Cross-Target View to Feature Selection: Identification of Molecular Interaction Features in Ligand−Target Space

There is growing interest in computational chemogenomics, which aims to identify all possible ligands of all target families using in silico prediction models. In particular, kernel methods provide a means of integrating compounds and proteins in a principled manner and enable the exploration of lig...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical information and modeling Vol. 51; no. 1; pp. 15 - 24
Main Authors: Niijima, Satoshi, Yabuuchi, Hiroaki, Okuno, Yasushi
Format: Journal Article
Language:English
Published: Washington, DC American Chemical Society 24-01-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract There is growing interest in computational chemogenomics, which aims to identify all possible ligands of all target families using in silico prediction models. In particular, kernel methods provide a means of integrating compounds and proteins in a principled manner and enable the exploration of ligand−target binding on a genomic scale. To better understand the link between ligands and targets, it is of fundamental interest to identify molecular interaction features that contribute to prediction of ligand−target binding. To this end, we describe a feature selection approach based on kernel dimensionality reduction (KDR) that works in a ligand−target space defined by kernels. We further propose an efficient algorithm to overcome a computational bottleneck and thereby provide a useful general approach to feature selection for chemogenomics. Our experiment on cytochrome P450 (CYP) enzymes has shown that the algorithm is capable of identifying predictive features, as well as prioritizing features that are indicative of ligand preference for a given target family. We further illustrate its applicability on the mutation data of HIV protease by identifying influential mutated positions within protease variants. These results suggest that our approach has the potential to uncover the molecular basis for ligand selectivity and off-target effects.
AbstractList There is growing interest in computational chemogenomics, which aims to identify all possible ligands of all target families using in silico prediction models. In particular, kernel methods provide a means of integrating compounds and proteins in a principled manner and enable the exploration of ligand−target binding on a genomic scale. To better understand the link between ligands and targets, it is of fundamental interest to identify molecular interaction features that contribute to prediction of ligand−target binding. To this end, we describe a feature selection approach based on kernel dimensionality reduction (KDR) that works in a ligand−target space defined by kernels. We further propose an efficient algorithm to overcome a computational bottleneck and thereby provide a useful general approach to feature selection for chemogenomics. Our experiment on cytochrome P450 (CYP) enzymes has shown that the algorithm is capable of identifying predictive features, as well as prioritizing features that are indicative of ligand preference for a given target family. We further illustrate its applicability on the mutation data of HIV protease by identifying influential mutated positions within protease variants. These results suggest that our approach has the potential to uncover the molecular basis for ligand selectivity and off-target effects.
There is growing interest in computational chemogenomics, which aims to identify all possible ligands of all target families using in silico prediction models. In particular, kernel methods provide a means of integrating compounds and proteins in a principled manner and enable the exploration of ligand-target binding on a genomic scale. To better understand the link between ligands and targets, it is of fundamental interest to identify molecular interaction features that contribute to prediction of ligand-target binding. To this end, we describe a feature selection approach based on kernel dimensionality reduction (KDR) that works in a ligand-target space defined by kernels. We further propose an efficient algorithm to overcome a computational bottleneck and thereby provide a useful general approach to feature selection for chemogenomics. Our experiment on cytochrome P450 (CYP) enzymes has shown that the algorithm is capable of identifying predictive features, as well as prioritizing features that are indicative of ligand preference for a given target family. We further illustrate its applicability on the mutation data of HIV protease by identifying influential mutated positions within protease variants. These results suggest that our approach has the potential to uncover the molecular basis for ligand selectivity and off-target effects. [PUBLICATION ABSTRACT]
There is growing interest in computational chemogenomics, which aims to identify all possible ligands of all target families using in silico prediction models. In particular, kernel methods provide a means of integrating compounds and proteins in a principled manner and enable the exploration of ligand-target binding on a genomic scale. To better understand the link between ligands and targets, it is of fundamental interest to identify molecular interaction features that contribute to prediction of ligand-target binding. To this end, we describe a feature selection approach based on kernel dimensionality reduction (KDR) that works in a ligand-target space defined by kernels. We further propose an efficient algorithm to overcome a computational bottleneck and thereby provide a useful general approach to feature selection for chemogenomics. Our experiment on cytochrome P450 (CYP) enzymes has shown that the algorithm is capable of identifying predictive features, as well as prioritizing features that are indicative of ligand preference for a given target family. We further illustrate its applicability on the mutation data of HIV protease by identifying influential mutated positions within protease variants. These results suggest that our approach has the potential to uncover the molecular basis for ligand selectivity and off-target effects.
Author Niijima, Satoshi
Okuno, Yasushi
Yabuuchi, Hiroaki
Author_xml – sequence: 1
  givenname: Satoshi
  surname: Niijima
  fullname: Niijima, Satoshi
  email: niijima@pharm.kyoto-u.ac.jp
– sequence: 2
  givenname: Hiroaki
  surname: Yabuuchi
  fullname: Yabuuchi, Hiroaki
– sequence: 3
  givenname: Yasushi
  surname: Okuno
  fullname: Okuno, Yasushi
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23783159$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21142044$$D View this record in MEDLINE/PubMed
BookMark eNpl0c1q3DAQAGARUpq_HvICRRRCycGJRj-21VtZknZhQw5JSm9mVpaDglfaSDahb9BzHrFPUm2ym4X2JAl9mhnNHJBdH7wl5BjYGTAO58YBYyC03CH7oKQudMl-7m72Spd75CClB8aE0CV_T_Y4gORMyn3yOIkhpeIW470d6A9nn-gQ6KXFYYyW3tjemsEF_4VOW-sH1zmDqzMNHb0K-XLsMdKpH2zEF7h5mqjzdObu0bd_fj-vw98s0dgj8q7DPtkP6_WQ3F1e3E6-F7Prb9PJ11mBUlRDMQejGWqUpQLgzKASUre8bWs1Z0JpkGCMMC3PH6k73rEMq1rxrmTCznOMQ_L5Ne4yhsfRpqFZuGRs36O3YUxNLSspFFQqy0__yIcwRp-La2oFTObMdUanr8isGhZt1yyjW2D81QBrVlNo3qaQ7cd1wHG-sO2b3LQ9g5M1wGSw7yJ649LWiaoWoPTWoUnbov5P-BeqLJvx
CitedBy_id crossref_primary_10_1016_j_steroids_2018_10_002
crossref_primary_10_1021_ci500130e
crossref_primary_10_1002_minf_201300101
crossref_primary_10_1016_j_bmc_2012_03_030
crossref_primary_10_1016_j_heliyon_2021_e07724
crossref_primary_10_1007_s10822_014_9816_1
crossref_primary_10_4155_fmc_12_126
crossref_primary_10_1080_10406638_2021_2006245
crossref_primary_10_1016_j_compbiomed_2017_09_007
crossref_primary_10_1517_17460441_2015_1082543
crossref_primary_10_1073_pnas_1816640116
crossref_primary_10_1517_17460441_2011_632406
crossref_primary_10_1186_1758_2946_5_31
crossref_primary_10_1021_ci3000979
crossref_primary_10_1021_ci4006723
Cites_doi 10.1021/ci0342876
10.1021/jm048959a
10.1093/nar/gkl305
10.1021/ci8000953
10.1016/j.drudis.2006.05.001
10.1186/1471-2105-9-181
10.1093/bioinformatics/btm216
10.1021/ci050006d
10.1021/ci050367t
10.1214/08-AOS637
10.1002/qsar.200410011
10.1021/ci800200e
10.1021/ci0342472
10.1021/ci800447g
10.1021/bi027019u
10.1093/bioinformatics/btn409
10.1021/ci9002624
10.1002/9783527613106
10.1080/01621459.1991.10475035
10.1023/A:1012487302797
10.1021/ci800453k
10.1023/A:1011085411050
10.1021/jm9700575
10.1016/S1741-8364(04)02408-4
10.1021/ci100050t
10.1021/ci049869h
10.1093/bioinformatics/btm580
10.1093/bioinformatics/btm266
10.1002/qsar.200430925
10.1038/sj.bjp.0707308
10.1021/jm060333s
10.1016/j.cbpa.2008.01.044
10.1007/11564089_7
10.1038/sj.bjp.0707307
10.1109/TKDE.2008.232
10.1086/431601
10.1021/jm0502900
10.1093/bioinformatics/btg431
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
2015 INIST-CNRS
Copyright American Chemical Society Jan 24, 2011
Copyright_xml – notice: Copyright © 2010 American Chemical Society
– notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society Jan 24, 2011
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/ci1001394
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Applied Sciences
DocumentTitleAlternate Cross-Target View to Feature Selection
EISSN 1549-960X
EndPage 24
ExternalDocumentID 2262808561
10_1021_ci1001394
21142044
23783159
a107641155
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACIWK
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
PQEST
PQQKQ
RNS
ROL
UI2
VF5
VG9
W1F
X
---
-~X
1WB
53G
ABFRP
ABQRX
ADHLV
AHGAQ
ANTXH
GGK
IHE
IQODW
ABJNI
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a437t-b1c90a9a4651120ca5349d2dd85b0359141cc3cd24208f2f04657852f603eba43
IEDL.DBID ACS
ISSN 1549-9596
IngestDate Fri Aug 16 07:26:04 EDT 2024
Thu Oct 10 18:01:50 EDT 2024
Fri Aug 23 00:52:08 EDT 2024
Sat Sep 28 07:54:15 EDT 2024
Sun Oct 22 16:10:23 EDT 2023
Thu Aug 27 13:41:59 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cytochrome
Ligand binding
Bottleneck
Enzyme
Molecular interaction
Experimental study
Modeling
Protein
Kernel method
Dimension reduction
Preference
Genome
Target detection
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a437t-b1c90a9a4651120ca5349d2dd85b0359141cc3cd24208f2f04657852f603eba43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21142044
PQID 851045348
PQPubID 28739
PageCount 10
ParticipantIDs proquest_miscellaneous_847435175
proquest_journals_851045348
crossref_primary_10_1021_ci1001394
pubmed_primary_21142044
pascalfrancis_primary_23783159
acs_journals_10_1021_ci1001394
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2011-01-24
PublicationDateYYYYMMDD 2011-01-24
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-24
  day: 24
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Journal of chemical information and modeling
PublicationTitleAlternate J. Chem. Inf. Model
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Kontijevskis A. (ref29/cit29) 2008; 48
Schnur D. M. (ref14/cit14) 2006; 49
Erhan D. (ref5/cit5) 2006; 46
Sandberg M. (ref36/cit36) 1998; 41
ref37/cit37
Leslie C. S. (ref35/cit35) 2004; 20
Riley R. J. (ref44/cit44) 2001; 18
Xue Y. (ref9/cit9) 2004; 44
Guyon I. (ref26/cit26) 2002; 46
de Groot M. J. (ref40/cit40) 2006; 11
(ref46/cit46) 2007
Schölkopf B. (ref10/cit10) 2002
Weill N. (ref21/cit21) 2009; 49
Hawkins D. M. (ref13/cit13) 2004; 44
Jacob L. (ref17/cit17) 2008; 24
Strömbergsson H. (ref19/cit19) 2008; 48
Fukumizu K. (ref12/cit12) 2009; 37
Klabunde T. (ref1/cit1) 2007; 152
Bock J. R. (ref4/cit4) 2005; 45
Golub G. H. (ref28/cit28) 1996
Rogers D. (ref45/cit45) 2010; 50
Lapins M. (ref30/cit30) 2009; 49
(ref32/cit32) 2007
Fröhlich H. (ref7/cit7) 2004; 23
Schuffenhauer A. (ref15/cit15) 2004; 2
Todeschini R. (ref31/cit31) 2000
Lapins M. (ref47/cit47) 2008; 9
Yeh Y.-R. (ref25/cit25) 2009; 21
Bach F. R. (ref27/cit27) 2002; 3
Wassermann A. M. (ref20/cit20) 2009; 49
ref39/cit39
Guyon I. (ref6/cit6) 2003; 3
Kriegl J. M. (ref42/cit42) 2005; 24
Rhee S.-Y. (ref49/cit49) 2005; 192
Li Z. R. (ref34/cit34) 2006; 34
Jensen B. F. (ref43/cit43) 2007; 50
Nagamine N. (ref18/cit18) 2007; 23
Rognan D. (ref2/cit2) 2007; 152
(ref33/cit33) 2008
Bajorath J. (ref3/cit3) 2008; 12
Fukumizu K. (ref11/cit11) 2004; 5
Muzammil S. (ref48/cit48) 2003; 42
ref22/cit22
Faulon J.-L. (ref16/cit16) 2008; 24
Byvatov E. (ref8/cit8) 2004; 44
Song L. (ref23/cit23) 2007; 23
Chohan K. K. (ref41/cit41) 2005; 48
Vapnik V. N. (ref38/cit38) 1998
Li K.-C. (ref24/cit24) 1991; 86
References_xml – volume: 44
  start-page: 993
  year: 2004
  ident: ref8/cit8
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci0342876
  contributor:
    fullname: Byvatov E.
– volume: 48
  start-page: 5154
  year: 2005
  ident: ref41/cit41
  publication-title: J. Med. Chem.
  doi: 10.1021/jm048959a
  contributor:
    fullname: Chohan K. K.
– volume-title: Statistical Learning Theory
  year: 1998
  ident: ref38/cit38
  contributor:
    fullname: Vapnik V. N.
– volume: 34
  start-page: W32
  year: 2006
  ident: ref34/cit34
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl305
  contributor:
    fullname: Li Z. R.
– volume: 48
  start-page: 1840
  year: 2008
  ident: ref29/cit29
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci8000953
  contributor:
    fullname: Kontijevskis A.
– volume: 11
  start-page: 601
  year: 2006
  ident: ref40/cit40
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2006.05.001
  contributor:
    fullname: de Groot M. J.
– volume: 9
  start-page: 181
  year: 2008
  ident: ref47/cit47
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-181
  contributor:
    fullname: Lapins M.
– volume-title: DragonX
  year: 2007
  ident: ref32/cit32
– volume: 23
  start-page: i490
  year: 2007
  ident: ref23/cit23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm216
  contributor:
    fullname: Song L.
– volume: 45
  start-page: 1402
  year: 2005
  ident: ref4/cit4
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci050006d
  contributor:
    fullname: Bock J. R.
– volume: 5
  start-page: 73
  year: 2004
  ident: ref11/cit11
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Fukumizu K.
– volume: 46
  start-page: 626
  year: 2006
  ident: ref5/cit5
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci050367t
  contributor:
    fullname: Erhan D.
– volume: 37
  start-page: 1871
  year: 2009
  ident: ref12/cit12
  publication-title: Ann. Stat.
  doi: 10.1214/08-AOS637
  contributor:
    fullname: Fukumizu K.
– volume: 23
  start-page: 311
  year: 2004
  ident: ref7/cit7
  publication-title: QSAR Comb. Sci.
  doi: 10.1002/qsar.200410011
  contributor:
    fullname: Fröhlich H.
– volume: 48
  start-page: 2278
  year: 2008
  ident: ref19/cit19
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci800200e
  contributor:
    fullname: Strömbergsson H.
– volume: 44
  start-page: 1
  year: 2004
  ident: ref13/cit13
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci0342472
  contributor:
    fullname: Hawkins D. M.
– volume-title: MOE
  year: 2008
  ident: ref33/cit33
– volume: 49
  start-page: 1049
  year: 2009
  ident: ref21/cit21
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci800447g
  contributor:
    fullname: Weill N.
– volume: 42
  start-page: 631
  year: 2003
  ident: ref48/cit48
  publication-title: Biochemistry
  doi: 10.1021/bi027019u
  contributor:
    fullname: Muzammil S.
– volume: 24
  start-page: 2149
  year: 2008
  ident: ref17/cit17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn409
  contributor:
    fullname: Jacob L.
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref6/cit6
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Guyon I.
– volume: 49
  start-page: 2155
  year: 2009
  ident: ref20/cit20
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci9002624
  contributor:
    fullname: Wassermann A. M.
– volume-title: Handbook of Molecular Descriptors
  year: 2000
  ident: ref31/cit31
  doi: 10.1002/9783527613106
  contributor:
    fullname: Todeschini R.
– volume: 86
  start-page: 316
  year: 1991
  ident: ref24/cit24
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1991.10475035
  contributor:
    fullname: Li K.-C.
– volume: 46
  start-page: 389
  year: 2002
  ident: ref26/cit26
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
  contributor:
    fullname: Guyon I.
– volume: 49
  start-page: 1202
  year: 2009
  ident: ref30/cit30
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci800453k
  contributor:
    fullname: Lapins M.
– volume: 18
  start-page: 652
  year: 2001
  ident: ref44/cit44
  publication-title: Pharm. Res.
  doi: 10.1023/A:1011085411050
  contributor:
    fullname: Riley R. J.
– ident: ref37/cit37
– volume: 41
  start-page: 2481
  year: 1998
  ident: ref36/cit36
  publication-title: J. Med. Chem.
  doi: 10.1021/jm9700575
  contributor:
    fullname: Sandberg M.
– volume: 2
  start-page: 190
  year: 2004
  ident: ref15/cit15
  publication-title: Drug Discovery Today
  doi: 10.1016/S1741-8364(04)02408-4
  contributor:
    fullname: Schuffenhauer A.
– volume: 50
  start-page: 742
  year: 2010
  ident: ref45/cit45
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci100050t
  contributor:
    fullname: Rogers D.
– volume: 44
  start-page: 1630
  year: 2004
  ident: ref9/cit9
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci049869h
  contributor:
    fullname: Xue Y.
– volume-title: Pipeline Pilot
  year: 2007
  ident: ref46/cit46
– volume: 3
  start-page: 1
  year: 2002
  ident: ref27/cit27
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Bach F. R.
– volume: 24
  start-page: 225
  year: 2008
  ident: ref16/cit16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm580
  contributor:
    fullname: Faulon J.-L.
– volume: 23
  start-page: 2004
  year: 2007
  ident: ref18/cit18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm266
  contributor:
    fullname: Nagamine N.
– volume-title: Learning with Kernels: Support Vector Machines, Regulariza-tion, Optimization, and Beyond
  year: 2002
  ident: ref10/cit10
  contributor:
    fullname: Schölkopf B.
– volume: 24
  start-page: 491
  year: 2005
  ident: ref42/cit42
  publication-title: QSAR Comb. Sci.
  doi: 10.1002/qsar.200430925
  contributor:
    fullname: Kriegl J. M.
– volume: 152
  start-page: 5
  year: 2007
  ident: ref1/cit1
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/sj.bjp.0707308
  contributor:
    fullname: Klabunde T.
– ident: ref39/cit39
– volume: 50
  start-page: 501
  year: 2007
  ident: ref43/cit43
  publication-title: J. Med. Chem.
  doi: 10.1021/jm060333s
  contributor:
    fullname: Jensen B. F.
– volume: 12
  start-page: 352
  year: 2008
  ident: ref3/cit3
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2008.01.044
  contributor:
    fullname: Bajorath J.
– ident: ref22/cit22
  doi: 10.1007/11564089_7
– volume: 152
  start-page: 38
  year: 2007
  ident: ref2/cit2
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/sj.bjp.0707307
  contributor:
    fullname: Rognan D.
– volume: 21
  start-page: 1590
  year: 2009
  ident: ref25/cit25
  publication-title: IEEE Trans. Knowledge Data Eng.
  doi: 10.1109/TKDE.2008.232
  contributor:
    fullname: Yeh Y.-R.
– volume: 192
  start-page: 456
  year: 2005
  ident: ref49/cit49
  publication-title: J. Infect. Dis.
  doi: 10.1086/431601
  contributor:
    fullname: Rhee S.-Y.
– volume: 49
  start-page: 2000
  year: 2006
  ident: ref14/cit14
  publication-title: J. Med. Chem.
  doi: 10.1021/jm0502900
  contributor:
    fullname: Schnur D. M.
– volume: 20
  start-page: 467
  year: 2004
  ident: ref35/cit35
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg431
  contributor:
    fullname: Leslie C. S.
– volume-title: Matrix Computations
  year: 1996
  ident: ref28/cit28
  contributor:
    fullname: Golub G. H.
SSID ssj0033962
Score 2.143361
Snippet There is growing interest in computational chemogenomics, which aims to identify all possible ligands of all target families using in silico prediction models....
SourceID proquest
crossref
pubmed
pascalfrancis
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 15
SubjectTerms Algorithms
Applied sciences
Chemical Information
Computational Biology - methods
Computer science; control theory; systems
Cytochrome P-450 Enzyme System - metabolism
Data processing. List processing. Character string processing
Exact sciences and technology
Genomics
HIV Protease - genetics
HIV Protease - metabolism
Ligands
Memory organisation. Data processing
Molecular chemistry
Molecules
Mutation
Proteases
Protein Binding
Proteins
Software
Title Cross-Target View to Feature Selection: Identification of Molecular Interaction Features in Ligand−Target Space
URI http://dx.doi.org/10.1021/ci1001394
https://www.ncbi.nlm.nih.gov/pubmed/21142044
https://www.proquest.com/docview/851045348
https://search.proquest.com/docview/847435175
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JTsMwEIZHtBxAQuxLKFQWcI2Il2zcUCniAFwKiFuVeEG9pEBa8QqceUSehLGTFJBAcI7tOB4n_jwTzw9wFBucNiwIfZVZbxULlZ8JkftKU4Tb2CK-E7EdxNf3yVnfpsk5_CWCz-ixHFHHKaIF8yxGQrD80xs0n1vOU6caalON-WmYRk36oK9V7dIjy29Lz9JjVuIomEq-4ne-dOvM-cq_ergKyzVGktPK7mswp4t1WOg16m0b8NSzffBv3I_e5G6kX8hkTCzwTZ81GTj1GzTJCalO6pradUfGhlw1irnEuQurkw9N1ZKMCnI5esgK9f76Vjc_wI233oTb8_5N78Kv5RXQGjye-DmVaZClmVVDpyyQWchFqphSSZjbxH5UUCm5VMxG4A0zuJO2mXGYiQKuc2xjC9rFuNA7QJRMYy5kHiFMCCVMguASRjFuvhKRR6nxoIvjP6xfj3LoIt-MDmcj58FBY5rhY5Vm46dC3W9Gm5VkPE44cpkHncaKn_dCpERs5SLxgMyuojFsYCQr9HiKRQRyVIgg5cF2ZfvPpu1Z40CI3b-eoAOLlbuZ-kzsQXvyPNX70CrVtOvm6wcANd-z
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT9wwEIBHPA4gIUoLhQDdWhXXqPEjD3NDWxCoC5fdVtyixA-0l-yW7Iq_wJmfyC9h7CS7RQJVPceeOJ5J_NmTmQE4SS2aDYviUBfutIrFOiyEKENtKMJt6hDfF7Edpje32Y_zRZocFwuDg6hRUu2d-MvsAvS7GlOPK2IV1uMEIdhhUH_YfXU5l754qMs4FspYJl0Wob-7uhVI1a9WoK1pUeNk2KaKxfuY6Zebiw__M9Ad2G6hkpw1VvARVkz1CTb6XS23XfjTd0MJR_63b_J7bB7IbEIc_s3vDRn6WjiooFPSxO3a9iCPTCy57urnEn942MRBdF1rMq7IYHxXVPr58akVP8RtuNmDXxfno_5l2BZbQN3wdBaWVMmokIWrjU5ZpIqYC6mZ1llcujR_VFCluNLM-eMts7ivdnlymE0ibkqU8RnWqkllDoBoJVMuVJkgWggtbIYY41QmEXbKRNoAejhxefuy1Ln3gzOaL2YugG-dhvJpk3TjrUa9V7pbtGQ8zThSWgBHnTKX90LARIjlIguALK6iMpybpKjMZI5NBFJVjFgVwH5jAkvRLvI4EuLwX0_wFTYuR9eDfHB18_MINpuDaBoycQxrs_u5-QKrtZ73vAm_ANnp6CA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BlVokRJ9AoF2simtK_MjD3NDCqgiKkJai3qLEj2ov2WWzK_4CZ34iv4SxkywgUVWc40wczzj-ZiYzH8BeatFsWBSHunDRKhbrsBCiDLWhCG5TB_E9ie0wPf-THR27Njk_uloYnESNkmqfxHe7eqJt22GA7qsR9ZBFLMObOEmlc7YO-8Puy8u59ASirutYKGOZdJ2Ent7qTiFVPzuF1iZFjQtiGyaLf0NNf-QM3r92sh9gvQWX5LCxho-wZKpP8K7fcbp9huu-m0546X__Jlcjc0NmY-Jg4HxqyNBz4qCiDkhTv2vbgB4ZW_Kr49ElPojY1EN0t9ZkVJGz0d-i0ve3d634Ibrj5gv8Hhxf9n-GLekC6oins7CkSkaFLBxHOmWRKmIupGZaZ3Hp2v1RQZXiSjOXl7fMon_t-uUwm0TclChjA1aqcWW2gGglUy5UmSDEEFrYDOEMqg1dskyUibQB9HDx8nbT1LnPhzOaL1YugO-dlvJJ03zjpUG9Z_pbjGQ8zTiitQB2OoU-PguBJoJZLrIAyOIqKsOlS4rKjOc4RCC6ihFeBbDZmMGjaFeBHAmx_b832IW3F0eD_Ozk_HQHVpt4NA2Z-Aors-ncfIPlWs973oofAJeq6qM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Target+View+to+Feature+Selection%3A+Identification+of+Molecular+Interaction+Features+in+Ligand-Target+Space&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Niijima%2C+Satoshi&rft.au=Yabuuchi%2C+Hiroaki&rft.au=Okuno%2C+Yasushi&rft.date=2011-01-24&rft.pub=American+Chemical+Society&rft.issn=1549-9596&rft.eissn=1549-960X&rft.volume=51&rft.issue=1&rft.spage=15&rft_id=info:doi/10.1021%2Fci1001394&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2262808561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon