Free Chlorine and Monochloramine Application to Nitrifying Biofilm: Comparison of Biofilm Penetration, Activity, and Viability
Biofilm in drinking water systems is undesirable. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but monochloramine is perceived to penetrate biofilm better than free chlorine. However, this hypothesis remains unconfirmed by direct biofilm monochloramin...
Saved in:
Published in: | Environmental science & technology Vol. 45; no. 4; pp. 1412 - 1419 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Chemical Society
15-02-2011
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Biofilm in drinking water systems is undesirable. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but monochloramine is perceived to penetrate biofilm better than free chlorine. However, this hypothesis remains unconfirmed by direct biofilm monochloramine measurement. This study compared free chlorine and monochloramine biofilm penetration into an undefined mixed-culture nitrifying biofilm by use of microelectrodes and assessed the subsequent effect on biofilm activity and viability by use of dissolved oxygen (DO) microelectrodes and confocal laser scanning microscopy (CLSM) with LIVE/DEAD BacLight. For equivalent chlorine concentrations, monochloramine initially penetrated biofilm 170 times faster than free chlorine, and even after subsequent application to a monochloramine penetrated biofilm, free chlorine penetration was limited. DO profiles paralleled monochloramine profiles, providing evidence that either the biofilm was inactivated with monochloramine’s penetration or its persistence reduced available substrate (free ammonia). While this research clearly demonstrated monochloramine’s greater penetration, this penetration did not necessarily translate to immediate viability loss. Even though free chlorine’s penetration was limited compared to that of monochloramine, it more effectively (on a cell membrane integrity basis) inactivated microorganisms near the biofilm surface. Limited free chlorine penetration has implications when converting to free chlorine in full-scale chloraminated systems in response to nitrification episodes. |
---|---|
AbstractList | Biofilm in drinking water systems is undesirable. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but monochloramine is perceived to penetrate biofilm better than free chlorine. However, this hypothesis remains unconfirmed by direct biofilm monochloramine measurement. This study compared free chlorine and monochloramine biofilm penetration into an undefined mixed-culture nitrifying biofilm by use of microelectrodes and assessed the subsequent effect on biofilm activity and viability by use of dissolved oxygen (DO) microelectrodes and confocal laser scanning microscopy (CLSM) with LIVE/DEAD BacLight. For equivalent chlorine concentrations, monochloramine initially penetrated biofilm 170 times faster than free chlorine, and even after subsequent application to a monochloramine penetrated biofilm, free chlorine penetration was limited. DO profiles paralleled monochloramine profiles, providing evidence that either the biofilm was inactivated with monochloramine's penetration or its persistence reduced available substrate (free ammonia). While this research clearly demonstrated monochloramine's greater penetration, this penetration did not necessarily translate to immediate viability loss. Even though free chlorine's penetration was limited compared to that of monochloramine, it more effectively (on a cell membrane integrity basis) inactivated microorganisms near the biofilm surface. Limited free chlorine penetration has implications when converting to free chlorine in full-scale chloraminated systems in response to nitrification episodes. Biofilm in drinking water systems is undesirable. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but monochloramine is perceived to penetrate biofilm better than free chlorine. However, this hypothesis remains unconfirmed by direct biofilm monochloramine measurement. This study compared free chlorine and monochloramine biofilm penetration into an undefined mixed-culture nitrifying biofilm by use of microelectrodes and assessed the subsequent effect on biofilm activity and viability by use of dissolved oxygen (DO) microelectrodes and confocal laser scanning microscopy (CLSM) with LIVE/DEAD BacLight. For equivalent chlorine concentrations, monochloramine initially penetrated biofilm 170 times faster than free chlorine, and even after subsequent application to a monochloramine penetrated biofilm, free chlorine penetration was limited. DO profiles paralleled monochloramine profiles, providing evidence that either the biofilm was inactivated with monochloramine's penetration or its persistence reduced available substrate (free ammonia). While this research clearly demonstrated monochloramine's greater penetration, this penetration did not necessarily translate to immediate viability loss. Even though free chlorine's penetration was limited compared to that of monochloramine, it more effectively (on a cell membrane integrity basis) inactivated microorganisms near the biofilm surface. Limited free chlorine penetration has implications when converting to free chlorine in full-scale chloraminated systems in response to nitrification episodes. [PUBLICATION ABSTRACT] |
Author | Lee, Woo Hyoung Bishop, Paul L Wahman, David G Pressman, Jonathan G |
AuthorAffiliation | U.S. Environmental Protection Agency University of Cincinnati |
AuthorAffiliation_xml | – name: University of Cincinnati – name: U.S. Environmental Protection Agency |
Author_xml | – sequence: 1 givenname: Woo Hyoung surname: Lee fullname: Lee, Woo Hyoung – sequence: 2 givenname: David G surname: Wahman fullname: Wahman, David G – sequence: 3 givenname: Paul L surname: Bishop fullname: Bishop, Paul L – sequence: 4 givenname: Jonathan G surname: Pressman fullname: Pressman, Jonathan G email: Pressman.Jonathan@epa.gov |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24167011$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21226531$$D View this record in MEDLINE/PubMed |
BookMark | eNpl0c9LHDEUB_AgFl2th_4DJRSEFpz2JS-Zyfa2LtoK2vag0tuQySZtZCaZJrOFvfi3O6urFnsKeXzeD_juke0QgyXkDYOPDDj7ZDMDlAhyi0yY5FBIJdk2mQAwLKZY_twleznfAABHUDtklzPOS4lsQm5Pk7V0_ruNyQdLdVjQixiiWRd0ty7N-r71Rg8-BjpE-s0PybuVD7_osY_Ot91nOo9dr5PPo4jusUx_2GCHdN94RGdm8H_9sDq6X3HtdePb8fuavHK6zfZg8-6Tq9OTy_nX4vz7l7P57LzQAtVQTIVGAUJOwaFTqgSonMQGsZw2gFUpDEhukVUcucAKuGa80WZhGbhFowzuk_cPc_sU_yxtHurOZ2PbVgcbl7lmOHZWSqEa6bsX9CYuUxivq5UUAkuOOKIPD8ikmHOyru6T73Ra1QzqdSb1UyajfbsZuGw6u3iSjyGM4HADdDa6dUkH4_OzE6ysgP3jtMnPR_2_8A7f_Z-8 |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1039_D3EW00278K crossref_primary_10_3390_microorganisms12050916 crossref_primary_10_1016_j_envpol_2023_122599 crossref_primary_10_1016_j_chemosphere_2019_125310 crossref_primary_10_3390_ijerph17030772 crossref_primary_10_1039_c3em00234a crossref_primary_10_1016_j_energy_2020_117085 crossref_primary_10_1088_1755_1315_558_4_042004 crossref_primary_10_1016_j_scitotenv_2018_05_363 crossref_primary_10_1080_08927014_2011_654335 crossref_primary_10_3390_w15173055 crossref_primary_10_5942_jawwa_2014_106_0002 crossref_primary_10_1080_10934529_2018_1535160 crossref_primary_10_1016_j_jes_2019_03_011 crossref_primary_10_1016_j_watres_2021_117044 crossref_primary_10_3390_microorganisms7120660 crossref_primary_10_1016_j_chemosphere_2018_03_143 crossref_primary_10_1016_j_scitotenv_2020_142314 crossref_primary_10_1039_C9EW00015A crossref_primary_10_1016_j_watres_2018_10_062 crossref_primary_10_1264_jsme2_ME12095 crossref_primary_10_1080_08927014_2021_1978988 crossref_primary_10_1371_journal_pwat_0000181 crossref_primary_10_1021_acs_est_6b04754 crossref_primary_10_1016_j_snb_2013_08_058 crossref_primary_10_1016_j_watres_2022_119039 crossref_primary_10_1021_acs_est_6b00835 crossref_primary_10_4265_bio_26_1 crossref_primary_10_1021_acs_est_7b05215 crossref_primary_10_1061__ASCE_EE_1943_7870_0000788 crossref_primary_10_1089_ees_2023_0065 crossref_primary_10_1128_microbiolspec_MB_0010_2014 crossref_primary_10_1061__ASCE_EE_1943_7870_0001993 crossref_primary_10_1016_j_watres_2014_10_054 crossref_primary_10_1080_15459624_2016_1229481 crossref_primary_10_1080_10643389_2013_781936 crossref_primary_10_1016_j_jhazmat_2024_135138 crossref_primary_10_3390_microorganisms11071794 crossref_primary_10_1016_j_watres_2024_121273 crossref_primary_10_7845_kjm_2015_5050 crossref_primary_10_1021_acs_est_5b04653 crossref_primary_10_1016_j_scitotenv_2019_05_364 crossref_primary_10_3389_fenvs_2021_684319 crossref_primary_10_1016_j_chemosphere_2021_129764 crossref_primary_10_1021_acssensors_0c02264 crossref_primary_10_1088_0957_0233_22_4_042001 crossref_primary_10_1039_D2EW00154C crossref_primary_10_2166_ws_2023_095 crossref_primary_10_1016_j_watres_2014_04_051 crossref_primary_10_1016_j_chemosphere_2018_12_067 crossref_primary_10_1111_1751_7915_13628 crossref_primary_10_1021_acs_langmuir_9b02168 crossref_primary_10_1002_aws2_1204 crossref_primary_10_1039_C5RA20606E crossref_primary_10_1016_j_watres_2011_11_071 crossref_primary_10_1021_acsestwater_0c00137 crossref_primary_10_1016_j_scitotenv_2024_172690 crossref_primary_10_1021_es405353h crossref_primary_10_1016_j_biotechadv_2020_107518 crossref_primary_10_1371_journal_pone_0210115 crossref_primary_10_1002_bit_25479 crossref_primary_10_1021_acs_est_6b00927 crossref_primary_10_2166_bgs_2024_008 crossref_primary_10_1016_j_watres_2020_115738 crossref_primary_10_1021_acs_est_9b01189 crossref_primary_10_1016_j_watres_2013_06_036 crossref_primary_10_1016_j_watres_2024_121324 crossref_primary_10_1016_j_watres_2016_11_061 crossref_primary_10_1371_journal_pone_0080692 crossref_primary_10_1021_acs_langmuir_7b01558 crossref_primary_10_1007_s00253_021_11251_9 crossref_primary_10_1016_j_jes_2023_01_009 crossref_primary_10_1016_j_scitotenv_2020_141606 crossref_primary_10_1080_08927014_2016_1212989 crossref_primary_10_1016_j_scitotenv_2023_162353 crossref_primary_10_1016_j_jhazmat_2023_132666 crossref_primary_10_1128_spectrum_01845_22 crossref_primary_10_1016_j_watres_2013_05_019 crossref_primary_10_1021_es502646d crossref_primary_10_1007_s11581_015_1454_7 crossref_primary_10_1016_j_watres_2014_01_054 crossref_primary_10_1021_es303212a crossref_primary_10_4028_www_scientific_net_KEM_521_113 crossref_primary_10_1002_aws2_1139 crossref_primary_10_1016_j_chemosphere_2023_140382 crossref_primary_10_1016_j_watres_2023_120352 crossref_primary_10_1088_1361_6501_28_2_025101 crossref_primary_10_1021_acs_est_2c01516 crossref_primary_10_1021_acs_est_7b05526 crossref_primary_10_1002_aws2_1375 crossref_primary_10_1016_j_watres_2013_06_052 crossref_primary_10_3390_mi11070667 crossref_primary_10_1021_es402636u crossref_primary_10_1128_AEM_02956_18 crossref_primary_10_1016_j_watres_2018_10_085 crossref_primary_10_1021_acs_estlett_9b00185 crossref_primary_10_1111_jam_13243 crossref_primary_10_1557_mrc_2018_61 |
Cites_doi | 10.1128/AEM.00407-09 10.1002/j.1551-8833.1996.tb06587.x 10.1128/aem.60.12.4339-4344.1994 10.1002/(SICI)1097-0290(19960105)49:1<93::AID-BIT12>3.0.CO;2-C 10.1002/j.1551-8833.1991.tb07152.x 10.1002/j.1551-8833.1996.tb06586.x 10.1021/es9509184 10.1061/JSEDAI.0001315 10.1146/annurev.mi.41.100187.002251 10.1128/aem.54.10.2492-2499.1988 10.1021/es060857h 10.1021/es022232z 10.1002/j.1551-8833.1990.tb06996.x 10.1080/08927019309386240 10.1128/AEM.65.7.3182-3191.1999 10.2166/wst.1994.0545 10.1016/j.snb.2010.01.025 10.1139/s04-027 10.1046/j.1365-2672.2001.01413.x 10.1002/j.1551-8833.2005.tb07497.x |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society 2015 INIST-CNRS Copyright American Chemical Society Feb 15, 2011 |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society Feb 15, 2011 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 |
DOI | 10.1021/es1035305 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biotechnology Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 1419 |
ExternalDocumentID | 2280397831 10_1021_es1035305 21226531 24167011 c721099718 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC .HR 08R 186 1WB 42X 6TJ 8WZ A6W AAYOK ABFRP ABHMW ABQRX ABTAH ACKIV ADHLV ADMHC AETEA AFDAS AGHSJ AGXLV AHGAQ ANTXH GGK IHE IQODW MS~ MVM MW2 NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH XSW YV5 ZCA ZCG ZY4 ~A~ AAHBH ABJNI ADUKH CGR CUPRZ CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 |
ID | FETCH-LOGICAL-a438t-94a3404590f3f886007f53b3369b03764c052e31723243702a12bacde10fdb8c3 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Fri Aug 16 11:55:38 EDT 2024 Thu Oct 10 19:01:48 EDT 2024 Fri Aug 23 02:45:50 EDT 2024 Sat Sep 28 07:57:38 EDT 2024 Sun Oct 22 16:09:23 EDT 2023 Thu Aug 27 13:41:59 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Drinking water treatment Chlorination Chlorine Nitrification Biofilm Tosylchloramide sodium Disinfection |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a438t-94a3404590f3f886007f53b3369b03764c052e31723243702a12bacde10fdb8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21226531 |
PQID | 854436233 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1323278838 proquest_journals_854436233 crossref_primary_10_1021_es1035305 pubmed_primary_21226531 pascalfrancis_primary_24167011 acs_journals_10_1021_es1035305 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2011-02-15 |
PublicationDateYYYYMMDD | 2011-02-15 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Chen C. I. (ref24/cit24) 1993; 7 Okabe S. (ref19/cit19) 1999; 65 Zhang T. C. (ref17/cit17) 1994; 30 Szabo J. G. (ref16/cit16) 2006; 40 Wahman D. G. (ref20/cit20) 2009; 75 LeChevallier M. W. (ref3/cit3) 1988; 54 Chang S. L. (ref26/cit26) 1971; 97 Stewart P. S. (ref1/cit1) 2001; 91 Costerton J. W. (ref21/cit21) 1987; 41 Jacangelo J. C. (ref23/cit23) 1991; 83 (ref25/cit25) 1999 Wilczak A. (ref6/cit6) 1996; 88 Regan J. M. (ref8/cit8) 2007 (ref9/cit9) 2006 Nicholos W. W. (ref22/cit22) 1989 Xu X. (ref13/cit13) 1996; 49 Li J. (ref18/cit18) 2004; 3 Gilbert P. (ref2/cit2) 1995 Lee W. H. (ref15/cit15) 2010; 145 Kirmeyer G. (ref7/cit7) 2004 Odell L. H. (ref10/cit10) 1996; 88 LeChevallier M. W. (ref14/cit14) 1990; 82 Chen X. (ref12/cit12) 1996; 30 Seidel C. J. (ref4/cit4) 2005; 97 de Beer D. (ref11/cit11) 1994; 60 Betts K. S. (ref5/cit5) 2002; 36 |
References_xml | – volume: 75 start-page: 5555 issue: 17 year: 2009 ident: ref20/cit20 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00407-09 contributor: fullname: Wahman D. G. – volume: 88 start-page: 86 issue: 7 year: 1996 ident: ref10/cit10 publication-title: J. Am. Water Works Assoc. doi: 10.1002/j.1551-8833.1996.tb06587.x contributor: fullname: Odell L. H. – volume: 60 start-page: 4339 issue: 12 year: 1994 ident: ref11/cit11 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.60.12.4339-4344.1994 contributor: fullname: de Beer D. – volume: 49 start-page: 93 year: 1996 ident: ref13/cit13 publication-title: Biotechnol. Bioeng. doi: 10.1002/(SICI)1097-0290(19960105)49:1<93::AID-BIT12>3.0.CO;2-C contributor: fullname: Xu X. – volume: 83 start-page: 80 year: 1991 ident: ref23/cit23 publication-title: J. Am. Water Works Assoc. doi: 10.1002/j.1551-8833.1991.tb07152.x contributor: fullname: Jacangelo J. C. – volume-title: Water Quality and Treatment: A Handbook of Community Water Supplies year: 1999 ident: ref25/cit25 – volume: 88 start-page: 74 issue: 7 year: 1996 ident: ref6/cit6 publication-title: J. Am. Water Works Assoc. doi: 10.1002/j.1551-8833.1996.tb06586.x contributor: fullname: Wilczak A. – volume: 30 start-page: 2078 year: 1996 ident: ref12/cit12 publication-title: Environ. Sci. Technol. doi: 10.1021/es9509184 contributor: fullname: Chen X. – volume: 97 start-page: 689 issue: 5 year: 1971 ident: ref26/cit26 publication-title: J. Sanit. Eng. Div. doi: 10.1061/JSEDAI.0001315 contributor: fullname: Chang S. L. – volume-title: Monitoring ammonia-oxidizing bacteria in chloraminated distribution systems year: 2007 ident: ref8/cit8 contributor: fullname: Regan J. M. – volume: 41 start-page: 435 year: 1987 ident: ref21/cit21 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.mi.41.100187.002251 contributor: fullname: Costerton J. W. – volume-title: Fundamentals and Control of Nitrification in Chloraminated Drinking Water Distribution Systems year: 2006 ident: ref9/cit9 – volume: 54 start-page: 2492 issue: 10 year: 1988 ident: ref3/cit3 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.54.10.2492-2499.1988 contributor: fullname: LeChevallier M. W. – volume-title: Optimizing Chloramine Treatment year: 2004 ident: ref7/cit7 contributor: fullname: Kirmeyer G. – volume: 40 start-page: 4996 year: 2006 ident: ref16/cit16 publication-title: Environ. Sci. Technol. doi: 10.1021/es060857h contributor: fullname: Szabo J. G. – volume-title: Microbial Biofilms year: 1995 ident: ref2/cit2 contributor: fullname: Gilbert P. – volume-title: Structure and Function of Biofilms year: 1989 ident: ref22/cit22 contributor: fullname: Nicholos W. W. – volume: 36 start-page: 92 year: 2002 ident: ref5/cit5 publication-title: Environ. Sci. Technol. doi: 10.1021/es022232z contributor: fullname: Betts K. S. – volume: 82 start-page: 87 issue: 7 year: 1990 ident: ref14/cit14 publication-title: J. Am. Water Works Assoc. doi: 10.1002/j.1551-8833.1990.tb06996.x contributor: fullname: LeChevallier M. W. – volume: 7 start-page: 1 year: 1993 ident: ref24/cit24 publication-title: Biofouling doi: 10.1080/08927019309386240 contributor: fullname: Chen C. I. – volume: 65 start-page: 3182 issue: 7 year: 1999 ident: ref19/cit19 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.7.3182-3191.1999 contributor: fullname: Okabe S. – volume: 30 start-page: 47 issue: 11 year: 1994 ident: ref17/cit17 publication-title: Water Sci. Technol. doi: 10.2166/wst.1994.0545 contributor: fullname: Zhang T. C. – volume: 145 start-page: 734 year: 2010 ident: ref15/cit15 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2010.01.025 contributor: fullname: Lee W. H. – volume: 3 start-page: 523 issue: 6 year: 2004 ident: ref18/cit18 publication-title: J. Environ. Eng. Sci. doi: 10.1139/s04-027 contributor: fullname: Li J. – volume: 91 start-page: 525 year: 2001 ident: ref1/cit1 publication-title: J. Appl. Microbiol. doi: 10.1046/j.1365-2672.2001.01413.x contributor: fullname: Stewart P. S. – volume: 97 start-page: 87 issue: 10 year: 2005 ident: ref4/cit4 publication-title: J. Am. Water Works Assoc. doi: 10.1002/j.1551-8833.2005.tb07497.x contributor: fullname: Seidel C. J. |
SSID | ssj0002308 |
Score | 2.4175684 |
Snippet | Biofilm in drinking water systems is undesirable. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but... |
SourceID | proquest crossref pubmed pascalfrancis acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1412 |
SubjectTerms | Applied sciences Biofilms Biofilms - drug effects Chloramines - chemistry Chloramines - pharmacology Chlorine Chlorine - chemistry Chlorine - pharmacology Disinfectants - chemistry Disinfectants - pharmacology Disinfection & disinfectants Drinking water Drinking water and swimming-pool water. Desalination Electrodes Environmental Processes Environmental science Exact sciences and technology Nitrification Pollution Water Supply Water treatment and pollution |
Title | Free Chlorine and Monochloramine Application to Nitrifying Biofilm: Comparison of Biofilm Penetration, Activity, and Viability |
URI | http://dx.doi.org/10.1021/es1035305 https://www.ncbi.nlm.nih.gov/pubmed/21226531 https://www.proquest.com/docview/854436233 https://search.proquest.com/docview/1323278838 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BuYBQH4HCtjQyj2NW-Bl7ewshUU9VpQLqLfLu2iKH7lbZ5MCF3854X0klIrh6vevHeGY-79jfAHxS6IJQtknMjaOxTCTaQaE06pXOtfSKyvrw-NWtvr4zX2eBJufjngg-Z59dxahQIvCUPuMaEXjAP9Pb3twihjZdmoJEjO86-qDdV4PryapHruflg61wFnyTvmI_vqz9zPzov3p4DIctjCSTRu4n8MQVA3ixQy44gNPZ9g4bVm2VuHoFv-cr58j0Z332zhFb5AQ1u8xCgb0PRZNtVJusS3K9XK-W9X0o8mUZUnzfX5Jpn7-QlL4rJjdoOVse3hGZZE1milHdxI9lwwj-6zV8n8--Ta_iNg1DbKUw6ziRVkhEfgn1whsTCO29EqkQ4ySlaJ9kRhV3iEMCOBOacst4arPcMerz1GTiFA6KsnBvgUjPLSIKr5KUy0wzK7TKueMM98ljTccRDFFOi1aNqkUdIeds0c9wBB86ES4eGjqOv1UaPhJuXxPRCrbCWATnnbS3bZnABIhgUETwvn-KuhYCKLZw5Qa7I3CI2hhhInjTLJLttxkCWTRoZ_8awjk8b_5L85ipd3CwXm3cBTyt8s2wXth_AFRb7CQ |
link.rule.ids | 315,782,786,2770,27086,27934,27935,56749,56799 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH6CcgCEWAptQ2EwiGMj4i12uA3DjAZRRkgtqLfISWwxhybVZObAhd_Oc9ZWAiGujuPtLf6SZ38P4K3ELQhlm4RM2ygUiUA_yKVCu1KFEk5Gojk8vjxTqwv9cT7Q5Pi7MDiIGluqmyD-yC5A39maRlxyT1d6R8ZKeA2ezs4Gr4tQWvfZChIeX_QsQtdf9TtQXt_YgR5cmRoXw7VZLP4OM5vtZvHofwb6GB52oJJMWy14ArdsuQ_3r1EN7sPBfLzRhlU7k66fwq_Fxloy-9GcxLPElAVBO69yX2AufdF0jHGTbUVW6-1m3dyOIh_WPuH35XsyG7IZksr1xeQr-tGOlfeETPM2T8VJ08X3dcsP_vMZfFvMz2fLsEvKEBrB9TZMhOECcWASOe609vT2TvKM8zjJIvRWIo8ks4hKPFTjKmKGsszkhaWRKzKd8wPYK6vSHgERjhnEF04mGRO5ooYrWTDLKH41xyqKA5jgAqedUdVpEy9nNB1WOIA3vSTTq5ac40-VJjdkPNRE7IK9UBrAcS_0sS_teQERGvIAXg9P0fJ8OMWUttrhcDhOUWnNdQCHra6MbVOEtejenv9rCq_g7vL8y2l6-mn1-RjutX-sWUjlC9jbbnb2Jdyui92k0fXfmWb0kg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH6CIiEqxFJoCYXBII4NxFvscJtOZ1QEGlUqoN4iJ7HFHJqMJjOHXvrbec42rVSEuDqOt7f4S579PYCPErcglG0SMm2jUCQC_SCXCu1KFUo4GYnm8PjpuZpf6JOpp8n51N-FwUHU2FLdBPG9VS8L1zEM0M-2phGX3FOWPpCxSrwWjyfng-dFOK37jAUJjy96JqGbr_pdKK9v7UKPl6bGBXFtJou_Q81my5k9_d_BPoMnHbgk41YbnsM9W-7B7g3KwT3Yn25vtmHVzrTrF3A9W1lLJr-bE3mWmLIgaO9V7gvMpS8ab2PdZF2R-WK9WjS3pMjxwif-vvxCJkNWQ1K5vpicoT_t2HmPyDhv81UcNV38WrQ84Vcv4eds-mNyGnbJGUIjuF6HiTBcIB5MIsed1p7m3kmecR4nWYReS-SRZBbRiYdsXEXMUJaZvLA0ckWmc74PO2VV2ldAhGMGcYaTScZErqjhShbMMopfz7GK4gBGuMhpZ1x12sTNGU2HFQ7gQy_NdNmSdNxVaXRLzkNNxDDYC6UBHPaC3_alPT8gQkQewPvhKVqgD6uY0lYbHA7HKSqtuQ7goNWXbdsU4S26udf_msI7eHh2Mku_f51_O4RH7Y9rFlL5BnbWq419C_frYjNq1P0Pt-X3FQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free+Chlorine+and+Monochloramine+Application+to+Nitrifying+Biofilm%3A+Comparison+of+Biofilm+Penetration%2C+Activity%2C+and+Viability&rft.jtitle=Environmental+science+%26+technology&rft.au=Lee%2C+Woo+Hyoung&rft.au=Wahman%2C+David+G&rft.au=Bishop%2C+Paul+L&rft.au=Pressman%2C+Jonathan+G&rft.date=2011-02-15&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=45&rft.issue=4&rft.spage=1412&rft_id=info:doi/10.1021%2Fes1035305&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2280397831 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |