Antarctic tides from GRACE satellite accelerations
The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at large (∼300 km) spatial scales. State‐of‐the‐art global tide models rely heavily on satellite altimetry data, which are sparse for latitudes hig...
Saved in:
Published in: | Journal of geophysical research. Oceans Vol. 121; no. 5; pp. 2874 - 2886 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
Blackwell Publishing Ltd
01-05-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at large (∼300 km) spatial scales. State‐of‐the‐art global tide models rely heavily on satellite altimetry data, which are sparse for latitudes higher than 66°. Thus, the performance of the models is typically worse at higher latitudes. GRACE data, alternately, extend to polar latitudes and therefore provide information for both model validation and improvement at the higher latitudes. In this work, 11 years of GRACE inter‐satellite range‐acceleration measurements are inverted to solve for corrections to the amplitudes and phases of the major solar and lunar ocean tidal constituents (M2, K1, S2, and O1) from the GOT4.7 ocean tide model at latitudes south of 50°S. Two independent inversion and regularization methods are employed and compared against one another. Uncertainty estimates are derived by subtracting two independent solutions, each spanning a unique 5.5 years of data. Features above the noise floor in the derived solutions likely represent errors in GOT4.7. We find the GOT4.7 amplitudes to be generally too small for M2 and K1, and too large for S2 and O1, and to spatially correlate with geographic regions where GOT4.7 predicts the largest tidal amplitudes. In particular, we find GOT4.7 errors to be dominant over the Patagonia shelf (M2), the Filchner‐Ronne Ice Shelf (M2 and S2), the Ross Ice Shelf (S2), and the Weddell and Ross Seas (K1 and O1).
Key Points:
Antarctic tides are estimated using GRACE data
GOT4.7 tidal amplitudes are generally too small for M2, K1; too large for S2, O1
Tide model errors are largest over ice shelves and Weddell and Ross Seas |
---|---|
AbstractList | The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at large (300 km) spatial scales. State-of-the-art global tide models rely heavily on satellite altimetry data, which are sparse for latitudes higher than 66 degree . Thus, the performance of the models is typically worse at higher latitudes. GRACE data, alternately, extend to polar latitudes and therefore provide information for both model validation and improvement at the higher latitudes. In this work, 11 years of GRACE inter-satellite range-acceleration measurements are inverted to solve for corrections to the amplitudes and phases of the major solar and lunar ocean tidal constituents (M sub(2), K sub(1), S sub(2), and O sub(1)) from the GOT4.7 ocean tide model at latitudes south of 50 degree S. Two independent inversion and regularization methods are employed and compared against one another. Uncertainty estimates are derived by subtracting two independent solutions, each spanning a unique 5.5 years of data. Features above the noise floor in the derived solutions likely represent errors in GOT4.7. We find the GOT4.7 amplitudes to be generally too small for M sub(2) and K sub(1), and too large for S sub(2) and O sub(1), and to spatially correlate with geographic regions where GOT4.7 predicts the largest tidal amplitudes. In particular, we find GOT4.7 errors to be dominant over the Patagonia shelf (M sub(2)), the Filchner-Ronne Ice Shelf (M sub(2) and S