Glass–water interaction: Effect of high-valence cations on glass structure and chemical durability

Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid-fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste gl...

Full description

Saved in:
Bibliographic Details
Published in:Geochimica et cosmochimica acta Vol. 181; pp. 54 - 71
Main Authors: Hopfa, J, Kerisitb, S N, Angelic, F, Charpentierd, T, Icenhowere, J P, McGrailf, B P, Windischb, C F, Burtong, S D, Piercea, E M
Format: Journal Article
Language:English
Published: United States Elsevier 15-05-2016
The Geochemical Society; The Meteoritical Society
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid-fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste glasses. In this study, spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high-valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), with the addition of the HVC element hafnium in the Na sub(2)O-Al sub(2)O sub(3)-B sub(2)O sub(3)-HfO sub(2)-SiO sub(2) system (e.g., Na/[Al + B] = 1.0 and HfO sub(2)/SiO sub(2) from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N sub(4) (tetrahedral boron/total boron) and increases the amount of Si-O-Hf moieties in the glass. Results from flow-through experiments conducted under dilute and near-saturated conditions show a decrease of approximately 100 or more in the dissolution rate over the series from 0 to 20 mol% HfO sub(2). Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveals a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the stronger binding of Si sites that deposit on the surface from the influent when Hf is present in the glass. As a result, the residence time at the glass surface of these newly-formed Si sites is longer in the presence of Hf, which increases the density of anchor sites from which altered layers with higher Si densities can form. These results illustrate the importance of understanding solid-water/solid-fluid interactions by linking macroscopic reaction kinetics to nanometer scale interfacial processes.
AbstractList Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid-fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste glasses. In this study, spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high-valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), with the addition of the HVC element hafnium in the Na sub(2)O-Al sub(2)O sub(3)-B sub(2)O sub(3)-HfO sub(2)-SiO sub(2) system (e.g., Na/[Al + B] = 1.0 and HfO sub(2)/SiO sub(2) from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N sub(4) (tetrahedral boron/total boron) and increases the amount of Si-O-Hf moieties in the glass. Results from flow-through experiments conducted under dilute and near-saturated conditions show a decrease of approximately 100 or more in the dissolution rate over the series from 0 to 20 mol% HfO sub(2). Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveals a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the stronger binding of Si sites that deposit on the surface from the influent when Hf is present in the glass. As a result, the residence time at the glass surface of these newly-formed Si sites is longer in the presence of Hf, which increases the density of anchor sites from which altered layers with higher Si densities can form. These results illustrate the importance of understanding solid-water/solid-fluid interactions by linking macroscopic reaction kinetics to nanometer scale interfacial processes.
Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid-fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste glasses. In this study, spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high–valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), with the addition of the HVC element hafnium in the Na2O–Al2O3–B2O3–HfO2–SiO2 system (e.g., Na/[Al+B] = 1.0 and HfO2/SiO2 from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N4 (tetrahedral boron/total boron) and increases the amount of Si—O—Hf moieties in the glass. Results from flow–through experiments conducted under dilute and near–saturated conditions show a decrease of approximately 100× or more in the dissolution rate over the series from 0 to 20 mol% HfO2. Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveals a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the stronger binding of Si sites that deposit on the surface from the influent when Hf is present in the glass. As a result, the residence time at the glass surface of these newly-formed Si sites is longer in the presence of Hf, which increases the density of anchor sites from which altered layers with higher Si densities can form. These results illustrate the importance of understanding solid–water/solid-fluid interactions by linking macroscopic reaction kinetics to nanometer scale interfacial processes.
Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid–fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste glasses. In this study, spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high-valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), with the addition of the HVC element hafnium in the Na 2 O–Al 2 O 3 –B 2 O 3 –HfO 2 –SiO 2 system (e.g., Na/[Al + B] = 1.0 and HfO 2 /SiO 2 from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N 4 (tetrahedral boron/total boron) and increases the amount of Si–O–Hf moieties in the glass. Results from flow-through experiments conducted under dilute and near-saturated conditions show a decrease of approximately 100Â or more in the dissolution rate over the series from 0 to 20 mol% HfO 2. Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveals a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the stronger binding of Si sites that deposit on the surface from the influent when Hf is present in the glass. As a result, the residence time at the glass surface of these newly-formed Si sites is longer in the presence of Hf, which increases the density of anchor sites from which altered layers with higher
Author Windischb, C F
Hopfa, J
Icenhowere, J P
Burtong, S D
McGrailf, B P
Piercea, E M
Kerisitb, S N
Angelic, F
Charpentierd, T
Author_xml – sequence: 1
  givenname: J
  surname: Hopfa
  fullname: Hopfa, J
– sequence: 2
  givenname: S
  surname: Kerisitb
  middlename: N
  fullname: Kerisitb, S N
– sequence: 3
  givenname: F
  surname: Angelic
  fullname: Angelic, F
– sequence: 4
  givenname: T
  surname: Charpentierd
  fullname: Charpentierd, T
– sequence: 5
  givenname: J
  surname: Icenhowere
  middlename: P
  fullname: Icenhowere, J P
– sequence: 6
  givenname: B
  surname: McGrailf
  middlename: P
  fullname: McGrailf, B P
– sequence: 7
  givenname: C
  surname: Windischb
  middlename: F
  fullname: Windischb, C F
– sequence: 8
  givenname: S
  surname: Burtong
  middlename: D
  fullname: Burtong, S D
– sequence: 9
  givenname: E
  surname: Piercea
  middlename: M
  fullname: Piercea, E M
BackLink https://cea.hal.science/cea-01287715$$DView record in HAL
https://www.osti.gov/biblio/1253843$$D View this record in Osti.gov
BookMark eNqFkc1q3DAUhUVJoZNJHiA70VW78FQ_9kjqLoT8FAa6Sdfi-loea_BIqSWnZJd36BvmSSozpdvCRbrifPdyxDknZyEGR8gVZxvO-PbLYbNH2IjSbpgoJd-RFddKVKaR8oysWFEqxaT6QM5TOjDGVNOwFenuR0jp7fX3L8huoj6UEzD7GL7S2753mGns6eD3Q_UMowvoKMIiJxoD3S_DNOVpxjxPjkLoKA7u6BFG2s0TtH70-eWCvO9hTO7y770mP-5uH28eqt33-28317sKaqlz1cpWOGW4hmJOd60RW80U8l7XrShPIxun2wYkN73hNfLa1K4zrEWNoHEr1-TjaW9M2duEPjscMIZQvmG5aKSuZYE-n6ABRvs0-SNMLzaCtw_XO4sOLONCK8WbZ17YTyf2aYo_Z5eyPfqEbhwhuDgnyzUzWyE4k_9HlWFGmMXFmvATilNMaXL9Pxuc2SVNe7AlTbukaZkoJeUf792VCA
CitedBy_id crossref_primary_10_1016_j_gca_2018_01_035
crossref_primary_10_1016_j_gca_2018_08_007
crossref_primary_10_1016_j_gca_2022_06_033
crossref_primary_10_1063_1_4992799
crossref_primary_10_1111_jace_17876
crossref_primary_10_1016_j_jnucmat_2023_154674
crossref_primary_10_1021_acs_jpcb_6b11371
crossref_primary_10_1016_j_actamat_2022_118468
crossref_primary_10_1016_j_jnoncrysol_2020_120271
crossref_primary_10_1021_acs_jpcc_7b06094
crossref_primary_10_1016_j_gca_2018_02_001
crossref_primary_10_1016_j_jnoncrysol_2020_120513
crossref_primary_10_1038_s41529_022_00298_2
crossref_primary_10_1016_j_jnoncrysol_2020_120555
crossref_primary_10_1038_s41529_018_0042_5
crossref_primary_10_1038_s41598_018_22015_3
crossref_primary_10_1016_j_jnoncrysol_2018_10_002
crossref_primary_10_1016_j_jnoncrysol_2017_10_001
crossref_primary_10_1016_j_jnoncrysol_2023_122630
crossref_primary_10_1016_j_jnucmat_2017_06_035
crossref_primary_10_1021_acs_jpcb_7b04535
crossref_primary_10_1016_j_jnoncrysol_2021_121278
crossref_primary_10_1016_j_nocx_2019_100033
crossref_primary_10_1016_j_jnoncrysol_2016_08_026
crossref_primary_10_1080_05704928_2016_1244069
crossref_primary_10_1016_j_gca_2019_10_010
crossref_primary_10_1111_jace_16550
crossref_primary_10_1016_j_jnoncrysol_2018_07_049
crossref_primary_10_1039_D0CP06425D
crossref_primary_10_2478_amt_2018_0004
crossref_primary_10_1038_s41529_018_0050_5
crossref_primary_10_1038_s41529_018_0052_3
crossref_primary_10_1016_j_jnoncrysol_2022_121694
crossref_primary_10_1016_j_jnucmat_2019_03_037
Cites_doi 10.1111/j.1551-2916.2010.03771.x
10.1016/j.jnoncrysol.2013.09.013
10.1016/j.mspro.2014.10.022
10.1021/es102001w
10.1016/j.jnoncrysol.2005.08.033
10.1016/j.gca.2011.06.036
10.1557/PROC-333-069
10.2138/am.2006.1709
10.1016/S0022-3115(01)00619-5
10.1016/S0022-3115(00)00039-8
10.1016/S0016-7037(03)00417-4
10.1038/nmat4172
10.1021/ja00407a002
10.1016/j.jnoncrysol.2010.07.065
10.1021/jp111458f
10.1016/j.jnoncrysol.2004.06.007
10.1016/j.jnoncrysol.2008.07.023
10.1557/PROC-663-237
10.13182/NT11-A12540
10.1016/j.mattod.2013.06.008
10.1557/PROC-26-635
10.1016/S0022-3093(86)80080-1
10.1039/DT9930002849
10.1016/j.mspro.2014.10.005
10.1016/S0022-3093(01)00890-0
10.1016/S0009-2614(02)00520-1
10.1071/EN07058
10.1038/nmat4198
10.1016/0016-7037(94)90421-9
10.1016/j.gca.2010.06.033
10.1016/S0022-3093(02)01016-5
10.1038/nmat2301
10.1029/2006WR005031
10.1016/j.jnoncrysol.2013.07.014
10.1016/S0022-3093(03)00479-4
10.1016/S0022-3115(01)00573-6
10.1016/0098-3004(92)90029-Q
10.1016/j.epsl.2005.09.017
10.1016/j.cplett.2007.04.036
10.1111/j.1151-2916.1999.tb02065.x
10.1007/s00723-007-0041-0
10.1016/j.jnoncrysol.2011.01.005
10.13182/NSE06-A2614
10.2138/am.2006.1807
10.1021/ja01269a023
10.2113/gselements.2.6.357
10.1016/j.gca.2008.02.026
10.1107/S0567739476001551
10.1103/PhysRevB.85.054110
10.1021/ja00535a008
10.1238/Physica.Topical.115a00342
10.1016/S0022-3093(02)01604-6
10.1111/ijag.12077
10.1016/j.jnoncrysol.2011.02.046
10.1016/S0022-3115(97)00213-4
10.1103/PhysRevB.61.14495
10.1038/ncomms7360
10.1016/j.jnoncrysol.2012.03.003
10.1016/j.gca.2009.09.006
10.1016/S0022-3093(01)00876-6
10.1557/PROC-556-409
10.1016/j.jnoncrysol.2008.03.046
10.1016/j.mspro.2014.10.028
10.1016/j.jmr.2006.05.007
10.1002/mrc.2673
10.1016/j.jnoncrysol.2007.06.095
10.1023/A:1017591100985
10.1016/j.jnucmat.2005.05.012
10.1016/S0022-3093(99)00517-7
10.1016/j.jnoncrysol.2014.07.020
10.1021/ja01379a006
10.1016/j.apgeochem.2011.03.024
10.1021/cm034427r
10.1016/j.jnucmat.2005.06.023
10.1016/0016-7037(91)90128-R
10.1016/S0022-3093(99)00691-2
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)
DBID AAYXX
CITATION
7TG
7UA
C1K
F1W
H96
KL.
L.G
7SE
8FD
H8D
JG9
L7M
1XC
OTOTI
DOI 10.1016/j.gca.2016.02.023
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Corrosion Abstracts
Technology Research Database
Aerospace Database
Materials Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
OSTI.GOV
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Aerospace Database
Technology Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-9533
EndPage 71
ExternalDocumentID 1253843
oai_HAL_cea_01287715v1
10_1016_j_gca_2016_02_023
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYXX
ABEFU
ABFNM
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SSE
SSZ
T5K
TN5
TWZ
UQL
VH1
VOH
WUQ
XJT
XOL
XSW
ZKB
ZMT
~02
~G-
7TG
7UA
C1K
F1W
H96
KL.
L.G
7SE
8FD
H8D
JG9
L7M
1XC
AAIAV
AAPBV
ABPIF
ABPTK
ABYKQ
AJBFU
OTOTI
ID FETCH-LOGICAL-a438t-b3b2e7918a0758db926807c1f84b2db9935e8b5a319f914c1494ed90bc8ca8c63
ISSN 0016-7037
IngestDate Wed Nov 29 06:10:45 EST 2023
Sat Sep 28 06:40:07 EDT 2024
Fri Oct 25 23:22:44 EDT 2024
Fri Oct 25 23:25:07 EDT 2024
Thu Sep 26 19:48:24 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a438t-b3b2e7918a0758db926807c1f84b2db9935e8b5a319f914c1494ed90bc8ca8c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC05-76RL01830
PNNL-SA-116892
ORCID 0000-0002-4951-1931
OpenAccessLink http://manuscript.elsevier.com/S0016703716300692/pdf/S0016703716300692.pdf
PQID 1790929125
PQPubID 23462
PageCount 18
ParticipantIDs osti_scitechconnect_1253843
hal_primary_oai_HAL_cea_01287715v1
proquest_miscellaneous_1809622103
proquest_miscellaneous_1790929125
crossref_primary_10_1016_j_gca_2016_02_023
PublicationCentury 2000
PublicationDate 2016-05-15
PublicationDateYYYYMMDD 2016-05-15
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Geochimica et cosmochimica acta
PublicationYear 2016
Publisher Elsevier
The Geochemical Society; The Meteoritical Society
Publisher_xml – name: Elsevier
– name: The Geochemical Society; The Meteoritical Society
References Caulder (10.1016/j.gca.2016.02.023_b0085) 2000
Du (10.1016/j.gca.2016.02.023_b0135) 2003; 315
Motevalli (10.1016/j.gca.2016.02.023_b0360) 1993
Angeli (10.1016/j.gca.2016.02.023_b0015) 2010; 93
Grambow (10.1016/j.gca.2016.02.023_b0190) 1985
Gin (10.1016/j.gca.2016.02.023_b0170) 2014; 7
Calas (10.1016/j.gca.2016.02.023_b0080) 2014; 7
Angeli (10.1016/j.gca.2016.02.023_b0020) 2007; 440
Icenhower (10.1016/j.gca.2016.02.023_b0250) 2006; 91
Pierce (10.1016/j.gca.2016.02.023_b0380) 2009
Herndon (10.1016/j.gca.2016.02.023_b0225) 2011; 26
Kerisit (10.1016/j.gca.2016.02.023_b0280) 2012; 358
Quintas (10.1016/j.gca.2016.02.023_b0415) 2007; 32
Shannon (10.1016/j.gca.2016.02.023_b0425) 1976; A32
Connelly (10.1016/j.gca.2016.02.023_b0100) 2011; 357
Nanba (10.1016/j.gca.2016.02.023_b0365) 2009; 50
Arab (10.1016/j.gca.2016.02.023_b0030) 2008; 354
Hålenius (10.1016/j.gca.2016.02.023_b0205) 2010; 74
Steefel (10.1016/j.gca.2016.02.023_b0440) 2005; 240
Hellman (10.1016/j.gca.2016.02.023_b0220) 2015; 14
Lippmaa (10.1016/j.gca.2016.02.023_b0305) 1980; 102
Frugier (10.1016/j.gca.2016.02.023_b0160) 2005; 346
Brown (10.1016/j.gca.2016.02.023_b0050) 2012; 1
Cailleteau (10.1016/j.gca.2016.02.023_b0070) 2008; 7
Liu (10.1016/j.gca.2016.02.023_b0315) 2006; 42
Du (10.1016/j.gca.2016.02.023_b0140) 2005; 351
Grambow (10.1016/j.gca.2016.02.023_b0200) 2001; 298
Connelly (10.1016/j.gca.2016.02.023_b0095) 2011; 52
Bourcier (10.1016/j.gca.2016.02.023_b0045) 1994; 333
Strachan (10.1016/j.gca.2016.02.023_b0450) 2001
Helgeson (10.1016/j.gca.2016.02.023_b0215) 1978; 278
Pierce (10.1016/j.gca.2016.02.023_b0400) 2010; 74
Wolery (10.1016/j.gca.2016.02.023_b0465) 1992
Lobanova (10.1016/j.gca.2016.02.023_b0325) 2001; 663
Johnson (10.1016/j.gca.2016.02.023_b0260) 1992; 18
Zhang (10.1016/j.gca.2016.02.023_b9000) 2001; 296
Hazen (10.1016/j.gca.2016.02.023_b0210) 1979; 64
Ellison (10.1016/j.gca.2016.02.023_b0150) 1994; 58
Ledieu (10.1016/j.gca.2016.02.023_b0300) 2006; 153
Steefel (10.1016/j.gca.2016.02.023_b0445) 2009
Bacon (10.1016/j.gca.2016.02.023_b0035) 2011
Gin (10.1016/j.gca.2016.02.023_b0175) 2013; 16
Bunker (10.1016/j.gca.2016.02.023_b0065) 1986; 87
Zachara (10.1016/j.gca.2016.02.023_b0470) 2004; 68
Icenhower (10.1016/j.gca.2016.02.023_b0245) 2008; 72
Angeli (10.1016/j.gca.2016.02.023_b0025) 2012; 85
Lobanova (10.1016/j.gca.2016.02.023_b0320) 2002
Wellman (10.1016/j.gca.2016.02.023_b0455) 2006; 91
Pierce (10.1016/j.gca.2016.02.023_b0385) 2011; 176
Davis (10.1016/j.gca.2016.02.023_b0110) 1990
Devreux (10.1016/j.gca.2016.02.023_b0120) 2001; 36
Grambow (10.1016/j.gca.2016.02.023_b0195) 2006; 2
Pierce (10.1016/j.gca.2016.02.023_b0390) 2014; 5
Speer (10.1016/j.gca.2016.02.023_b0435) 1982; 67
Jegou (10.1016/j.gca.2016.02.023_b0255) 2000; 280
Kerisit (10.1016/j.gca.2016.02.023_b0275) 2011; 75
McKeown (10.1016/j.gca.2016.02.023_b0350) 2000; 262
Bergeron (10.1016/j.gca.2016.02.023_b0040) 2010; 356
Du (10.1016/j.gca.2016.02.023_b0130) 2003; 15
Pauling (10.1016/j.gca.2016.02.023_b0375) 1929; 51
Cormier (10.1016/j.gca.2016.02.023_b0105) 2000; 61
Farges (10.1016/j.gca.2016.02.023_b0155) 1991; 55
Hochella (10.1016/j.gca.2016.02.023_b0235) 1990
Angeli (10.1016/j.gca.2016.02.023_b0010) 2008; 354
Putnis (10.1016/j.gca.2016.02.023_b0410) 2015; 14
Kerisit (10.1016/j.gca.2016.02.023_b0290) 2013; 378
McKeown (10.1016/j.gca.2016.02.023_b0355) 1999; 258
Windisch (10.1016/j.gca.2016.02.023_b0460) 2011; 357
Massiot (10.1016/j.gca.2016.02.023_b0335) 2006; 181
Gin (10.1016/j.gca.2016.02.023_b0180) 2015; 6
Rossano (10.1016/j.gca.2016.02.023_b0420) 2002; 304
Oelkers (10.1016/j.gca.2016.02.023_b0370) 2009
Aertsens (10.1016/j.gca.2016.02.023_b0005) 1999; 556
Galoisy (10.1016/j.gca.2016.02.023_b0165) 1999; 82
Soleilhavoup (10.1016/j.gca.2016.02.023_b0430) 2010; 48
Devreux (10.1016/j.gca.2016.02.023_b0125) 2004; 343
El-Damrawi (10.1016/j.gca.2016.02.023_b0145) 1993; 34
Lopez (10.1016/j.gca.2016.02.023_b0330) 2005; T115
Jollivet (10.1016/j.gca.2016.02.023_b0270) 2013; 381
Pierce (10.1016/j.gca.2016.02.023_b0395) 2005; 345
Chick (10.1016/j.gca.2016.02.023_b0090) 1984; 26
Cailleteau (10.1016/j.gca.2016.02.023_b0075) 2011; 115
Gin (10.1016/j.gca.2016.02.023_b0185) 2001; 298
Hopf (10.1016/j.gca.2016.02.023_b0240) 2014; 7
McGrail (10.1016/j.gca.2016.02.023_b0345) 2001; 296
Lippmaa (10.1016/j.gca.2016.02.023_b0310) 1981; 103
Davis (10.1016/j.gca.2016.02.023_b0115) 2003; 328
Brown (10.1016/j.gca.2016.02.023_b0055) 1981
Brunauer (10.1016/j.gca.2016.02.023_b0060) 1938; 60
Pierce (10.1016/j.gca.2016.02.023_b0405) 2008; 5
Kerisit (10.1016/j.gca.2016.02.023_b0285) 2015; 408
McGrail (10.1016/j.gca.2016.02.023_b0340) 1997; 249
Zhao (10.1016/j.gca.2016.02.023_b0475) 2000
Larsen (10.1016/j.gca.2016.02.023_b0295) 2002; 357
Jollivet (10.1016/j.gca.2016.02.023_b0265) 2008; 354
Herndon (10.1016/j.gca.2016.02.023_b0230) 2011; 45
References_xml – volume: 93
  start-page: 2693
  year: 2010
  ident: 10.1016/j.gca.2016.02.023_b0015
  article-title: Boron speciation in soda lime borosilicate glasses containing zirconium
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2010.03771.x
  contributor:
    fullname: Angeli
– volume: 381
  start-page: 40
  year: 2013
  ident: 10.1016/j.gca.2016.02.023_b0270
  article-title: An enhanced resolution of the structural environment of zirconium in borosilicate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2013.09.013
  contributor:
    fullname: Jollivet
– start-page: 177
  year: 1990
  ident: 10.1016/j.gca.2016.02.023_b0110
  article-title: Surface complexation modeling in aqueous geochemistry
  contributor:
    fullname: Davis
– volume: 7
  start-page: 163
  year: 2014
  ident: 10.1016/j.gca.2016.02.023_b0170
  article-title: Open scientific questions about nuclear glass corrosion
  publication-title: Proc. Mater. Sci.
  doi: 10.1016/j.mspro.2014.10.022
  contributor:
    fullname: Gin
– volume: 45
  start-page: 241
  year: 2011
  ident: 10.1016/j.gca.2016.02.023_b0230
  article-title: Soils reveal widespread manganese enrichment from industrial inputs
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102001w
  contributor:
    fullname: Herndon
– volume: 351
  start-page: 3508
  year: 2005
  ident: 10.1016/j.gca.2016.02.023_b0140
  article-title: Network connectivity in aluminoborosilicate glasses: a high-resolution 11B, 27Al, and 17O NMR study
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2005.08.033
  contributor:
    fullname: Du
– volume: 75
  start-page: 5296
  year: 2011
  ident: 10.1016/j.gca.2016.02.023_b0275
  article-title: Monte Carlo simulations of the dissolution of borosilicate and aluminoborosilicate glasses in dilute aqueous solutions
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.06.036
  contributor:
    fullname: Kerisit
– volume: 333
  start-page: 69
  year: 1994
  ident: 10.1016/j.gca.2016.02.023_b0045
  article-title: Waste glass corrosion modeling: comparison with experimental results
  publication-title: Mat. Res. Soc. Symp. Proc.
  doi: 10.1557/PROC-333-069
  contributor:
    fullname: Bourcier
– volume: 91
  start-page: 39
  year: 2006
  ident: 10.1016/j.gca.2016.02.023_b0250
  article-title: Dissolution kinetics of pyrochlore ceramics for the disposition of plutonium
  publication-title: Am. Mineral.
  doi: 10.2138/am.2006.1709
  contributor:
    fullname: Icenhower
– volume: 298
  start-page: 112
  year: 2001
  ident: 10.1016/j.gca.2016.02.023_b0200
  article-title: First-order dissolution rate law and the role of surface layers in glass performance assessment
  publication-title: J. Nucl. Mater.
  doi: 10.1016/S0022-3115(01)00619-5
  contributor:
    fullname: Grambow
– volume: 280
  start-page: 216
  year: 2000
  ident: 10.1016/j.gca.2016.02.023_b0255
  article-title: Alteration kinetics of a simplified nuclear glass in an aqueous medium: effects of solution chemistry and of protective gel properties on diminishing the alteration rate
  publication-title: J. Nucl. Mater.
  doi: 10.1016/S0022-3115(00)00039-8
  contributor:
    fullname: Jegou
– volume: 68
  start-page: 13
  year: 2004
  ident: 10.1016/j.gca.2016.02.023_b0470
  article-title: Chromium speciation and mobility in a high level nuclear waste vadose zone plume
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(03)00417-4
  contributor:
    fullname: Zachara
– volume: 14
  start-page: 307
  year: 2015
  ident: 10.1016/j.gca.2016.02.023_b0220
  article-title: Nanometre-scale evidence for interfacial dissolution–reprecipitation control of silicate glass corrosion
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4172
  contributor:
    fullname: Hellman
– volume: 103
  start-page: 4992
  year: 1981
  ident: 10.1016/j.gca.2016.02.023_b0310
  article-title: Investigation of the structure of zeolites by solid-state high-resolution 29Si NMR spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00407a002
  contributor:
    fullname: Lippmaa
– volume: 356
  start-page: 2315
  year: 2010
  ident: 10.1016/j.gca.2016.02.023_b0040
  article-title: First investigations of the influence of IVB elements (Ti, Zr, and Hf) on the chemical durability of soda-lime borosilicate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2010.07.065
  contributor:
    fullname: Bergeron
– volume: 115
  start-page: 5846
  year: 2011
  ident: 10.1016/j.gca.2016.02.023_b0075
  article-title: Why do certain glasses with a high dissolution rate undergo a low degree of corrosion?
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp111458f
  contributor:
    fullname: Cailleteau
– start-page: 15
  year: 1985
  ident: 10.1016/j.gca.2016.02.023_b0190
  article-title: A general rate equation for nuclear waste glass corrosion
  contributor:
    fullname: Grambow
– volume: 343
  start-page: 13
  year: 2004
  ident: 10.1016/j.gca.2016.02.023_b0125
  article-title: Leaching of borosilicate glasses. II. Model and Monte-Carlo simulations
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2004.06.007
  contributor:
    fullname: Devreux
– start-page: 485
  year: 2009
  ident: 10.1016/j.gca.2016.02.023_b0445
  article-title: Fluid-rock interaction: a reactive transport approach
  contributor:
    fullname: Steefel
– volume: 354
  start-page: 4952
  year: 2008
  ident: 10.1016/j.gca.2016.02.023_b0265
  article-title: Investigation of gel porosity clogging during glass leaching
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2008.07.023
  contributor:
    fullname: Jollivet
– volume: 663
  start-page: 237
  year: 2001
  ident: 10.1016/j.gca.2016.02.023_b0325
  article-title: Monte Carlo modelling of glass dissolution: comparison with experiments
  publication-title: Mater. Res. Soc. Symp. Proc.
  doi: 10.1557/PROC-663-237
  contributor:
    fullname: Lobanova
– volume: 176
  start-page: 22
  year: 2011
  ident: 10.1016/j.gca.2016.02.023_b0385
  article-title: Combined experimental and computational approach to predict the glass–water reaction
  publication-title: Nucl. Sci. Technol.
  doi: 10.13182/NT11-A12540
  contributor:
    fullname: Pierce
– volume: 16
  start-page: 243
  year: 2013
  ident: 10.1016/j.gca.2016.02.023_b0175
  article-title: An international initiative on long-term behavior of high-level nuclear waste glass
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2013.06.008
  contributor:
    fullname: Gin
– volume: 26
  start-page: 635
  year: 1984
  ident: 10.1016/j.gca.2016.02.023_b0090
  article-title: The relationship between reaction layer thickness and leach rate for nuclear waste glasses
  publication-title: Mat. Res. Soc. Symp. Proc.
  doi: 10.1557/PROC-26-635
  contributor:
    fullname: Chick
– volume: 34
  start-page: 52
  year: 1993
  ident: 10.1016/j.gca.2016.02.023_b0145
  article-title: 11B, 29Si, 27Al nuclear magnetic resonance studies of Na2O–Al2O3–B2O3–SiO2 glasses
  publication-title: Phys. Chem. Glasses
  contributor:
    fullname: El-Damrawi
– volume: 87
  start-page: 226
  year: 1986
  ident: 10.1016/j.gca.2016.02.023_b0065
  article-title: The effect of molecular structure on borosilicate glass leaching
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(86)80080-1
  contributor:
    fullname: Bunker
– start-page: 2849
  year: 1993
  ident: 10.1016/j.gca.2016.02.023_b0360
  article-title: Solid-state and solution structures of some lithium salts of tetraphenyldisiloxanediolate(2−) and the lithium-bridged compounds Li2[M(OSiPh2OSiPh2O)3·3py](py=pyridine, M=Zr or Hf)
  publication-title: J. Chem. Soc. Dalton Trans.
  doi: 10.1039/DT9930002849
  contributor:
    fullname: Motevalli
– volume: 7
  start-page: 23
  year: 2014
  ident: 10.1016/j.gca.2016.02.023_b0080
  article-title: The structural properties of cations in nuclear glasses
  publication-title: Proc. Mater. Sci.
  doi: 10.1016/j.mspro.2014.10.005
  contributor:
    fullname: Calas
– volume: 296
  start-page: 10
  year: 2001
  ident: 10.1016/j.gca.2016.02.023_b0345
  article-title: The structure of Na2O–Al2O3–SiO2 glass: impact on sodium ion exchange in H2O and D2O
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00890-0
  contributor:
    fullname: McGrail
– volume: 357
  start-page: 403
  year: 2002
  ident: 10.1016/j.gca.2016.02.023_b0295
  article-title: 29Si and 17O (Q)CPMG-MAS solid-state NMR experiments as an optimum approach for half-integer nuclei having long T1 relaxation times
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00520-1
  contributor:
    fullname: Larsen
– volume: 5
  start-page: 73
  year: 2008
  ident: 10.1016/j.gca.2016.02.023_b0405
  article-title: Aluminoborosilicate waste glass dissolution under alkaline conditions at 40°C: implications for a chemical affinity-based rate equation
  publication-title: Environ. Chem.
  doi: 10.1071/EN07058
  contributor:
    fullname: Pierce
– volume: 14
  start-page: 261
  year: 2015
  ident: 10.1016/j.gca.2016.02.023_b0410
  article-title: Glass corrosion: sharpended interface
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4198
  contributor:
    fullname: Putnis
– volume: 58
  start-page: 1877
  year: 1994
  ident: 10.1016/j.gca.2016.02.023_b0150
  article-title: Raman study of potassium silicate glasses containing Rb+, Sr2+, Y3+, and Zr4+: implications for cation solution mechanisms in multicomponent silicate liquids
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90421-9
  contributor:
    fullname: Ellison
– volume: 74
  start-page: 5672
  year: 2010
  ident: 10.1016/j.gca.2016.02.023_b0205
  article-title: Coordination of boron in nominally boron-free rock forming silicates: evidence for incorporation of BO3 groups in clinopyroxene
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2010.06.033
  contributor:
    fullname: Hålenius
– volume: 304
  start-page: 167
  year: 2002
  ident: 10.1016/j.gca.2016.02.023_b0420
  article-title: Bond valence in silicate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(02)01016-5
  contributor:
    fullname: Rossano
– volume: 7
  start-page: 978
  year: 2008
  ident: 10.1016/j.gca.2016.02.023_b0070
  article-title: Insight into silicate-glass corrosion mechanisms
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2301
  contributor:
    fullname: Cailleteau
– volume: 42
  start-page: W12420
  year: 2006
  ident: 10.1016/j.gca.2016.02.023_b0315
  article-title: Microscopic reactive diffusion of uranium in contaminated sediments at Hanford, United States
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR005031
  contributor:
    fullname: Liu
– volume: 378
  start-page: 273
  year: 2013
  ident: 10.1016/j.gca.2016.02.023_b0290
  article-title: Monte Carlo simulations of the corrosion of aluminoborosilicate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2013.07.014
  contributor:
    fullname: Kerisit
– volume: 328
  start-page: 102
  year: 2003
  ident: 10.1016/j.gca.2016.02.023_b0115
  article-title: Hafnium in peralkaline and peraluminous boro-aluminosilicate glass and glass sub-components: a solubility study
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(03)00479-4
  contributor:
    fullname: Davis
– volume: 298
  start-page: 1
  year: 2001
  ident: 10.1016/j.gca.2016.02.023_b0185
  article-title: Role and properties of the gel formed during nuclear glass alteration: importance of gel formation conditions
  publication-title: J. Nucl. Mater.
  doi: 10.1016/S0022-3115(01)00573-6
  contributor:
    fullname: Gin
– volume: 18
  start-page: 899
  year: 1992
  ident: 10.1016/j.gca.2016.02.023_b0260
  article-title: SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(92)90029-Q
  contributor:
    fullname: Johnson
– volume: 240
  start-page: 539
  year: 2005
  ident: 10.1016/j.gca.2016.02.023_b0440
  article-title: Reactive transport modeling: an essential tool and a new research approach for the earth sciences
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2005.09.017
  contributor:
    fullname: Steefel
– volume: 440
  start-page: 324
  year: 2007
  ident: 10.1016/j.gca.2016.02.023_b0020
  article-title: Contribution of 43Ca MAS NMR for probing the structural configuration of calcium in glass
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.04.036
  contributor:
    fullname: Angeli
– volume: 82
  start-page: 2219
  year: 1999
  ident: 10.1016/j.gca.2016.02.023_b0165
  article-title: Evidence for 6-coordinated zirconium in inactive nuclear waste glasses
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1999.tb02065.x
  contributor:
    fullname: Galoisy
– volume: 1
  year: 2012
  ident: 10.1016/j.gca.2016.02.023_b0050
  article-title: Mineral–aqueous solution interfaces and their impact on the environment
  publication-title: Geochem. Perspect.
  contributor:
    fullname: Brown
– start-page: 433
  year: 2011
  ident: 10.1016/j.gca.2016.02.023_b0035
  article-title: Development of long-term behavior models for radioactive waste forms
  contributor:
    fullname: Bacon
– volume: 32
  start-page: 613
  year: 2007
  ident: 10.1016/j.gca.2016.02.023_b0415
  article-title: NMR study of a rare-earth aluminoborosilicate glass with varying CaO-to-Na2O ratio
  publication-title: Appl. Magn. Reson.
  doi: 10.1007/s00723-007-0041-0
  contributor:
    fullname: Quintas
– volume: 357
  start-page: 1647
  year: 2011
  ident: 10.1016/j.gca.2016.02.023_b0100
  article-title: The structural role of Zr within alkali borosilicate glasses for nuclear waste immobilization
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2011.01.005
  contributor:
    fullname: Connelly
– volume: 153
  start-page: 285
  year: 2006
  ident: 10.1016/j.gca.2016.02.023_b0300
  article-title: Contribution of Monte Carlo modeling to understanding the alteration of nuclear glasses by water
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE06-A2614
  contributor:
    fullname: Ledieu
– start-page: 1
  year: 1992
  ident: 10.1016/j.gca.2016.02.023_b0465
  article-title: EQ3NR
  contributor:
    fullname: Wolery
– volume: 91
  start-page: 143
  year: 2006
  ident: 10.1016/j.gca.2016.02.023_b0455
  article-title: Effects of pH, temperature, and aqueous organic material on the dissolution kinetics of meta-autunite minerals, (Na, Ca)2–1[(UO2)(PO4)]2·3H2O
  publication-title: Am. Mineral.
  doi: 10.2138/am.2006.1807
  contributor:
    fullname: Wellman
– volume: 67
  start-page: 804
  year: 1982
  ident: 10.1016/j.gca.2016.02.023_b0435
  article-title: Crystal structure of synthetic hafnon, HfSiO4, comparison with zircon and the actinide orthosilicates
  publication-title: Am. Mineral.
  contributor:
    fullname: Speer
– start-page: 571
  year: 2002
  ident: 10.1016/j.gca.2016.02.023_b0320
  article-title: Effect of ZrO2 on the glass durability
  contributor:
    fullname: Lobanova
– volume: 60
  start-page: 309
  year: 1938
  ident: 10.1016/j.gca.2016.02.023_b0060
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01269a023
  contributor:
    fullname: Brunauer
– volume: 2
  start-page: 357
  year: 2006
  ident: 10.1016/j.gca.2016.02.023_b0195
  article-title: Nuclear waste glasses – how durable?
  publication-title: Elements
  doi: 10.2113/gselements.2.6.357
  contributor:
    fullname: Grambow
– volume: 72
  start-page: 2767
  year: 2008
  ident: 10.1016/j.gca.2016.02.023_b0245
  article-title: Experimentally determined dissolution kinetics of Na-rich borosilicate glass at far from equilibrium conditions: implications for transition state theory
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2008.02.026
  contributor:
    fullname: Icenhower
– volume: A32
  start-page: 751
  year: 1976
  ident: 10.1016/j.gca.2016.02.023_b0425
  article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S0567739476001551
  contributor:
    fullname: Shannon
– volume: 85
  start-page: 054110
  year: 2012
  ident: 10.1016/j.gca.2016.02.023_b0025
  article-title: Effect of temperature and thermal history on borosilicate glass structure
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.054110
  contributor:
    fullname: Angeli
– volume: 278
  start-page: 229
  year: 1978
  ident: 10.1016/j.gca.2016.02.023_b0215
  article-title: Summary and critique of the thermodynamic properties of rock-forming minerals
  publication-title: Am. J. Sci.
  contributor:
    fullname: Helgeson
– volume: 102
  start-page: 4889
  year: 1980
  ident: 10.1016/j.gca.2016.02.023_b0305
  article-title: Structural studies of silicates by solid-state high-resolution 29Si NMR
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00535a008
  contributor:
    fullname: Lippmaa
– volume: T115
  start-page: 342
  year: 2005
  ident: 10.1016/j.gca.2016.02.023_b0330
  article-title: X-ray absorption studies of borosilicate glasses containing dissolved actinides or surrogates
  publication-title: Phys. Scr.
  doi: 10.1238/Physica.Topical.115a00342
  contributor:
    fullname: Lopez
– volume: 315
  start-page: 239
  year: 2003
  ident: 10.1016/j.gca.2016.02.023_b0135
  article-title: Solid-state NMR study of metastable immiscibility in alkali borosilicate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(02)01604-6
  contributor:
    fullname: Du
– volume: 5
  start-page: 421
  year: 2014
  ident: 10.1016/j.gca.2016.02.023_b0390
  article-title: Modeling interfacial glass–water reactions: recent advances and current limitations
  publication-title: Int. J. Appl. Glass Sci.
  doi: 10.1111/ijag.12077
  contributor:
    fullname: Pierce
– volume: 52
  start-page: 64
  year: 2011
  ident: 10.1016/j.gca.2016.02.023_b0095
  article-title: Predicting the preference for charge compensation in silicate glasses
  publication-title: Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B
  contributor:
    fullname: Connelly
– volume: 64
  start-page: 196
  year: 1979
  ident: 10.1016/j.gca.2016.02.023_b0210
  article-title: Crystal-structure and compressibility of zircon at high pressure
  publication-title: Am. Mineral.
  contributor:
    fullname: Hazen
– volume: 357
  start-page: 2170
  year: 2011
  ident: 10.1016/j.gca.2016.02.023_b0460
  article-title: Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2011.02.046
  contributor:
    fullname: Windisch
– volume: 249
  start-page: 175
  year: 1997
  ident: 10.1016/j.gca.2016.02.023_b0340
  article-title: Measurement of kinetic rate law parameters on a Na–Ca–Al borosilicate glass for low-activity waste
  publication-title: J. Nucl. Mater.
  doi: 10.1016/S0022-3115(97)00213-4
  contributor:
    fullname: McGrail
– volume: 61
  start-page: 14495
  year: 2000
  ident: 10.1016/j.gca.2016.02.023_b0105
  article-title: Competition for charge compensation in borosilicate glasses: wide-angle X-ray scattering and molecular dynamics calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.14495
  contributor:
    fullname: Cormier
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.gca.2016.02.023_b0180
  article-title: Origin and consequences of silicate glass passivation by surface layers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7360
  contributor:
    fullname: Gin
– year: 2001
  ident: 10.1016/j.gca.2016.02.023_b0450
  contributor:
    fullname: Strachan
– volume: 358
  start-page: 1324
  year: 2012
  ident: 10.1016/j.gca.2016.02.023_b0280
  article-title: Monte Carlo simulations of the dissolution of borosilicate glasses in near-equilibrium conditions
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2012.03.003
  contributor:
    fullname: Kerisit
– volume: 74
  start-page: 2634
  year: 2010
  ident: 10.1016/j.gca.2016.02.023_b0400
  article-title: Experimental determination of the effect of the ratio of B/Al on glass dissolution along the nepheline (NaAlSiO4)–malinkoite (NaBSiO4) join
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2009.09.006
  contributor:
    fullname: Pierce
– volume: 296
  start-page: 93
  year: 2001
  ident: 10.1016/j.gca.2016.02.023_b9000
  article-title: Energetics of dissolution of Gd2O3 and HfO2 in sodium alumino-borosilicate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00876-6
  contributor:
    fullname: Zhang
– volume: 556
  start-page: 409
  year: 1999
  ident: 10.1016/j.gca.2016.02.023_b0005
  article-title: Testing the Grambow glass dissolution model by comparing it with Monte Carlo simulation results
  publication-title: Mat. Res. Soc. Symp. Proc.
  doi: 10.1557/PROC-556-409
  contributor:
    fullname: Aertsens
– volume: 354
  start-page: 3713
  year: 2008
  ident: 10.1016/j.gca.2016.02.023_b0010
  article-title: Influence of zirconium on the structure of pristine and leached soda-lime borosilicate glasses: towards a quantitative approach by 17O MQMAS NMR
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2008.03.046
  contributor:
    fullname: Angeli
– volume: 7
  start-page: 216
  year: 2014
  ident: 10.1016/j.gca.2016.02.023_b0240
  article-title: Topography and mechanical property mapping of international simple glass surfaces with atomic force microscopy
  publication-title: Proc. Mater. Sci.
  doi: 10.1016/j.mspro.2014.10.028
  contributor:
    fullname: Hopf
– volume: 181
  start-page: 310
  year: 2006
  ident: 10.1016/j.gca.2016.02.023_b0335
  article-title: Two-dimensional one pulse MAS of half-integer quadrupolar nuclei
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2006.05.007
  contributor:
    fullname: Massiot
– year: 2000
  ident: 10.1016/j.gca.2016.02.023_b0085
  article-title: Speciation of hafnium in peralkaline and peraluminous wasteform glasses using XAFS spectroscopy
  contributor:
    fullname: Caulder
– volume: 48
  start-page: S159
  year: 2010
  ident: 10.1016/j.gca.2016.02.023_b0430
  article-title: Contribution of first-principles calculations to multinuclear NMR analysis of borosilicate glasses
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.2673
  contributor:
    fullname: Soleilhavoup
– start-page: 683
  year: 2000
  ident: 10.1016/j.gca.2016.02.023_b0475
  article-title: Gadolinium and hafnium alumino-borosilicate glasses: Gd and Hf Solubilities
  contributor:
    fullname: Zhao
– year: 2009
  ident: 10.1016/j.gca.2016.02.023_b0370
  article-title: Thermodynamic and kinetics of water rock interactions
  contributor:
    fullname: Oelkers
– volume: 354
  start-page: 155
  year: 2008
  ident: 10.1016/j.gca.2016.02.023_b0030
  article-title: Aqueous alteration of five-oxide silicate glasses: experimental approach and Monte Carlo modeling
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2007.06.095
  contributor:
    fullname: Arab
– volume: 36
  start-page: 1331
  year: 2001
  ident: 10.1016/j.gca.2016.02.023_b0120
  article-title: A simplified model for glass dissolution in water
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1017591100985
  contributor:
    fullname: Devreux
– volume: 345
  start-page: 206
  year: 2005
  ident: 10.1016/j.gca.2016.02.023_b0395
  article-title: Experimental determination of UO2(cr) dissolution kinetics: effects of solution saturation state and pH
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2005.05.012
  contributor:
    fullname: Pierce
– volume: 258
  start-page: 98
  year: 1999
  ident: 10.1016/j.gca.2016.02.023_b0355
  article-title: X-ray absorption studies of the local environment of Zr in high-zirconia borosilicate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(99)00517-7
  contributor:
    fullname: McKeown
– year: 1990
  ident: 10.1016/j.gca.2016.02.023_b0235
  article-title: Mineral–water interface geochemistry
  contributor:
    fullname: Hochella
– volume: 408
  start-page: 142
  year: 2015
  ident: 10.1016/j.gca.2016.02.023_b0285
  article-title: Monte Carlo simulations of coupled diffusion and surface reactions during the aqueous corrosion of borosilicate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2014.07.020
  contributor:
    fullname: Kerisit
– volume: 51
  start-page: 1010
  year: 1929
  ident: 10.1016/j.gca.2016.02.023_b0375
  article-title: The principles determining the structure of complex ionic crystals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01379a006
  contributor:
    fullname: Pauling
– volume: 26
  start-page: S40
  year: 2011
  ident: 10.1016/j.gca.2016.02.023_b0225
  article-title: Movement of manganese contamination through the critical zone
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2011.03.024
  contributor:
    fullname: Herndon
– volume: 15
  start-page: 3913
  year: 2003
  ident: 10.1016/j.gca.2016.02.023_b0130
  article-title: Site preference and Si/B mixing in mixed-alkali borosilicate glasses: a high-resolution 11B and 17O NMR study
  publication-title: Chem. Mater.
  doi: 10.1021/cm034427r
  contributor:
    fullname: Du
– volume: 50
  start-page: 301
  year: 2009
  ident: 10.1016/j.gca.2016.02.023_b0365
  article-title: Molecular orbital calculations of the 29Si NMR chemical shift in borosilicates: the effect of boron coordination to SiO4 units
  publication-title: Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B
  contributor:
    fullname: Nanba
– volume: 346
  start-page: 194
  year: 2005
  ident: 10.1016/j.gca.2016.02.023_b0160
  article-title: The effect of composition on the leaching of three nuclear waste glasses: R7T7, AVM, and VRZ
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2005.06.023
  contributor:
    fullname: Frugier
– year: 1981
  ident: 10.1016/j.gca.2016.02.023_b0055
  article-title: The bond-valence method: an empirical approach to chemical structure and bonding
  contributor:
    fullname: Brown
– start-page: 141
  year: 2009
  ident: 10.1016/j.gca.2016.02.023_b0380
  article-title: Accelerated weathering of waste glass at 90°C with the pressurized unsaturated flow (PUF) apparatus: implications for predicting glass corrosion with a reactive transport model
  contributor:
    fullname: Pierce
– volume: 55
  start-page: 1563
  year: 1991
  ident: 10.1016/j.gca.2016.02.023_b0155
  article-title: Structural environments of incompatible elements in silicate glasses/melt systems. I. Zirconium at trace levels
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(91)90128-R
  contributor:
    fullname: Farges
– volume: 262
  start-page: 126
  year: 2000
  ident: 10.1016/j.gca.2016.02.023_b0350
  article-title: Structural characterization of high-zirconia borosilicate glasses using Raman spectroscopy
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(99)00691-2
  contributor:
    fullname: McKeown
SSID ssj0007550
Score 2.4161396
Snippet Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential...
SourceID osti
hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
StartPage 54
SubjectTerms Chemical Sciences
Computer simulation
Dilution
Dissolution
Divergence
Environmental Molecular Sciences Laboratory
Glass
Hafnium
Hafnium oxide
Material chemistry
Silicon
Title Glass–water interaction: Effect of high-valence cations on glass structure and chemical durability
URI https://search.proquest.com/docview/1790929125
https://search.proquest.com/docview/1809622103
https://cea.hal.science/cea-01287715
https://www.osti.gov/biblio/1253843
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dixMxEA-2h-CL-In1VKL4ZFnpfibrW9G9Vi3nw-1B30KSzd71wN1ybRX_e2c2--mBnA9CWbohzS4zv05mMpNfCHkbBCGXjGuHq7hauskdLt3YUdw30ov8WVadPLc8Y6dr_ikJkq4gs2v7r5qGNtA17pz9B223g0IDfAedwxW0Dtdb6X2B7rDzUyL5IXJBXNudCxj510zF6B5CSO7AU6u_dVNPDjiofOmp5ZRtMgu6oRTIDteW1HuQCV6YUl9usMfU7Ke63H1v7-HJrdFflttcDtJQX5EkerOv8kFnXUZojlW2Gz0oOsaagC2WNRlbiJ_21yrcCNPsdrdmY3-hDWwMG9pft2dBLaV0PRfb01luWHm74HD1_kIjc5QbVayrdtvykFH79Js4OV-tRJqs0xE58sAYhWNyNP-crL-08zULQ7tRqX63JvddVQH-8YiB9zK6xNrZcQm2-MZMXrkn6QNyv44r6NwC4iG5Y4pH5O6iOrf512OierCgPVh8oBYUtMxpHxS0BgUtC1qBgragoAAK2oCCdqB4Qs5PkvTj0qmP13Bk4PO9o3zlGRa7XIIIeKZiL-Izpt2cB8qDW5CV4SqUYKTz2A00xNKByeKZ0lxLriP_KRkXZWGeEZqBE8yyDH6dmSAy0JEpxU3EIg1zSKYm5F0jNrG1LCqiKS-8EiBjgTIWMw8-_oS8AcG2_ZD_fDlfCW2kQG-KMTf84U7IMcpdgJ-IZMcaq8L0XoC77vMAhnjdqEOAucQcmCxMedgJJKSDiAD6_aUPh7je89yZ__wW4xyTex3UX5AxaMO8JKNddnhVI-032syUtw
link.rule.ids 230,315,782,786,887,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glass-water+interaction%3A+Effect+of+high-valence+cations+on+glass+structure+and+chemical+durability&rft.jtitle=Geochimica+et+cosmochimica+acta&rft.au=Hopfa%2C+J&rft.au=Kerisitb%2C+S+N&rft.au=Angelic%2C+F&rft.au=Charpentierd%2C+T&rft.date=2016-05-15&rft.issn=0016-7037&rft.volume=181&rft.spage=54&rft.epage=71&rft_id=info:doi/10.1016%2Fj.gca.2016.02.023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7037&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7037&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7037&client=summon