Sci. Technol. doi: 10.13182/NT11-A12540 contributor: fullname: Pierce – volume: 16 start-page: 243 year: 2013 ident: 10.1016/j.gca.2016.02.023_b0175 article-title: An international initiative on long-term behavior of high-level nuclear waste glass publication-title: Mater. Today doi: 10.1016/j.mattod.2013.06.008 contributor: fullname: Gin – volume: 26 start-page: 635 year: 1984 ident: 10.1016/j.gca.2016.02.023_b0090 article-title: The relationship between reaction layer thickness and leach rate for nuclear waste glasses publication-title: Mat. Res. Soc. Symp. Proc. doi: 10.1557/PROC-26-635 contributor: fullname: Chick – volume: 34 start-page: 52 year: 1993 ident: 10.1016/j.gca.2016.02.023_b0145 article-title: 11B, 29Si, 27Al nuclear magnetic resonance studies of Na2O–Al2O3–B2O3–SiO2 glasses publication-title: Phys. Chem. Glasses contributor: fullname: El-Damrawi – volume: 87 start-page: 226 year: 1986 ident: 10.1016/j.gca.2016.02.023_b0065 article-title: The effect of molecular structure on borosilicate glass leaching publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(86)80080-1 contributor: fullname: Bunker – start-page: 2849 year: 1993 ident: 10.1016/j.gca.2016.02.023_b0360 article-title: Solid-state and solution structures of some lithium salts of tetraphenyldisiloxanediolate(2−) and the lithium-bridged compounds Li2[M(OSiPh2OSiPh2O)3·3py](py=pyridine, M=Zr or Hf) publication-title: J. Chem. Soc. Dalton Trans. doi: 10.1039/DT9930002849 contributor: fullname: Motevalli – volume: 7 start-page: 23 year: 2014 ident: 10.1016/j.gca.2016.02.023_b0080 article-title: The structural properties of cations in nuclear glasses publication-title: Proc. Mater. Sci. doi: 10.1016/j.mspro.2014.10.005 contributor: fullname: Calas – volume: 296 start-page: 10 year: 2001 ident: 10.1016/j.gca.2016.02.023_b0345 article-title: The structure of Na2O–Al2O3–SiO2 glass: impact on sodium ion exchange in H2O and D2O publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(01)00890-0 contributor: fullname: McGrail – volume: 357 start-page: 403 year: 2002 ident: 10.1016/j.gca.2016.02.023_b0295 article-title: 29Si and 17O (Q)CPMG-MAS solid-state NMR experiments as an optimum approach for half-integer nuclei having long T1 relaxation times publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)00520-1 contributor: fullname: Larsen – volume: 5 start-page: 73 year: 2008 ident: 10.1016/j.gca.2016.02.023_b0405 article-title: Aluminoborosilicate waste glass dissolution under alkaline conditions at 40°C: implications for a chemical affinity-based rate equation publication-title: Environ. Chem. doi: 10.1071/EN07058 contributor: fullname: Pierce – volume: 14 start-page: 261 year: 2015 ident: 10.1016/j.gca.2016.02.023_b0410 article-title: Glass corrosion: sharpended interface publication-title: Nat. Mater. doi: 10.1038/nmat4198 contributor: fullname: Putnis – volume: 58 start-page: 1877 year: 1994 ident: 10.1016/j.gca.2016.02.023_b0150 article-title: Raman study of potassium silicate glasses containing Rb+, Sr2+, Y3+, and Zr4+: implications for cation solution mechanisms in multicomponent silicate liquids publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)90421-9 contributor: fullname: Ellison – volume: 74 start-page: 5672 year: 2010 ident: 10.1016/j.gca.2016.02.023_b0205 article-title: Coordination of boron in nominally boron-free rock forming silicates: evidence for incorporation of BO3 groups in clinopyroxene publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2010.06.033 contributor: fullname: Hålenius – volume: 304 start-page: 167 year: 2002 ident: 10.1016/j.gca.2016.02.023_b0420 article-title: Bond valence in silicate glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(02)01016-5 contributor: fullname: Rossano – volume: 7 start-page: 978 year: 2008 ident: 10.1016/j.gca.2016.02.023_b0070 article-title: Insight into silicate-glass corrosion mechanisms publication-title: Nat. Mater. doi: 10.1038/nmat2301 contributor: fullname: Cailleteau – volume: 42 start-page: W12420 year: 2006 ident: 10.1016/j.gca.2016.02.023_b0315 article-title: Microscopic reactive diffusion of uranium in contaminated sediments at Hanford, United States publication-title: Water Resour. Res. doi: 10.1029/2006WR005031 contributor: fullname: Liu – volume: 378 start-page: 273 year: 2013 ident: 10.1016/j.gca.2016.02.023_b0290 article-title: Monte Carlo simulations of the corrosion of aluminoborosilicate glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2013.07.014 contributor: fullname: Kerisit – volume: 328 start-page: 102 year: 2003 ident: 10.1016/j.gca.2016.02.023_b0115 article-title: Hafnium in peralkaline and peraluminous boro-aluminosilicate glass and glass sub-components: a solubility study publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(03)00479-4 contributor: fullname: Davis – volume: 298 start-page: 1 year: 2001 ident: 10.1016/j.gca.2016.02.023_b0185 article-title: Role and properties of the gel formed during nuclear glass alteration: importance of gel formation conditions publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(01)00573-6 contributor: fullname: Gin – volume: 18 start-page: 899 year: 1992 ident: 10.1016/j.gca.2016.02.023_b0260 article-title: SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C publication-title: Comput. Geosci. doi: 10.1016/0098-3004(92)90029-Q contributor: fullname: Johnson – volume: 240 start-page: 539 year: 2005 ident: 10.1016/j.gca.2016.02.023_b0440 article-title: Reactive transport modeling: an essential tool and a new research approach for the earth sciences publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2005.09.017 contributor: fullname: Steefel – volume: 440 start-page: 324 year: 2007 ident: 10.1016/j.gca.2016.02.023_b0020 article-title: Contribution of 43Ca MAS NMR for probing the structural configuration of calcium in glass publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.04.036 contributor: fullname: Angeli – volume: 82 start-page: 2219 year: 1999 ident: 10.1016/j.gca.2016.02.023_b0165 article-title: Evidence for 6-coordinated zirconium in inactive nuclear waste glasses publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1999.tb02065.x contributor: fullname: Galoisy – volume: 1 year: 2012 ident: 10.1016/j.gca.2016.02.023_b0050 article-title: Mineral–aqueous solution interfaces and their impact on the environment publication-title: Geochem. Perspect. contributor: fullname: Brown – start-page: 433 year: 2011 ident: 10.1016/j.gca.2016.02.023_b0035 article-title: Development of long-term behavior models for radioactive waste forms contributor: fullname: Bacon – volume: 32 start-page: 613 year: 2007 ident: 10.1016/j.gca.2016.02.023_b0415 article-title: NMR study of a rare-earth aluminoborosilicate glass with varying CaO-to-Na2O ratio publication-title: Appl. Magn. Reson. doi: 10.1007/s00723-007-0041-0 contributor: fullname: Quintas – volume: 357 start-page: 1647 year: 2011 ident: 10.1016/j.gca.2016.02.023_b0100 article-title: The structural role of Zr within alkali borosilicate glasses for nuclear waste immobilization publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2011.01.005 contributor: fullname: Connelly – volume: 153 start-page: 285 year: 2006 ident: 10.1016/j.gca.2016.02.023_b0300 article-title: Contribution of Monte Carlo modeling to understanding the alteration of nuclear glasses by water publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE06-A2614 contributor: fullname: Ledieu – start-page: 1 year: 1992 ident: 10.1016/j.gca.2016.02.023_b0465 article-title: EQ3NR contributor: fullname: Wolery – volume: 91 start-page: 143 year: 2006 ident: 10.1016/j.gca.2016.02.023_b0455 article-title: Effects of pH, temperature, and aqueous organic material on the dissolution kinetics of meta-autunite minerals, (Na, Ca)2–1[(UO2)(PO4)]2·3H2O publication-title: Am. Mineral. doi: 10.2138/am.2006.1807 contributor: fullname: Wellman – volume: 67 start-page: 804 year: 1982 ident: 10.1016/j.gca.2016.02.023_b0435 article-title: Crystal structure of synthetic hafnon, HfSiO4, comparison with zircon and the actinide orthosilicates publication-title: Am. Mineral. contributor: fullname: Speer – start-page: 571 year: 2002 ident: 10.1016/j.gca.2016.02.023_b0320 article-title: Effect of ZrO2 on the glass durability contributor: fullname: Lobanova – volume: 60 start-page: 309 year: 1938 ident: 10.1016/j.gca.2016.02.023_b0060 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01269a023 contributor: fullname: Brunauer – volume: 2 start-page: 357 year: 2006 ident: 10.1016/j.gca.2016.02.023_b0195 article-title: Nuclear waste glasses – how durable? publication-title: Elements doi: 10.2113/gselements.2.6.357 contributor: fullname: Grambow – volume: 72 start-page: 2767 year: 2008 ident: 10.1016/j.gca.2016.02.023_b0245 article-title: Experimentally determined dissolution kinetics of Na-rich borosilicate glass at far from equilibrium conditions: implications for transition state theory publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.02.026 contributor: fullname: Icenhower – volume: A32 start-page: 751 year: 1976 ident: 10.1016/j.gca.2016.02.023_b0425 article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides publication-title: Acta Crystallogr. A doi: 10.1107/S0567739476001551 contributor: fullname: Shannon – volume: 85 start-page: 054110 year: 2012 ident: 10.1016/j.gca.2016.02.023_b0025 article-title: Effect of temperature and thermal history on borosilicate glass structure publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.054110 contributor: fullname: Angeli – volume: 278 start-page: 229 year: 1978 ident: 10.1016/j.gca.2016.02.023_b0215 article-title: Summary and critique of the thermodynamic properties of rock-forming minerals publication-title: Am. J. Sci. contributor: fullname: Helgeson – volume: 102 start-page: 4889 year: 1980 ident: 10.1016/j.gca.2016.02.023_b0305 article-title: Structural studies of silicates by solid-state high-resolution 29Si NMR publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00535a008 contributor: fullname: Lippmaa – volume: T115 start-page: 342 year: 2005 ident: 10.1016/j.gca.2016.02.023_b0330 article-title: X-ray absorption studies of borosilicate glasses containing dissolved actinides or surrogates publication-title: Phys. Scr. doi: 10.1238/Physica.Topical.115a00342 contributor: fullname: Lopez – volume: 315 start-page: 239 year: 2003 ident: 10.1016/j.gca.2016.02.023_b0135 article-title: Solid-state NMR study of metastable immiscibility in alkali borosilicate glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(02)01604-6 contributor: fullname: Du – volume: 5 start-page: 421 year: 2014 ident: 10.1016/j.gca.2016.02.023_b0390 article-title: Modeling interfacial glass–water reactions: recent advances and current limitations publication-title: Int. J. Appl. Glass Sci. doi: 10.1111/ijag.12077 contributor: fullname: Pierce – volume: 52 start-page: 64 year: 2011 ident: 10.1016/j.gca.2016.02.023_b0095 article-title: Predicting the preference for charge compensation in silicate glasses publication-title: Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B contributor: fullname: Connelly – volume: 64 start-page: 196 year: 1979 ident: 10.1016/j.gca.2016.02.023_b0210 article-title: Crystal-structure and compressibility of zircon at high pressure publication-title: Am. Mineral. contributor: fullname: Hazen – volume: 357 start-page: 2170 year: 2011 ident: 10.1016/j.gca.2016.02.023_b0460 article-title: Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2011.02.046 contributor: fullname: Windisch – volume: 249 start-page: 175 year: 1997 ident: 10.1016/j.gca.2016.02.023_b0340 article-title: Measurement of kinetic rate law parameters on a Na–Ca–Al borosilicate glass for low-activity waste publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(97)00213-4 contributor: fullname: McGrail – volume: 61 start-page: 14495 year: 2000 ident: 10.1016/j.gca.2016.02.023_b0105 article-title: Competition for charge compensation in borosilicate glasses: wide-angle X-ray scattering and molecular dynamics calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.14495 contributor: fullname: Cormier – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.gca.2016.02.023_b0180 article-title: Origin and consequences of silicate glass passivation by surface layers publication-title: Nat. Commun. doi: 10.1038/ncomms7360 contributor: fullname: Gin – year: 2001 ident: 10.1016/j.gca.2016.02.023_b0450 contributor: fullname: Strachan – volume: 358 start-page: 1324 year: 2012 ident: 10.1016/j.gca.2016.02.023_b0280 article-title: Monte Carlo simulations of the dissolution of borosilicate glasses in near-equilibrium conditions publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2012.03.003 contributor: fullname: Kerisit – volume: 74 start-page: 2634 year: 2010 ident: 10.1016/j.gca.2016.02.023_b0400 article-title: Experimental determination of the effect of the ratio of B/Al on glass dissolution along the nepheline (NaAlSiO4)–malinkoite (NaBSiO4) join publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.09.006 contributor: fullname: Pierce – volume: 296 start-page: 93 year: 2001 ident: 10.1016/j.gca.2016.02.023_b9000 article-title: Energetics of dissolution of Gd2O3 and HfO2 in sodium alumino-borosilicate glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(01)00876-6 contributor: fullname: Zhang – volume: 556 start-page: 409 year: 1999 ident: 10.1016/j.gca.2016.02.023_b0005 article-title: Testing the Grambow glass dissolution model by comparing it with Monte Carlo simulation results publication-title: Mat. Res. Soc. Symp. Proc. doi: 10.1557/PROC-556-409 contributor: fullname: Aertsens – volume: 354 start-page: 3713 year: 2008 ident: 10.1016/j.gca.2016.02.023_b0010 article-title: Influence of zirconium on the structure of pristine and leached soda-lime borosilicate glasses: towards a quantitative approach by 17O MQMAS NMR publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2008.03.046 contributor: fullname: Angeli – volume: 7 start-page: 216 year: 2014 ident: 10.1016/j.gca.2016.02.023_b0240 article-title: Topography and mechanical property mapping of international simple glass surfaces with atomic force microscopy publication-title: Proc. Mater. Sci. doi: 10.1016/j.mspro.2014.10.028 contributor: fullname: Hopf – volume: 181 start-page: 310 year: 2006 ident: 10.1016/j.gca.2016.02.023_b0335 article-title: Two-dimensional one pulse MAS of half-integer quadrupolar nuclei publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2006.05.007 contributor: fullname: Massiot – year: 2000 ident: 10.1016/j.gca.2016.02.023_b0085 article-title: Speciation of hafnium in peralkaline and peraluminous wasteform glasses using XAFS spectroscopy contributor: fullname: Caulder – volume: 48 start-page: S159 year: 2010 ident: 10.1016/j.gca.2016.02.023_b0430 article-title: Contribution of first-principles calculations to multinuclear NMR analysis of borosilicate glasses publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.2673 contributor: fullname: Soleilhavoup – start-page: 683 year: 2000 ident: 10.1016/j.gca.2016.02.023_b0475 article-title: Gadolinium and hafnium alumino-borosilicate glasses: Gd and Hf Solubilities contributor: fullname: Zhao – year: 2009 ident: 10.1016/j.gca.2016.02.023_b0370 article-title: Thermodynamic and kinetics of water rock interactions contributor: fullname: Oelkers – volume: 354 start-page: 155 year: 2008 ident: 10.1016/j.gca.2016.02.023_b0030 article-title: Aqueous alteration of five-oxide silicate glasses: experimental approach and Monte Carlo modeling publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2007.06.095 contributor: fullname: Arab – volume: 36 start-page: 1331 year: 2001 ident: 10.1016/j.gca.2016.02.023_b0120 article-title: A simplified model for glass dissolution in water publication-title: J. Mater. Sci. doi: 10.1023/A:1017591100985 contributor: fullname: Devreux – volume: 345 start-page: 206 year: 2005 ident: 10.1016/j.gca.2016.02.023_b0395 article-title: Experimental determination of UO2(cr) dissolution kinetics: effects of solution saturation state and pH publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2005.05.012 contributor: fullname: Pierce – volume: 258 start-page: 98 year: 1999 ident: 10.1016/j.gca.2016.02.023_b0355 article-title: X-ray absorption studies of the local environment of Zr in high-zirconia borosilicate glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(99)00517-7 contributor: fullname: McKeown – year: 1990 ident: 10.1016/j.gca.2016.02.023_b0235 article-title: Mineral–water interface geochemistry contributor: fullname: Hochella – volume: 408 start-page: 142 year: 2015 ident: 10.1016/j.gca.2016.02.023_b0285 article-title: Monte Carlo simulations of coupled diffusion and surface reactions during the aqueous corrosion of borosilicate glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2014.07.020 contributor: fullname: Kerisit – volume: 51 start-page: 1010 year: 1929 ident: 10.1016/j.gca.2016.02.023_b0375 article-title: The principles determining the structure of complex ionic crystals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01379a006 contributor: fullname: Pauling – volume: 26 start-page: S40 year: 2011 ident: 10.1016/j.gca.2016.02.023_b0225 article-title: Movement of manganese contamination through the critical zone publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2011.03.024 contributor: fullname: Herndon – volume: 15 start-page: 3913 year: 2003 ident: 10.1016/j.gca.2016.02.023_b0130 article-title: Site preference and Si/B mixing in mixed-alkali borosilicate glasses: a high-resolution 11B and 17O NMR study publication-title: Chem. Mater. doi: 10.1021/cm034427r contributor: fullname: Du – volume: 50 start-page: 301 year: 2009 ident: 10.1016/j.gca.2016.02.023_b0365 article-title: Molecular orbital calculations of the 29Si NMR chemical shift in borosilicates: the effect of boron coordination to SiO4 units publication-title: Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B contributor: fullname: Nanba – volume: 346 start-page: 194 year: 2005 ident: 10.1016/j.gca.2016.02.023_b0160 article-title: The effect of composition on the leaching of three nuclear waste glasses: R7T7, AVM, and VRZ publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2005.06.023 contributor: fullname: Frugier – year: 1981 ident: 10.1016/j.gca.2016.02.023_b0055 article-title: The bond-valence method: an empirical approach to chemical structure and bonding contributor: fullname: Brown – start-page: 141 year: 2009 ident: 10.1016/j.gca.2016.02.023_b0380 article-title: Accelerated weathering of waste glass at 90°C with the pressurized unsaturated flow (PUF) apparatus: implications for predicting glass corrosion with a reactive transport model contributor: fullname: Pierce – volume: 55 start-page: 1563 year: 1991 ident: 10.1016/j.gca.2016.02.023_b0155 article-title: Structural environments of incompatible elements in silicate glasses/melt systems. I. Zirconium at trace levels publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(91)90128-R contributor: fullname: Farges – volume: 262 start-page: 126 year: 2000 ident: 10.1016/j.gca.2016.02.023_b0350 article-title: Structural characterization of high-zirconia borosilicate glasses using Raman spectroscopy publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(99)00691-2 contributor: fullname: McKeown |
SSID | ssj0007550 |
Score | 2.4161396 |
Snippet | Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential... |
SourceID | osti hal proquest crossref |
SourceType | Open Access Repository Aggregation Database |
StartPage | 54 |
SubjectTerms | Chemical Sciences Computer simulation Dilution Dissolution Divergence Environmental Molecular Sciences Laboratory Glass Hafnium Hafnium oxide Material chemistry Silicon |
Title | Glass–water interaction: Effect of high-valence cations on glass structure and chemical durability |
URI | https://search.proquest.com/docview/1790929125 https://search.proquest.com/docview/1809622103 https://cea.hal.science/cea-01287715 https://www.osti.gov/biblio/1253843 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dixMxEA-2h-CL-In1VKL4ZFnpfibrW9G9Vi3nw-1B30KSzd71wN1ybRX_e2c2--mBnA9CWbohzS4zv05mMpNfCHkbBCGXjGuHq7hauskdLt3YUdw30ov8WVadPLc8Y6dr_ikJkq4gs2v7r5qGNtA17pz9B223g0IDfAedwxW0Dtdb6X2B7rDzUyL5IXJBXNudCxj510zF6B5CSO7AU6u_dVNPDjiofOmp5ZRtMgu6oRTIDteW1HuQCV6YUl9usMfU7Ke63H1v7-HJrdFflttcDtJQX5EkerOv8kFnXUZojlW2Gz0oOsaagC2WNRlbiJ_21yrcCNPsdrdmY3-hDWwMG9pft2dBLaV0PRfb01luWHm74HD1_kIjc5QbVayrdtvykFH79Js4OV-tRJqs0xE58sAYhWNyNP-crL-08zULQ7tRqX63JvddVQH-8YiB9zK6xNrZcQm2-MZMXrkn6QNyv44r6NwC4iG5Y4pH5O6iOrf512OierCgPVh8oBYUtMxpHxS0BgUtC1qBgragoAAK2oCCdqB4Qs5PkvTj0qmP13Bk4PO9o3zlGRa7XIIIeKZiL-Izpt2cB8qDW5CV4SqUYKTz2A00xNKByeKZ0lxLriP_KRkXZWGeEZqBE8yyDH6dmSAy0JEpxU3EIg1zSKYm5F0jNrG1LCqiKS-8EiBjgTIWMw8-_oS8AcG2_ZD_fDlfCW2kQG-KMTf84U7IMcpdgJ-IZMcaq8L0XoC77vMAhnjdqEOAucQcmCxMedgJJKSDiAD6_aUPh7je89yZ__wW4xyTex3UX5AxaMO8JKNddnhVI-032syUtw |
link.rule.ids | 230,315,782,786,887,27935,27936 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glass-water+interaction%3A+Effect+of+high-valence+cations+on+glass+structure+and+chemical+durability&rft.jtitle=Geochimica+et+cosmochimica+acta&rft.au=Hopfa%2C+J&rft.au=Kerisitb%2C+S+N&rft.au=Angelic%2C+F&rft.au=Charpentierd%2C+T&rft.date=2016-05-15&rft.issn=0016-7037&rft.volume=181&rft.spage=54&rft.epage=71&rft_id=info:doi/10.1016%2Fj.gca.2016.02.023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7037&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7037&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7037&client=summon |