sub(2)), the Ross Ice Shelf (S sub(2)), and the Weddell and Ross Seas (K sub(1) and O sub(1)). Key Points: * Antarctic tides are estimated using GRACE data * GOT4.7 tidal amplitudes are generally too small for M sub(2), K sub(1); too large for S sub(2), O sub(1) * Tide model errors are largest over ice shelves and Weddell and Ross Seas The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at large (∼300 km) spatial scales. State‐of‐the‐art global tide models rely heavily on satellite altimetry data, which are sparse for latitudes higher than 66°. Thus, the performance of the models is typically worse at higher latitudes. GRACE data, alternately, extend to polar latitudes and therefore provide information for both model validation and improvement at the higher latitudes. In this work, 11 years of GRACE inter‐satellite range‐acceleration measurements are inverted to solve for corrections to the amplitudes and phases of the major solar and lunar ocean tidal constituents ( M 2 , K 1 , S 2 , and O 1 ) from the GOT4.7 ocean tide model at latitudes south of 50°S. Two independent inversion and regularization methods are employed and compared against one another. Uncertainty estimates are derived by subtracting two independent solutions, each spanning a unique 5.5 years of data. Features above the noise floor in the derived solutions likely represent errors in GOT4.7. We find the GOT4.7 amplitudes to be generally too small for M 2 and K 1 , and too large for S 2 and O 1 , and to spatially correlate with geographic regions where GOT4.7 predicts the largest tidal amplitudes. In particular, we find GOT4.7 errors to be dominant over the Patagonia shelf ( M 2 ), the Filchner‐Ronne Ice Shelf ( M 2 and S 2 ), the Ross Ice Shelf ( S 2 ), and the Weddell and Ross Seas ( K 1 and O 1 ). Antarctic tides are estimated using GRACE data GOT4.7 tidal amplitudes are generally too small for M 2 , K 1 ; too large for S 2 , O 1 Tide model errors are largest over ice shelves and Weddell and Ross Seas The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at large (∼300 km) spatial scales. State‐of‐the‐art global tide models rely heavily on satellite altimetry data, which are sparse for latitudes higher than 66°. Thus, the performance of the models is typically worse at higher latitudes. GRACE data, alternately, extend to polar latitudes and therefore provide information for both model validation and improvement at the higher latitudes. In this work, 11 years of GRACE inter‐satellite range‐acceleration measurements are inverted to solve for corrections to the amplitudes and phases of the major solar and lunar ocean tidal constituents (M2, K1, S2, and O1) from the GOT4.7 ocean tide model at latitudes south of 50°S. Two independent inversion and regularization methods are employed and compared against one another. Uncertainty estimates are derived by subtracting two independent solutions, each spanning a unique 5.5 years of data. Features above the noise floor in the derived solutions likely represent errors in GOT4.7. We find the GOT4.7 amplitudes to be generally too small for M2 and K1, and too large for S2 and O1, and to spatially correlate with geographic regions where GOT4.7 predicts the largest tidal amplitudes. In particular, we find GOT4.7 errors to be dominant over the Patagonia shelf (M2), the Filchner‐Ronne Ice Shelf (M2 and S2), the Ross Ice Shelf (S2), and the Weddell and Ross Seas (K1 and O1). The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at large (∼300 km) spatial scales. State‐of‐the‐art global tide models rely heavily on satellite altimetry data, which are sparse for latitudes higher than 66°. Thus, the performance of the models is typically worse at higher latitudes. GRACE data, alternately, extend to polar latitudes and therefore provide information for both model validation and improvement at the higher latitudes. In this work, 11 years of GRACE inter‐satellite range‐acceleration measurements are inverted to solve for corrections to the amplitudes and phases of the major solar and lunar ocean tidal constituents (M2, K1, S2, and O1) from the GOT4.7 ocean tide model at latitudes south of 50°S. Two independent inversion and regularization methods are employed and compared against one another. Uncertainty estimates are derived by subtracting two independent solutions, each spanning a unique 5.5 years of data. Features above the noise floor in the derived solutions likely represent errors in GOT4.7. We find the GOT4.7 amplitudes to be generally too small for M2 and K1, and too large for S2 and O1, and to spatially correlate with geographic regions where GOT4.7 predicts the largest tidal amplitudes. In particular, we find GOT4.7 errors to be dominant over the Patagonia shelf (M2), the Filchner‐Ronne Ice Shelf (M2 and S2), the Ross Ice Shelf (S2), and the Weddell and Ross Seas (K1 and O1). Key Points: Antarctic tides are estimated using GRACE data GOT4.7 tidal amplitudes are generally too small for M2, K1; too large for S2, O1 Tide model errors are largest over ice shelves and Weddell and Ross Seas |
Author | Yuan, D.‐N. Killett, B. Wiese, D. N. Watkins, M. M. |
Author_xml | – sequence: 1 givenname: D. N. surname: Wiese fullname: Wiese, D. N. organization: California Institute of Technology – sequence: 2 givenname: B. surname: Killett fullname: Killett, B. organization: Pasadena – sequence: 3 givenname: M. M. surname: Watkins fullname: Watkins, M. M. organization: Center for Space Research, University of Texas at Austin – sequence: 4 givenname: D.‐N. surname: Yuan fullname: Yuan, D.‐N. organization: California Institute of Technology |
BookMark | eNqNkcFKAzEQhoNUsNbefIAFLx5czSTZbHIsS62WglD0HLLZWdiy3a3JFunbm1IR8SDOZebwzcw__1ySUdd3SMg10HuglD0wCtmyoABCqTMyZiB1qpmG0XedZxdkGsKGxlCghNBjwmbdYL0bGpcMTYUhqX2_TRbrWTFPgh2wbZsBE-sctujt0PRduCLntW0DTr_yhLw9zl-Lp3T1snguZqvUCi5YWrK4IfYJJYHXqMsSnXQKONOK20pVFjUTzma8yi0HKVQOZdSoZCZ5hZRPyO1p7s7373sMg9k2IepobYf9PhhQLMtEzmT2D5TGsUJTiOjNL3TT730XDzEQ7VKS5vxI3Z0o5_sQPNZm55ut9QcD1BztNj_tjjg_4R9Ni4c_WbNcrIv4EMX4J8nMfsY |
CitedBy_id | crossref_primary_10_1029_2019JB017415 crossref_primary_10_1093_gji_ggy145 crossref_primary_10_1002_2016RG000546 crossref_primary_10_1093_gji_ggab421 crossref_primary_10_1029_2019JC015037 crossref_primary_10_1029_2020JC017097 crossref_primary_10_1175_JPO_D_17_0247_1 crossref_primary_10_1029_2018JB016083 |
Cites_doi | 10.1029/2009JC005362 10.1029/2005GL024296 10.1175/1520-0485(1987)017<0784:DSWITS>2.0.CO;2 10.1016/j.dsr2.2008.10.026 10.1111/j.1365-246X.2006.03229.x 10.1029/2010JB007607 10.1029/2005JC003361 10.1016/j.dsr.2014.11.008 10.1029/2011JC007263 10.1175/JTECH1735.1 10.1029/2006JF000731 10.1029/2004GL019920 10.1029/2011GL047109 10.1038/nature08238 10.1002/2014JB011547 10.1029/2007GL032125 10.1007/s00190-010-0405-3 10.1002/2014RG000450 10.1016/j.jog.2011.10.009 10.1016/j.asr.2011.05.027 10.1007/s00190-009-0309-2 10.1016/j.rse.2006.12.020 10.1111/j.1365-246X.2007.03418.x 10.1029/2001GL014175 10.1029/2011JC007111 10.1029/2008GL035592 10.1002/2014GL061052 10.5194/os-10-267-2014 10.1029/2010GL046462 10.1111/j.1365-246X.2010.04557.x 10.3189/002214310791190848 10.1007/s00190-014-0696-x 10.1002/2015GL065730 10.1029/2007JF000871 10.3189/002214308786570872 10.1029/2009GL040376 10.3189/2013JoG12J147 10.1029/2007GL031540 10.1029/2011JC006949 10.1029/2007GL031207 10.3189/002214310791190875 10.1038/nature05430 10.5194/tc-5-259-2011 10.1126/science.161.3842.680 10.3189/2012AoG60A073 10.1002/jgrb.50116 |
ContentType | Journal Article |
Copyright | 2016. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2016. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7TN F1W H96 KL. L.G 8FD FR3 H8D KR7 L7M |
DOI | 10.1002/2015JC011488 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography |
EISSN | 2169-9291 |
EndPage | 2886 |
ExternalDocumentID | 10_1002_2015JC011488 JGRC21682 |
Genre | article |
GeographicLocations | PSW, Antarctica, Filchner-Ronne Ice Shelf PS, Antarctica, Ross Ice Shelf PS, Ross Sea |
GeographicLocations_xml | – name: PSW, Antarctica, Filchner-Ronne Ice Shelf – name: PS, Ross Sea – name: PS, Antarctica, Ross Ice Shelf |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 3V. 50Y 52M 702 7XC 8-1 88I 8CJ 8FE 8FH A00 AAESR AAHHS AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ABPVW ABUWG ACAHQ ACCFJ ACCZN ACGFS ACGOD ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU D1J D1K DPXWK DRFUL DRSTM DWQXO EBS EJD FEDTE G-S GNUQQ GODZA HCIFZ HGLYW HVGLF HZ~ K6- LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2P M7R MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P-X P2W PATMY PCBAR PQQKQ PROAC PYCSY R.K RJQFR RNS ROL SUPJJ WBKPD WIN WXSBR WYJ ~OA AAMNL AAYXX CITATION 7TG 7TN F1W H96 KL. L.G 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-a4342-b2844cce48613fe9bbec6c8132983ad8dae924ca53d7a3164871b27586563de03 |
IEDL.DBID | 33P |
ISSN | 2169-9275 |
IngestDate | Fri Aug 16 07:59:29 EDT 2024 Fri Aug 16 08:20:47 EDT 2024 Tue Nov 19 04:34:46 EST 2024 Thu Nov 21 23:44:43 EST 2024 Sat Aug 24 00:57:59 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4342-b2844cce48613fe9bbec6c8132983ad8dae924ca53d7a3164871b27586563de03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2015JC011488 |
PQID | 1929860731 |
PQPubID | 54728 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1825547265 proquest_miscellaneous_1808654901 proquest_journals_1929860731 crossref_primary_10_1002_2015JC011488 wiley_primary_10_1002_2015JC011488_JGRC21682 |
PublicationCentury | 2000 |
PublicationDate | May 2016 2016-05-00 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: May 2016 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of geophysical research. Oceans |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2010; 56 2011; 116 2014; 119 2009; 83 2015; 97 2015; 120 2008; 35 2006 2008; 54 2005 2010; 181 2002 2011; 38 2011; 5 2007; 34 2005; 22 1987; 17 2009; 114 2006; 111 2014; 88 2010; 84 2012; 53 1999 2009; 56 2009; 36 2007; 112 2004; 31 2013; 59 2002; 29 2007; 170 2015; 42 2007; 111 2013; 118 2012; 59‐60 2005; 32 2009; 460 2011; 48 2008; 113 1968; 161 2014; 52 2012; 117 2006; 167 2006; 444 2014; 10 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 Aster R. (e_1_2_7_3_1) 2005 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Case K. (e_1_2_7_5_1) 2002 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 31 start-page: L09607 year: 2004 article-title: The gravity recovery and climate experiment: Mission overview and early results publication-title: Geophys. Res. Lett. – volume: 54 start-page: 715 issue: 187 year: 2008 end-page: 724 article-title: Tidal influence on Rutford Ice Stream, West Antarctica: Observations of surface flow and basal processes from closely spaced GPS and passive seismic stations publication-title: J. Glaciol. – volume: 10 start-page: 267 year: 2014 end-page: 279 article-title: Simulated melt rates for the Totten and Dalton ice shelves publication-title: Ocean Sci. – year: 2005 – volume: 111 start-page: C06023 year: 2006 article-title: Application of the convolution formalism to the ocean tide potential: Results from the Gravity and Recovery and Climate Experiment (GRACE) publication-title: J. Geophys. Res. – volume: 34 start-page: L21607 year: 2007 article-title: Ocean tidal solutions in Antarctica from GRACE inter‐satellite tracking data publication-title: Geophys. Res. Lett. – volume: 48 start-page: 1094 issue: 6 year: 2011 end-page: 1107 article-title: Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors publication-title: Adv. Space Res. – volume: 116 year: 2011 article-title: On land ice loss and glacial isostatic adjustment at the Drake Passage: 2003‐2009 publication-title: J. Geophys. Res. – volume: 116 start-page: C06006 year: 2011 article-title: Ocean tides in the Weddell Sea: New observations on the Filchner‐Ronne and Larsen C ice shelves and model validation publication-title: J. Geophys. Res. – volume: 460 start-page: 999 year: 2009 end-page: 1002 article-title: Satellite‐based estimates of groundwater depletion in India publication-title: Nature – volume: 83 start-page: 915 issue: 10 year: 2009 end-page: 923 article-title: Quantifying FES2004 S 2 tidal model from multiple space‐geodesy techniques, GPS and GRACE, over North West Australia publication-title: J. Geod. – volume: 56 start-page: 157 issue: 195 year: 2010 end-page: 161 article-title: Flow of the Ross Ice Shelf, Antarctica, is modulated by the ocean tide publication-title: J. Glaciol. – volume: 56 start-page: 167 issue: 195 year: 2010 end-page: 176 article-title: Non‐linear responses of Rutford Ice Stream, Antarctica, to semi‐diurnal and diurnal tidal forcing publication-title: J. Glaciol. – volume: 35 start-page: L02505 year: 2008 article-title: A preliminary tidal analysis of ICESat laser altimetry: Southern Ross Ice Shelf publication-title: Geophys. Res. Lett. – volume: 167 start-page: 1055 issue: 3 year: 2006 end-page: 1059 article-title: Tide model errors and GRACE gravimetry: Towards a more realistic assessment publication-title: Geophys. J. Int. – volume: 161 start-page: 680 issue: 3842 year: 1968 end-page: 684 article-title: Mascons: Lunar mass concentrations publication-title: Science – volume: 38 start-page: L06601 year: 2011 article-title: Influence of tides on melting and freezing beneath Filchner‐Ronne Ice Shelf, Antarctica publication-title: Geophys. Res. Lett. – volume: 56 start-page: 818 issue: 13‐14 year: 2009 end-page: 834 article-title: Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water publication-title: Deep Sea Res., Part II – volume: 36 start-page: L20609 year: 2009 article-title: Assimilation of GRACE tide solutions into a numerical hydrodynamic inverse model publication-title: Geophys. Res. Lett. – volume: 5 start-page: 259 issue: 1 year: 2011 end-page: 270 article-title: Ice‐stream response to ocean tides and the form of the basal sliding law publication-title: Cryosphere – volume: 88 start-page: 503 year: 2014 end-page: 514 article-title: Comparisons of atmospheric mass variations derived from ECMWF reanalysis and operational fields over 2003‐2011 publication-title: J. Geod. – volume: 17 start-page: 784 issue: 6 year: 1987 end-page: 791 article-title: Diurnal shelf waves in the Southern Weddell Sea publication-title: J. Phys. Oceanogr. – volume: 120 start-page: 2648 year: 2015 end-page: 2671 article-title: Improved methods for observing earth's time variable mass distribution with grace using spherical cap mascons publication-title: J. Geophys. Res. Solid Earth – volume: 444 start-page: 1063 issue: 7122 year: 2006 end-page: 1064 article-title: Fortnightly variations in the flow velocity of Rutford Ice Stream, West Antarctica publication-title: Nature – volume: 29 issue: 12 year: 2002 article-title: Tides on Filchner‐Ronne Ice Shelf from ERS radar altimetry publication-title: Geophys. Res. Lett. – volume: 22 start-page: 721 issue: 6 year: 2005 end-page: 734 article-title: Assimilation of ship‐mounted ADCP data for barotropic tides: Application to the Ross Sea publication-title: J. Atmos. Oceanic Technol. – volume: 117 year: 2012 article-title: Impact of tide‐topography interactions on basal melting of Larsen C Ice Shelf Antarctica publication-title: J. Geophys. Res. – volume: 97 start-page: 40 year: 2015 end-page: 51 article-title: Diurnal tides on the Barents Sea continental slope publication-title: Deep Sea Res., Part I – volume: 118 start-page: 1240 year: 2013 end-page: 1267 article-title: Source parameter inversion for recent great earthquakes from a decade‐long observation of global gravity fields publication-title: J. Geophys. Res. Solid Earth – volume: 111 start-page: 247 issue: 2‐3 year: 2007 end-page: 257 article-title: MODIS‐based Mosaic of Antarctica (MOA) data sets: Continent‐wide surface morphology and snow grain size publication-title: Remote Sens. Environ. – volume: 181 start-page: 789 issue: 2 year: 2010 end-page: 805 article-title: Space‐borne gravimetric satellite constellations and ocean tides: Aliasing effects publication-title: Geophys. J. Int. – volume: 53 start-page: 156 issue: 60 year: 2012 end-page: 162 article-title: Sensitivity of the ice‐shelf/ocean system to the sub‐ice‐shelf cavity shape measured by NASA IceBridge in Pine Island Glacier, West Antarctica publication-title: Ann. Glaciol. – volume: 32 year: 2005 article-title: GRACE observations of M2 and S2 ocean tides underneath the Filchner‐Ronne and Larsen ice shelves, Antarctica publication-title: Geophys. Res. Lett. – volume: 116 year: 2011 article-title: Arctic Ocean tides from GRACE satellite accelerations publication-title: J. Geophys. Res. – volume: 119 start-page: 8130 year: 2014 end-page: 8137 article-title: Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time‐variable gravity data publication-title: J. Geophys. Res. Space Phys. – volume: 84 start-page: 715 year: 2010 end-page: 729 article-title: One centimeter‐level observations of diurnal ocean tides from global monthly mean time‐variable gravity fields publication-title: J. Geod. – volume: 38 start-page: L10504 year: 2011 article-title: Antarctic grounding line mapping from differential satellite radar interferometry publication-title: Geophys. Res. Lett. – volume: 59 start-page: 613 issue: 216 year: 2013 end-page: 631 article-title: Antarctica, Greenland, and Gulf of Alaska land‐ice evolution from an iterated GRACE global mascon solution publication-title: J. Glaciol. – volume: 42 start-page: 8114 year: 2015 end-page: 8121 article-title: North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies publication-title: Geophys. Res. Lett. – volume: 34 year: 2007 article-title: Ice flow modulated by tides at up to annual periods at Rutford Ice Stream, West Antarctica publication-title: Geophys. Res. Lett. – year: 2002 – year: 2006 – volume: 59‐60 start-page: 28 year: 2012 end-page: 38 article-title: Ocean tides from satellite altimetry and GRACE publication-title: J. Geodyn. – volume: 113 start-page: F02005 year: 2008 article-title: Antarctic ice mass balance estimates from GRACE: Tidal aliasing effects publication-title: J. Geophys. Res. – volume: 170 start-page: 337 issue: 1 year: 2007 end-page: 345 article-title: Estimating the model resolution matrix for large seismic tomography problems based on Lanczos bidiagonalization with partial reorthogonalization publication-title: Geophys. J. Int. – volume: 52 start-page: 243 year: 2014 end-page: 282 article-title: Accuracy assessment of global barotropic ocean tide models publication-title: Rev. Geophys. – volume: 35 start-page: L22504 year: 2008 article-title: Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves publication-title: Geophys. Res. Lett. – volume: 114 start-page: C09017 year: 2009 article-title: Qualitative comparisons of global ocean tide models by analysis of inter‐satellite ranging data publication-title: J. Geophys. Res. – volume: 112 start-page: F04007 year: 2007 article-title: Tides and the flow of Rutford ice stream, west Antarctica publication-title: J. Geophys. Res – year: 1999 – ident: e_1_2_7_37_1 doi: 10.1029/2009JC005362 – ident: e_1_2_7_15_1 doi: 10.1029/2005GL024296 – ident: e_1_2_7_28_1 doi: 10.1175/1520-0485(1987)017<0784:DSWITS>2.0.CO;2 – ident: e_1_2_7_34_1 doi: 10.1016/j.dsr2.2008.10.026 – volume-title: GRACE Level 1B Data Product User Handbook, JPL Publ. D‐22027 year: 2002 ident: e_1_2_7_5_1 contributor: fullname: Case K. – ident: e_1_2_7_36_1 doi: 10.1111/j.1365-246X.2006.03229.x – ident: e_1_2_7_19_1 doi: 10.1029/2010JB007607 – ident: e_1_2_7_6_1 doi: 10.1029/2005JC003361 – ident: e_1_2_7_43_1 doi: 10.1016/j.dsr.2014.11.008 – ident: e_1_2_7_30_1 doi: 10.1029/2011JC007263 – ident: e_1_2_7_8_1 doi: 10.1175/JTECH1735.1 – ident: e_1_2_7_12_1 doi: 10.1029/2006JF000731 – ident: e_1_2_7_45_1 doi: 10.1029/2004GL019920 – ident: e_1_2_7_38_1 – ident: e_1_2_7_39_1 doi: 10.1029/2011GL047109 – ident: e_1_2_7_40_1 doi: 10.1038/nature08238 – ident: e_1_2_7_48_1 doi: 10.1002/2014JB011547 – ident: e_1_2_7_35_1 doi: 10.1029/2007GL032125 – ident: e_1_2_7_17_1 doi: 10.1007/s00190-010-0405-3 – ident: e_1_2_7_44_1 doi: 10.1002/2014RG000450 – ident: e_1_2_7_26_1 doi: 10.1016/j.jog.2011.10.009 – ident: e_1_2_7_49_1 doi: 10.1016/j.asr.2011.05.027 – ident: e_1_2_7_27_1 doi: 10.1007/s00190-009-0309-2 – ident: e_1_2_7_41_1 doi: 10.1016/j.rse.2006.12.020 – ident: e_1_2_7_51_1 doi: 10.1111/j.1365-246X.2007.03418.x – ident: e_1_2_7_10_1 doi: 10.1029/2001GL014175 – ident: e_1_2_7_20_1 doi: 10.1029/2011JC007111 – ident: e_1_2_7_33_1 doi: 10.1029/2008GL035592 – ident: e_1_2_7_46_1 doi: 10.1002/2014GL061052 – ident: e_1_2_7_14_1 doi: 10.5194/os-10-267-2014 – ident: e_1_2_7_25_1 doi: 10.1029/2010GL046462 – ident: e_1_2_7_47_1 doi: 10.1111/j.1365-246X.2010.04557.x – ident: e_1_2_7_21_1 doi: 10.3189/002214310791190848 – ident: e_1_2_7_9_1 doi: 10.1007/s00190-014-0696-x – ident: e_1_2_7_23_1 doi: 10.1002/2015GL065730 – ident: e_1_2_7_29_1 doi: 10.1029/2007JF000871 – ident: e_1_2_7_2_1 doi: 10.3189/002214308786570872 – ident: e_1_2_7_7_1 doi: 10.1029/2009GL040376 – ident: e_1_2_7_24_1 doi: 10.3189/2013JoG12J147 – ident: e_1_2_7_16_1 doi: 10.1029/2007GL031540 – ident: e_1_2_7_22_1 doi: 10.1029/2011JC006949 – ident: e_1_2_7_32_1 doi: 10.1029/2007GL031207 – ident: e_1_2_7_4_1 doi: 10.3189/002214310791190875 – ident: e_1_2_7_50_1 – volume-title: Parameter Estimation and Inverse Problems year: 2005 ident: e_1_2_7_3_1 contributor: fullname: Aster R. – ident: e_1_2_7_11_1 doi: 10.1038/nature05430 – ident: e_1_2_7_13_1 doi: 10.5194/tc-5-259-2011 – ident: e_1_2_7_31_1 doi: 10.1126/science.161.3842.680 – ident: e_1_2_7_42_1 doi: 10.3189/2012AoG60A073 – ident: e_1_2_7_18_1 doi: 10.1002/jgrb.50116 |
SSID | ssj0000818449 |
Score | 2.078508 |
Snippet | The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 2874 |
SubjectTerms | Amplitudes Antarctic tides Antarctica Corrections Errors Estimates Geophysics GRACE GRACE (experiment) GRACE accelerations GRACE satellite Ice Ice shelves Land ice Latitude Marine Ocean models Ocean tides Oceans Regularization Regularization methods Satellite altimetry Satellites Solutions Tidal amplitude Tidal constituents Tides time variable gravity |
Title | Antarctic tides from GRACE satellite accelerations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015JC011488 https://www.proquest.com/docview/1929860731 https://search.proquest.com/docview/1808654901 https://search.proquest.com/docview/1825547265 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66JxF8i9VVKujN4DZJ0_QiLHUf7EFlVfBW8ip46Yrt_n8naffhZUE8ZxrCZJL5vjTzBaEbE3FDIsOwoonCLNESAwXTOO7xgluiZFo4ojh-TZ4-xOPAyeQ8LGphGn2I5YGbWxl-v3YLXKrqfiUaCpkrnmQez7taXyAKvoKDviyPWJxaG_MAmEQ8xSlJ4vbqO_Rwv_7976S0QprreNUnnOH-f4d6gPZaqBn2m9g4RFu2PEK7z9rKstWpPkakX9YQ6mAR1p_GVqErNwlH0342CCvp1TprG0qtITs1sVKdoPfh4C0b4_YZBSwZZQQryEAM7JiA1F3YVMG0cS3cC_OCSiOMtEDCtIypSSQF-gQcSoGvBEA9amyPnqJOOSvtGQot5dQBNJ3ymMmUAzosmCFOQCahvFABul34Mf9q1DLyRheZ5OtOCFB34eS8XTNVDlgzFRy2nChA18tmiHb3C0OWdjYHGwEUDChtb6MN0CSWEB4H6M5Py8ax5JPRNIMAEeT8b-YXaAcaeHP7sYs69ffcXqLtysyvfBz-AEcs1wk |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-4eVAEv8Xp1Ap6s2xL0jQ9yaj7cM4pc4K3kjYpeOnEdv-_L2334WUgnnrII4SXl7zfL837BeBGtbgiLcXskLqhzdxI2kjBIttp8phrEkovNkSx_-aOPsRDx8jk3M9rYQp9iMWBm1kZ-X5tFrg5kG4sVUMxdTkDPwf0ogKbjOPX1HDQ18Uhi9FrYzkEJi3u2R5xnfLyO3bRWO3gd1paYs1VxJqnnO7evwe7D7sl2rTaRXgcwIZODmHnJdIyKaWqj4C0kwyjHS2s7FPp1DIVJ1Zv3PY7Vipzwc5MWzKKMEEV4ZIew3u3M_H7dvmSgi0ZZcQOMQkxtGMCs3esvRBnjkfCPDIvqFRCSY08LJIOVa6kyKCQRoXoLIFojyrdpCdQTaaJPgVLU04NRos87jDpcQSIMVPEaMi4lMdhDW7njgy-CsGMoJBGJsGqE2pQn3s5KJdNGiDc9ATHXadVg-tFMwa8-YshEz2doY1AFoastrnWBpkScwl3anCXz8vasQSD3tjHCBHk7G_mV7DVnzwPg-Hj6OkcttGIF5ch61DNvmf6Aiqpml3mQfkDCDPbMQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL24CSKC32J1agV9s2xL0jR9EUb35ZQ5poJvJW1S8KUbdvv_3rTdhy8D8bmHEG5ucs9JkxOAO9XkijQVcyLqRQ7zYumgBIsdt8ETrkkk_cQIxf6bN_wU7Y6xyXlc3IUp_CGWG25mZuTrtZngU5XUV6ahWLncQZDzeVGBbYZM3HjnUzpa7rEYuzaWM2DS5L7jE88tz75jE_X1Bn5XpRXVXCesecXpHvy3r4ewX3JNu1UkxxFs6fQY9l5jLdPSqPoESCudYa4jwp59KZ3Z5r6J3Ru3go6dydyuc6ZtGcdYnopkyU7ho9t5D_pO-Y6CIxllxImwBDHEMYG1O9F-hOPGY2GemBdUKqGkRhUWS5cqT1LUTyiiIoyVQK5HlW7QM6imk1Sfg60pp4ahxT53mfQ50sOEKWIcZDzKk8iC-0Ucw2lhlxEWxsgkXA-CBbVFkMNy0mQhkk1fcFxzmhbcLj9jupt_GDLVkzliBGow1LSNjRjUScwj3LXgIR-WjX0JB71xgAkiyMXf4DewM2p3w5en4fMl7CKGFycha1Cdfc_1FVQyNb_OU_IHZWnZ1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antarctic+tides+from+GRACE+satellite+accelerations&rft.jtitle=Journal+of+geophysical+research.+Oceans&rft.au=Wiese%2C+D.+N.&rft.au=Killett%2C+B.&rft.au=Watkins%2C+M.+M.&rft.au=Yuan%2C+D.%E2%80%90N.&rft.date=2016-05-01&rft.issn=2169-9275&rft.eissn=2169-9291&rft.volume=121&rft.issue=5&rft.spage=2874&rft.epage=2886&rft_id=info:doi/10.1002%2F2015JC011488&rft.externalDBID=10.1002%252F2015JC011488&rft.externalDocID=JGRC21682 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9275&client=summon |