Cross-Target View to Feature Selection: Identification of Molecular Interaction Features in Ligand−Target Space
There is growing interest in computational chemogenomics, which aims to identify all possible ligands of all target families using in silico prediction models. In particular, kernel methods provide a means of integrating compounds and proteins in a principled manner and enable the exploration of lig...
Saved in:
Published in: | Journal of chemical information and modeling Vol. 51; no. 1; pp. 15 - 24 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Chemical Society
24-01-2011
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | There is growing interest in computational chemogenomics, which aims to identify all possible ligands of all target families using in silico prediction models. In particular, kernel methods provide a means of integrating compounds and proteins in a principled manner and enable the exploration of ligand−target binding on a genomic scale. To better understand the link between ligands and targets, it is of fundamental interest to identify molecular interaction features that contribute to prediction of ligand−target binding. To this end, we describe a feature selection approach based on kernel dimensionality reduction (KDR) that works in a ligand−target space defined by kernels. We further propose an efficient algorithm to overcome a computational bottleneck and thereby provide a useful general approach to feature selection for chemogenomics. Our experiment on cytochrome P450 (CYP) enzymes has shown that the algorithm is capable of identifying predictive features, as well as prioritizing features that are indicative of ligand preference for a given target family. We further illustrate its applicability on the mutation data of HIV protease by identifying influential mutated positions within protease variants. These results suggest that our approach has the potential to uncover the molecular basis for ligand selectivity and off-target effects. |
---|---|
AbstractList | There is growing interest in computational chemogenomics, which aims to identify all possible ligands of all target families using in silico prediction models. In particular, kernel methods provide a means of integrating compounds and proteins in a principled manner and enable the exploration of ligand−target binding on a genomic scale. To better understand the link between ligands and targets, it is of fundamental interest to identify molecular interaction features that contribute to prediction of ligand−target binding. To this end, we describe a feature selection approach based on kernel dimensionality reduction (KDR) that works in a ligand−target space defined by kernels. We further propose an efficient algorithm to overcome a computational bottleneck and thereby provide a useful general approach to feature selection for chemogenomics. Our experiment on cytochrome P450 (CYP) enzymes has shown that the algorithm is capable of identifying predictive features, as well as prioritizing features that are indicative of ligand preference for a given target family. We further illustrate its applicability on the mutation data of HIV protease by identifying influential mutated positions within protease variants. These results suggest that our approach has the potential to uncover the molecular basis for ligand selectivity and off-target effects. There is growing interest in computational chemogenomics, which aims to identify all possible ligands of all target families using in silico prediction models. In particular, kernel methods provide a means of integrating compounds and proteins in a principled manner and enable the exploration of ligand-target binding on a genomic scale. To better understand the link between ligands and targets, it is of fundamental interest to identify molecular interaction features that contribute to prediction of ligand-target binding. To this end, we describe a feature selection approach based on kernel dimensionality reduction (KDR) that works in a ligand-target space defined by kernels. We further propose an efficient algorithm to overcome a computational bottleneck and thereby provide a useful general approach to feature selection for chemogenomics. Our experiment on cytochrome P450 (CYP) enzymes has shown that the algorithm is capable of identifying predictive features, as well as prioritizing features that are indicative of ligand preference for a given target family. We further illustrate its applicability on the mutation data of HIV protease by identifying influential mutated positions within protease variants. These results suggest that our approach has the potential to uncover the molecular basis for ligand selectivity and off-target effects. [PUBLICATION ABSTRACT] There is growing interest in computational chemogenomics, which aims to identify all possible ligands of all target families using in silico prediction models. In particular, kernel methods provide a means of integrating compounds and proteins in a principled manner and enable the exploration of ligand-target binding on a genomic scale. To better understand the link between ligands and targets, it is of fundamental interest to identify molecular interaction features that contribute to prediction of ligand-target binding. To this end, we describe a feature selection approach based on kernel dimensionality reduction (KDR) that works in a ligand-target space defined by kernels. We further propose an efficient algorithm to overcome a computational bottleneck and thereby provide a useful general approach to feature selection for chemogenomics. Our experiment on cytochrome P450 (CYP) enzymes has shown that the algorithm is capable of identifying predictive features, as well as prioritizing features that are indicative of ligand preference for a given target family. We further illustrate its applicability on the mutation data of HIV protease by identifying influential mutated positions within protease variants. These results suggest that our approach has the potential to uncover the molecular basis for ligand selectivity and off-target effects. |
Author | Niijima, Satoshi Okuno, Yasushi Yabuuchi, Hiroaki |
Author_xml | – sequence: 1 givenname: Satoshi surname: Niijima fullname: Niijima, Satoshi email: niijima@pharm.kyoto-u.ac.jp – sequence: 2 givenname: Hiroaki surname: Yabuuchi fullname: Yabuuchi, Hiroaki – sequence: 3 givenname: Yasushi surname: Okuno fullname: Okuno, Yasushi |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23783159$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21142044$$D View this record in MEDLINE/PubMed |
BookMark | eNpl0c1q3DAQAGARUpq_HvICRRRCycGJRj-21VtZknZhQw5JSm9mVpaDglfaSDahb9BzHrFPUm2ym4X2JAl9mhnNHJBdH7wl5BjYGTAO58YBYyC03CH7oKQudMl-7m72Spd75CClB8aE0CV_T_Y4gORMyn3yOIkhpeIW470d6A9nn-gQ6KXFYYyW3tjemsEF_4VOW-sH1zmDqzMNHb0K-XLsMdKpH2zEF7h5mqjzdObu0bd_fj-vw98s0dgj8q7DPtkP6_WQ3F1e3E6-F7Prb9PJ11mBUlRDMQejGWqUpQLgzKASUre8bWs1Z0JpkGCMMC3PH6k73rEMq1rxrmTCznOMQ_L5Ne4yhsfRpqFZuGRs36O3YUxNLSspFFQqy0__yIcwRp-La2oFTObMdUanr8isGhZt1yyjW2D81QBrVlNo3qaQ7cd1wHG-sO2b3LQ9g5M1wGSw7yJ649LWiaoWoPTWoUnbov5P-BeqLJvx |
CitedBy_id | crossref_primary_10_1016_j_steroids_2018_10_002 crossref_primary_10_1021_ci500130e crossref_primary_10_1002_minf_201300101 crossref_primary_10_1016_j_bmc_2012_03_030 crossref_primary_10_1016_j_heliyon_2021_e07724 crossref_primary_10_1007_s10822_014_9816_1 crossref_primary_10_4155_fmc_12_126 crossref_primary_10_1080_10406638_2021_2006245 crossref_primary_10_1016_j_compbiomed_2017_09_007 crossref_primary_10_1517_17460441_2015_1082543 crossref_primary_10_1073_pnas_1816640116 crossref_primary_10_1517_17460441_2011_632406 crossref_primary_10_1186_1758_2946_5_31 crossref_primary_10_1021_ci3000979 crossref_primary_10_1021_ci4006723 |
Cites_doi | 10.1021/ci0342876 10.1021/jm048959a 10.1093/nar/gkl305 10.1021/ci8000953 10.1016/j.drudis.2006.05.001 10.1186/1471-2105-9-181 10.1093/bioinformatics/btm216 10.1021/ci050006d 10.1021/ci050367t 10.1214/08-AOS637 10.1002/qsar.200410011 10.1021/ci800200e 10.1021/ci0342472 10.1021/ci800447g 10.1021/bi027019u 10.1093/bioinformatics/btn409 10.1021/ci9002624 10.1002/9783527613106 10.1080/01621459.1991.10475035 10.1023/A:1012487302797 10.1021/ci800453k 10.1023/A:1011085411050 10.1021/jm9700575 10.1016/S1741-8364(04)02408-4 10.1021/ci100050t 10.1021/ci049869h 10.1093/bioinformatics/btm580 10.1093/bioinformatics/btm266 10.1002/qsar.200430925 10.1038/sj.bjp.0707308 10.1021/jm060333s 10.1016/j.cbpa.2008.01.044 10.1007/11564089_7 10.1038/sj.bjp.0707307 10.1109/TKDE.2008.232 10.1086/431601 10.1021/jm0502900 10.1093/bioinformatics/btg431 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society 2015 INIST-CNRS Copyright American Chemical Society Jan 24, 2011 |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society Jan 24, 2011 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
DOI | 10.1021/ci1001394 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Applied Sciences |
DocumentTitleAlternate | Cross-Target View to Feature Selection |
EISSN | 1549-960X |
EndPage | 24 |
ExternalDocumentID | 2262808561 10_1021_ci1001394 21142044 23783159 a107641155 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABUCX ACGFS ACIWK ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ D0L DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P PQEST PQQKQ RNS ROL UI2 VF5 VG9 W1F X --- -~X 1WB 53G ABFRP ABQRX ADHLV AHGAQ ANTXH GGK IHE IQODW ABJNI CGR CUPRZ CUY CVF ECM EIF NPM AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-a437t-b1c90a9a4651120ca5349d2dd85b0359141cc3cd24208f2f04657852f603eba43 |
IEDL.DBID | ACS |
ISSN | 1549-9596 |
IngestDate | Fri Aug 16 07:26:04 EDT 2024 Thu Oct 10 18:01:50 EDT 2024 Fri Aug 23 00:52:08 EDT 2024 Sat Sep 28 07:54:15 EDT 2024 Sun Oct 22 16:10:23 EDT 2023 Thu Aug 27 13:41:59 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cytochrome Ligand binding Bottleneck Enzyme Molecular interaction Experimental study Modeling Protein Kernel method Dimension reduction Preference Genome Target detection |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a437t-b1c90a9a4651120ca5349d2dd85b0359141cc3cd24208f2f04657852f603eba43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21142044 |
PQID | 851045348 |
PQPubID | 28739 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_847435175 proquest_journals_851045348 crossref_primary_10_1021_ci1001394 pubmed_primary_21142044 pascalfrancis_primary_23783159 acs_journals_10_1021_ci1001394 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2011-01-24 |
PublicationDateYYYYMMDD | 2011-01-24 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Journal of chemical information and modeling |
PublicationTitleAlternate | J. Chem. Inf. Model |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kontijevskis A. (ref29/cit29) 2008; 48 Schnur D. M. (ref14/cit14) 2006; 49 Erhan D. (ref5/cit5) 2006; 46 Sandberg M. (ref36/cit36) 1998; 41 ref37/cit37 Leslie C. S. (ref35/cit35) 2004; 20 Riley R. J. (ref44/cit44) 2001; 18 Xue Y. (ref9/cit9) 2004; 44 Guyon I. (ref26/cit26) 2002; 46 de Groot M. J. (ref40/cit40) 2006; 11 (ref46/cit46) 2007 Schölkopf B. (ref10/cit10) 2002 Weill N. (ref21/cit21) 2009; 49 Hawkins D. M. (ref13/cit13) 2004; 44 Jacob L. (ref17/cit17) 2008; 24 Strömbergsson H. (ref19/cit19) 2008; 48 Fukumizu K. (ref12/cit12) 2009; 37 Klabunde T. (ref1/cit1) 2007; 152 Bock J. R. (ref4/cit4) 2005; 45 Golub G. H. (ref28/cit28) 1996 Rogers D. (ref45/cit45) 2010; 50 Lapins M. (ref30/cit30) 2009; 49 (ref32/cit32) 2007 Fröhlich H. (ref7/cit7) 2004; 23 Schuffenhauer A. (ref15/cit15) 2004; 2 Todeschini R. (ref31/cit31) 2000 Lapins M. (ref47/cit47) 2008; 9 Yeh Y.-R. (ref25/cit25) 2009; 21 Bach F. R. (ref27/cit27) 2002; 3 Wassermann A. M. (ref20/cit20) 2009; 49 ref39/cit39 Guyon I. (ref6/cit6) 2003; 3 Kriegl J. M. (ref42/cit42) 2005; 24 Rhee S.-Y. (ref49/cit49) 2005; 192 Li Z. R. (ref34/cit34) 2006; 34 Jensen B. F. (ref43/cit43) 2007; 50 Nagamine N. (ref18/cit18) 2007; 23 Rognan D. (ref2/cit2) 2007; 152 (ref33/cit33) 2008 Bajorath J. (ref3/cit3) 2008; 12 Fukumizu K. (ref11/cit11) 2004; 5 Muzammil S. (ref48/cit48) 2003; 42 ref22/cit22 Faulon J.-L. (ref16/cit16) 2008; 24 Byvatov E. (ref8/cit8) 2004; 44 Song L. (ref23/cit23) 2007; 23 Chohan K. K. (ref41/cit41) 2005; 48 Vapnik V. N. (ref38/cit38) 1998 Li K.-C. (ref24/cit24) 1991; 86 |
References_xml | – volume: 44 start-page: 993 year: 2004 ident: ref8/cit8 publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci0342876 contributor: fullname: Byvatov E. – volume: 48 start-page: 5154 year: 2005 ident: ref41/cit41 publication-title: J. Med. Chem. doi: 10.1021/jm048959a contributor: fullname: Chohan K. K. – volume-title: Statistical Learning Theory year: 1998 ident: ref38/cit38 contributor: fullname: Vapnik V. N. – volume: 34 start-page: W32 year: 2006 ident: ref34/cit34 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl305 contributor: fullname: Li Z. R. – volume: 48 start-page: 1840 year: 2008 ident: ref29/cit29 publication-title: J. Chem. Inf. Model doi: 10.1021/ci8000953 contributor: fullname: Kontijevskis A. – volume: 11 start-page: 601 year: 2006 ident: ref40/cit40 publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2006.05.001 contributor: fullname: de Groot M. J. – volume: 9 start-page: 181 year: 2008 ident: ref47/cit47 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-181 contributor: fullname: Lapins M. – volume-title: DragonX year: 2007 ident: ref32/cit32 – volume: 23 start-page: i490 year: 2007 ident: ref23/cit23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm216 contributor: fullname: Song L. – volume: 45 start-page: 1402 year: 2005 ident: ref4/cit4 publication-title: J. Chem. Inf. Model doi: 10.1021/ci050006d contributor: fullname: Bock J. R. – volume: 5 start-page: 73 year: 2004 ident: ref11/cit11 publication-title: J. Mach. Learn. Res. contributor: fullname: Fukumizu K. – volume: 46 start-page: 626 year: 2006 ident: ref5/cit5 publication-title: J. Chem. Inf. Model. doi: 10.1021/ci050367t contributor: fullname: Erhan D. – volume: 37 start-page: 1871 year: 2009 ident: ref12/cit12 publication-title: Ann. Stat. doi: 10.1214/08-AOS637 contributor: fullname: Fukumizu K. – volume: 23 start-page: 311 year: 2004 ident: ref7/cit7 publication-title: QSAR Comb. Sci. doi: 10.1002/qsar.200410011 contributor: fullname: Fröhlich H. – volume: 48 start-page: 2278 year: 2008 ident: ref19/cit19 publication-title: J. Chem. Inf. Model doi: 10.1021/ci800200e contributor: fullname: Strömbergsson H. – volume: 44 start-page: 1 year: 2004 ident: ref13/cit13 publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci0342472 contributor: fullname: Hawkins D. M. – volume-title: MOE year: 2008 ident: ref33/cit33 – volume: 49 start-page: 1049 year: 2009 ident: ref21/cit21 publication-title: J. Chem. Inf. Model doi: 10.1021/ci800447g contributor: fullname: Weill N. – volume: 42 start-page: 631 year: 2003 ident: ref48/cit48 publication-title: Biochemistry doi: 10.1021/bi027019u contributor: fullname: Muzammil S. – volume: 24 start-page: 2149 year: 2008 ident: ref17/cit17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn409 contributor: fullname: Jacob L. – volume: 3 start-page: 1157 year: 2003 ident: ref6/cit6 publication-title: J. Mach. Learn. Res. contributor: fullname: Guyon I. – volume: 49 start-page: 2155 year: 2009 ident: ref20/cit20 publication-title: J. Chem. Inf. Model doi: 10.1021/ci9002624 contributor: fullname: Wassermann A. M. – volume-title: Handbook of Molecular Descriptors year: 2000 ident: ref31/cit31 doi: 10.1002/9783527613106 contributor: fullname: Todeschini R. – volume: 86 start-page: 316 year: 1991 ident: ref24/cit24 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1991.10475035 contributor: fullname: Li K.-C. – volume: 46 start-page: 389 year: 2002 ident: ref26/cit26 publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 contributor: fullname: Guyon I. – volume: 49 start-page: 1202 year: 2009 ident: ref30/cit30 publication-title: J. Chem. Inf. Model doi: 10.1021/ci800453k contributor: fullname: Lapins M. – volume: 18 start-page: 652 year: 2001 ident: ref44/cit44 publication-title: Pharm. Res. doi: 10.1023/A:1011085411050 contributor: fullname: Riley R. J. – ident: ref37/cit37 – volume: 41 start-page: 2481 year: 1998 ident: ref36/cit36 publication-title: J. Med. Chem. doi: 10.1021/jm9700575 contributor: fullname: Sandberg M. – volume: 2 start-page: 190 year: 2004 ident: ref15/cit15 publication-title: Drug Discovery Today doi: 10.1016/S1741-8364(04)02408-4 contributor: fullname: Schuffenhauer A. – volume: 50 start-page: 742 year: 2010 ident: ref45/cit45 publication-title: J. Chem. Inf. Model doi: 10.1021/ci100050t contributor: fullname: Rogers D. – volume: 44 start-page: 1630 year: 2004 ident: ref9/cit9 publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci049869h contributor: fullname: Xue Y. – volume-title: Pipeline Pilot year: 2007 ident: ref46/cit46 – volume: 3 start-page: 1 year: 2002 ident: ref27/cit27 publication-title: J. Mach. Learn. Res. contributor: fullname: Bach F. R. – volume: 24 start-page: 225 year: 2008 ident: ref16/cit16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm580 contributor: fullname: Faulon J.-L. – volume: 23 start-page: 2004 year: 2007 ident: ref18/cit18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm266 contributor: fullname: Nagamine N. – volume-title: Learning with Kernels: Support Vector Machines, Regulariza-tion, Optimization, and Beyond year: 2002 ident: ref10/cit10 contributor: fullname: Schölkopf B. – volume: 24 start-page: 491 year: 2005 ident: ref42/cit42 publication-title: QSAR Comb. Sci. doi: 10.1002/qsar.200430925 contributor: fullname: Kriegl J. M. – volume: 152 start-page: 5 year: 2007 ident: ref1/cit1 publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0707308 contributor: fullname: Klabunde T. – ident: ref39/cit39 – volume: 50 start-page: 501 year: 2007 ident: ref43/cit43 publication-title: J. Med. Chem. doi: 10.1021/jm060333s contributor: fullname: Jensen B. F. – volume: 12 start-page: 352 year: 2008 ident: ref3/cit3 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2008.01.044 contributor: fullname: Bajorath J. – ident: ref22/cit22 doi: 10.1007/11564089_7 – volume: 152 start-page: 38 year: 2007 ident: ref2/cit2 publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0707307 contributor: fullname: Rognan D. – volume: 21 start-page: 1590 year: 2009 ident: ref25/cit25 publication-title: IEEE Trans. Knowledge Data Eng. doi: 10.1109/TKDE.2008.232 contributor: fullname: Yeh Y.-R. – volume: 192 start-page: 456 year: 2005 ident: ref49/cit49 publication-title: J. Infect. Dis. doi: 10.1086/431601 contributor: fullname: Rhee S.-Y. – volume: 49 start-page: 2000 year: 2006 ident: ref14/cit14 publication-title: J. Med. Chem. doi: 10.1021/jm0502900 contributor: fullname: Schnur D. M. – volume: 20 start-page: 467 year: 2004 ident: ref35/cit35 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg431 contributor: fullname: Leslie C. S. – volume-title: Matrix Computations year: 1996 ident: ref28/cit28 contributor: fullname: Golub G. H. |
SSID | ssj0033962 |
Score | 2.143361 |
Snippet | There is growing interest in computational chemogenomics, which aims to identify all possible ligands of all target families using in silico prediction models.... |
SourceID | proquest crossref pubmed pascalfrancis acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 15 |
SubjectTerms | Algorithms Applied sciences Chemical Information Computational Biology - methods Computer science; control theory; systems Cytochrome P-450 Enzyme System - metabolism Data processing. List processing. Character string processing Exact sciences and technology Genomics HIV Protease - genetics HIV Protease - metabolism Ligands Memory organisation. Data processing Molecular chemistry Molecules Mutation Proteases Protein Binding Proteins Software |
Title | Cross-Target View to Feature Selection: Identification of Molecular Interaction Features in Ligand−Target Space |
URI | http://dx.doi.org/10.1021/ci1001394 https://www.ncbi.nlm.nih.gov/pubmed/21142044 https://www.proquest.com/docview/851045348 https://search.proquest.com/docview/847435175 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JTsMwEIZHtBxAQuxLKFQWcI2Il2zcUCniAFwKiFuVeEG9pEBa8QqceUSehLGTFJBAcI7tOB4n_jwTzw9wFBucNiwIfZVZbxULlZ8JkftKU4Tb2CK-E7EdxNf3yVnfpsk5_CWCz-ixHFHHKaIF8yxGQrD80xs0n1vOU6caalON-WmYRk36oK9V7dIjy29Lz9JjVuIomEq-4ne-dOvM-cq_ergKyzVGktPK7mswp4t1WOg16m0b8NSzffBv3I_e5G6kX8hkTCzwTZ81GTj1GzTJCalO6pradUfGhlw1irnEuQurkw9N1ZKMCnI5esgK9f76Vjc_wI233oTb8_5N78Kv5RXQGjye-DmVaZClmVVDpyyQWchFqphSSZjbxH5UUCm5VMxG4A0zuJO2mXGYiQKuc2xjC9rFuNA7QJRMYy5kHiFMCCVMguASRjFuvhKRR6nxoIvjP6xfj3LoIt-MDmcj58FBY5rhY5Vm46dC3W9Gm5VkPE44cpkHncaKn_dCpERs5SLxgMyuojFsYCQr9HiKRQRyVIgg5cF2ZfvPpu1Z40CI3b-eoAOLlbuZ-kzsQXvyPNX70CrVtOvm6wcANd-z |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT9wwEIBHPA4gIUoLhQDdWhXXqPEjD3NDWxCoC5fdVtyixA-0l-yW7Iq_wJmfyC9h7CS7RQJVPceeOJ5J_NmTmQE4SS2aDYviUBfutIrFOiyEKENtKMJt6hDfF7Edpje32Y_zRZocFwuDg6hRUu2d-MvsAvS7GlOPK2IV1uMEIdhhUH_YfXU5l754qMs4FspYJl0Wob-7uhVI1a9WoK1pUeNk2KaKxfuY6Zebiw__M9Ad2G6hkpw1VvARVkz1CTb6XS23XfjTd0MJR_63b_J7bB7IbEIc_s3vDRn6WjiooFPSxO3a9iCPTCy57urnEn942MRBdF1rMq7IYHxXVPr58akVP8RtuNmDXxfno_5l2BZbQN3wdBaWVMmokIWrjU5ZpIqYC6mZ1llcujR_VFCluNLM-eMts7ivdnlymE0ibkqU8RnWqkllDoBoJVMuVJkgWggtbIYY41QmEXbKRNoAejhxefuy1Ln3gzOaL2YugG-dhvJpk3TjrUa9V7pbtGQ8zThSWgBHnTKX90LARIjlIguALK6iMpybpKjMZI5NBFJVjFgVwH5jAkvRLvI4EuLwX0_wFTYuR9eDfHB18_MINpuDaBoycQxrs_u5-QKrtZ73vAm_ANnp6CA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BlVokRJ9AoF2simtK_MjD3NDCqgiKkJai3qLEj2ov2WWzK_4CZ34iv4SxkywgUVWc40wczzj-ZiYzH8BeatFsWBSHunDRKhbrsBCiDLWhCG5TB_E9ie0wPf-THR27Njk_uloYnESNkmqfxHe7eqJt22GA7qsR9ZBFLMObOEmlc7YO-8Puy8u59ASirutYKGOZdJ2Ent7qTiFVPzuF1iZFjQtiGyaLf0NNf-QM3r92sh9gvQWX5LCxho-wZKpP8K7fcbp9huu-m0546X__Jlcjc0NmY-Jg4HxqyNBz4qCiDkhTv2vbgB4ZW_Kr49ElPojY1EN0t9ZkVJGz0d-i0ve3d634Ibrj5gv8Hhxf9n-GLekC6oins7CkSkaFLBxHOmWRKmIupGZaZ3Hp2v1RQZXiSjOXl7fMon_t-uUwm0TclChjA1aqcWW2gGglUy5UmSDEEFrYDOEMqg1dskyUibQB9HDx8nbT1LnPhzOaL1YugO-dlvJJ03zjpUG9Z_pbjGQ8zTiitQB2OoU-PguBJoJZLrIAyOIqKsOlS4rKjOc4RCC6ihFeBbDZmMGjaFeBHAmx_b832IW3F0eD_Ozk_HQHVpt4NA2Z-Aors-ncfIPlWs973oofAJeq6qM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Target+View+to+Feature+Selection%3A+Identification+of+Molecular+Interaction+Features+in+Ligand-Target+Space&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Niijima%2C+Satoshi&rft.au=Yabuuchi%2C+Hiroaki&rft.au=Okuno%2C+Yasushi&rft.date=2011-01-24&rft.pub=American+Chemical+Society&rft.issn=1549-9596&rft.eissn=1549-960X&rft.volume=51&rft.issue=1&rft.spage=15&rft_id=info:doi/10.1021%2Fci1001394&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2262808561 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon |