Antarctic tides from GRACE satellite accelerations

The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at large (∼300 km) spatial scales. State‐of‐the‐art global tide models rely heavily on satellite altimetry data, which are sparse for latitudes hig...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Oceans Vol. 121; no. 5; pp. 2874 - 2886
Main Authors: Wiese, D. N., Killett, B., Watkins, M. M., Yuan, D.‐N.
Format: Journal Article
Language:English
Published: Washington Blackwell Publishing Ltd 01-05-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at large (∼300 km) spatial scales. State‐of‐the‐art global tide models rely heavily on satellite altimetry data, which are sparse for latitudes higher than 66°. Thus, the performance of the models is typically worse at higher latitudes. GRACE data, alternately, extend to polar latitudes and therefore provide information for both model validation and improvement at the higher latitudes. In this work, 11 years of GRACE inter‐satellite range‐acceleration measurements are inverted to solve for corrections to the amplitudes and phases of the major solar and lunar ocean tidal constituents (M2, K1, S2, and O1) from the GOT4.7 ocean tide model at latitudes south of 50°S. Two independent inversion and regularization methods are employed and compared against one another. Uncertainty estimates are derived by subtracting two independent solutions, each spanning a unique 5.5 years of data. Features above the noise floor in the derived solutions likely represent errors in GOT4.7. We find the GOT4.7 amplitudes to be generally too small for M2 and K1, and too large for S2 and O1, and to spatially correlate with geographic regions where GOT4.7 predicts the largest tidal amplitudes. In particular, we find GOT4.7 errors to be dominant over the Patagonia shelf (M2), the Filchner‐Ronne Ice Shelf (M2 and S2), the Ross Ice Shelf (S2), and the Weddell and Ross Seas (K1 and O1). Key Points: Antarctic tides are estimated using GRACE data GOT4.7 tidal amplitudes are generally too small for M2, K1; too large for S2, O1 Tide model errors are largest over ice shelves and Weddell and Ross Seas
AbstractList The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at large (300 km) spatial scales. State-of-the-art global tide models rely heavily on satellite altimetry data, which are sparse for latitudes higher than 66 degree . Thus, the performance of the models is typically worse at higher latitudes. GRACE data, alternately, extend to polar latitudes and therefore provide information for both model validation and improvement at the higher latitudes. In this work, 11 years of GRACE inter-satellite range-acceleration measurements are inverted to solve for corrections to the amplitudes and phases of the major solar and lunar ocean tidal constituents (M sub(2), K sub(1), S sub(2), and O sub(1)) from the GOT4.7 ocean tide model at latitudes south of 50 degree S. Two independent inversion and regularization methods are employed and compared against one another. Uncertainty estimates are derived by subtracting two independent solutions, each spanning a unique 5.5 years of data. Features above the noise floor in the derived solutions likely represent errors in GOT4.7. We find the GOT4.7 amplitudes to be generally too small for M sub(2) and K sub(1), and too large for S sub(2) and O sub(1), and to spatially correlate with geographic regions where GOT4.7 predicts the largest tidal amplitudes. In particular, we find GOT4.7 errors to be dominant over the Patagonia shelf (M sub(2)), the Filchner-Ronne Ice Shelf (M sub(2) and S sub(2)), the Ross Ice Shelf (S sub(2)), and the Weddell and Ross Seas (K sub(1) and O sub(1)). Key Points: * Antarctic tides are estimated using GRACE data * GOT4.7 tidal amplitudes are generally too small for M sub(2), K sub(1); too large for S sub(2), O sub(1) * Tide model errors are largest over ice shelves and Weddell and Ross Seas
The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at large (∼300 km) spatial scales. State‐of‐the‐art global tide models rely heavily on satellite altimetry data, which are sparse for latitudes higher than 66°. Thus, the performance of the models is typically worse at higher latitudes. GRACE data, alternately, extend to polar latitudes and therefore provide information for both model validation and improvement at the higher latitudes. In this work, 11 years of GRACE inter‐satellite range‐acceleration measurements are inverted to solve for corrections to the amplitudes and phases of the major solar and lunar ocean tidal constituents ( M 2 , K 1 , S 2 , and O 1 ) from the GOT4.7 ocean tide model at latitudes south of 50°S. Two independent inversion and regularization methods are employed and compared against one another. Uncertainty estimates are derived by subtracting two independent solutions, each spanning a unique 5.5 years of data. Features above the noise floor in the derived solutions likely represent errors in GOT4.7. We find the GOT4.7 amplitudes to be generally too small for M 2 and K 1 , and too large for S 2 and O 1 , and to spatially correlate with geographic regions where GOT4.7 predicts the largest tidal amplitudes. In particular, we find GOT4.7 errors to be dominant over the Patagonia shelf ( M 2 ), the Filchner‐Ronne Ice Shelf ( M 2 and S 2 ), the Ross Ice Shelf ( S 2 ), and the Weddell and Ross Seas ( K 1 and O 1 ). Antarctic tides are estimated using GRACE data GOT4.7 tidal amplitudes are generally too small for M 2 , K 1 ; too large for S 2 , O 1 Tide model errors are largest over ice shelves and Weddell and Ross Seas
The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at large (∼300 km) spatial scales. State‐of‐the‐art global tide models rely heavily on satellite altimetry data, which are sparse for latitudes higher than 66°. Thus, the performance of the models is typically worse at higher latitudes. GRACE data, alternately, extend to polar latitudes and therefore provide information for both model validation and improvement at the higher latitudes. In this work, 11 years of GRACE inter‐satellite range‐acceleration measurements are inverted to solve for corrections to the amplitudes and phases of the major solar and lunar ocean tidal constituents (M2, K1, S2, and O1) from the GOT4.7 ocean tide model at latitudes south of 50°S. Two independent inversion and regularization methods are employed and compared against one another. Uncertainty estimates are derived by subtracting two independent solutions, each spanning a unique 5.5 years of data. Features above the noise floor in the derived solutions likely represent errors in GOT4.7. We find the GOT4.7 amplitudes to be generally too small for M2 and K1, and too large for S2 and O1, and to spatially correlate with geographic regions where GOT4.7 predicts the largest tidal amplitudes. In particular, we find GOT4.7 errors to be dominant over the Patagonia shelf (M2), the Filchner‐Ronne Ice Shelf (M2 and S2), the Ross Ice Shelf (S2), and the Weddell and Ross Seas (K1 and O1).
The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at large (∼300 km) spatial scales. State‐of‐the‐art global tide models rely heavily on satellite altimetry data, which are sparse for latitudes higher than 66°. Thus, the performance of the models is typically worse at higher latitudes. GRACE data, alternately, extend to polar latitudes and therefore provide information for both model validation and improvement at the higher latitudes. In this work, 11 years of GRACE inter‐satellite range‐acceleration measurements are inverted to solve for corrections to the amplitudes and phases of the major solar and lunar ocean tidal constituents (M2, K1, S2, and O1) from the GOT4.7 ocean tide model at latitudes south of 50°S. Two independent inversion and regularization methods are employed and compared against one another. Uncertainty estimates are derived by subtracting two independent solutions, each spanning a unique 5.5 years of data. Features above the noise floor in the derived solutions likely represent errors in GOT4.7. We find the GOT4.7 amplitudes to be generally too small for M2 and K1, and too large for S2 and O1, and to spatially correlate with geographic regions where GOT4.7 predicts the largest tidal amplitudes. In particular, we find GOT4.7 errors to be dominant over the Patagonia shelf (M2), the Filchner‐Ronne Ice Shelf (M2 and S2), the Ross Ice Shelf (S2), and the Weddell and Ross Seas (K1 and O1). Key Points: Antarctic tides are estimated using GRACE data GOT4.7 tidal amplitudes are generally too small for M2, K1; too large for S2, O1 Tide model errors are largest over ice shelves and Weddell and Ross Seas
Author Yuan, D.‐N.
Killett, B.
Wiese, D. N.
Watkins, M. M.
Author_xml – sequence: 1
  givenname: D. N.
  surname: Wiese
  fullname: Wiese, D. N.
  organization: California Institute of Technology
– sequence: 2
  givenname: B.
  surname: Killett
  fullname: Killett, B.
  organization: Pasadena
– sequence: 3
  givenname: M. M.
  surname: Watkins
  fullname: Watkins, M. M.
  organization: Center for Space Research, University of Texas at Austin
– sequence: 4
  givenname: D.‐N.
  surname: Yuan
  fullname: Yuan, D.‐N.
  organization: California Institute of Technology
BookMark eNqNkcFKAzEQhoNUsNbefIAFLx5czSTZbHIsS62WglD0HLLZWdiy3a3JFunbm1IR8SDOZebwzcw__1ySUdd3SMg10HuglD0wCtmyoABCqTMyZiB1qpmG0XedZxdkGsKGxlCghNBjwmbdYL0bGpcMTYUhqX2_TRbrWTFPgh2wbZsBE-sctujt0PRduCLntW0DTr_yhLw9zl-Lp3T1snguZqvUCi5YWrK4IfYJJYHXqMsSnXQKONOK20pVFjUTzma8yi0HKVQOZdSoZCZ5hZRPyO1p7s7373sMg9k2IepobYf9PhhQLMtEzmT2D5TGsUJTiOjNL3TT730XDzEQ7VKS5vxI3Z0o5_sQPNZm55ut9QcD1BztNj_tjjg_4R9Ni4c_WbNcrIv4EMX4J8nMfsY
CitedBy_id crossref_primary_10_1029_2019JB017415
crossref_primary_10_1093_gji_ggy145
crossref_primary_10_1002_2016RG000546
crossref_primary_10_1093_gji_ggab421
crossref_primary_10_1029_2019JC015037
crossref_primary_10_1029_2020JC017097
crossref_primary_10_1175_JPO_D_17_0247_1
crossref_primary_10_1029_2018JB016083
Cites_doi 10.1029/2009JC005362
10.1029/2005GL024296
10.1175/1520-0485(1987)017<0784:DSWITS>2.0.CO;2
10.1016/j.dsr2.2008.10.026
10.1111/j.1365-246X.2006.03229.x
10.1029/2010JB007607
10.1029/2005JC003361
10.1016/j.dsr.2014.11.008
10.1029/2011JC007263
10.1175/JTECH1735.1
10.1029/2006JF000731
10.1029/2004GL019920
10.1029/2011GL047109
10.1038/nature08238
10.1002/2014JB011547
10.1029/2007GL032125
10.1007/s00190-010-0405-3
10.1002/2014RG000450
10.1016/j.jog.2011.10.009
10.1016/j.asr.2011.05.027
10.1007/s00190-009-0309-2
10.1016/j.rse.2006.12.020
10.1111/j.1365-246X.2007.03418.x
10.1029/2001GL014175
10.1029/2011JC007111
10.1029/2008GL035592
10.1002/2014GL061052
10.5194/os-10-267-2014
10.1029/2010GL046462
10.1111/j.1365-246X.2010.04557.x
10.3189/002214310791190848
10.1007/s00190-014-0696-x
10.1002/2015GL065730
10.1029/2007JF000871
10.3189/002214308786570872
10.1029/2009GL040376
10.3189/2013JoG12J147
10.1029/2007GL031540
10.1029/2011JC006949
10.1029/2007GL031207
10.3189/002214310791190875
10.1038/nature05430
10.5194/tc-5-259-2011
10.1126/science.161.3842.680
10.3189/2012AoG60A073
10.1002/jgrb.50116
ContentType Journal Article
Copyright 2016. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2016. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
8FD
FR3
H8D
KR7
L7M
DOI 10.1002/2015JC011488
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2169-9291
EndPage 2886
ExternalDocumentID 10_1002_2015JC011488
JGRC21682
Genre article
GeographicLocations PSW, Antarctica, Filchner-Ronne Ice Shelf
PS, Antarctica, Ross Ice Shelf
PS, Ross Sea
GeographicLocations_xml – name: PSW, Antarctica, Filchner-Ronne Ice Shelf
– name: PS, Ross Sea
– name: PS, Antarctica, Ross Ice Shelf
GroupedDBID 05W
0R~
1OC
24P
31~
33P
3V.
50Y
52M
702
7XC
8-1
88I
8CJ
8FE
8FH
A00
AAESR
AAHHS
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABPVW
ABUWG
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOD
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
D1J
D1K
DPXWK
DRFUL
DRSTM
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
HCIFZ
HGLYW
HVGLF
HZ~
K6-
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2P
M7R
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
R.K
RJQFR
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
AAMNL
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-a4342-b2844cce48613fe9bbec6c8132983ad8dae924ca53d7a3164871b27586563de03
IEDL.DBID 33P
ISSN 2169-9275
IngestDate Fri Aug 16 07:59:29 EDT 2024
Fri Aug 16 08:20:47 EDT 2024
Tue Nov 19 04:34:46 EST 2024
Thu Nov 21 23:44:43 EST 2024
Sat Aug 24 00:57:59 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4342-b2844cce48613fe9bbec6c8132983ad8dae924ca53d7a3164871b27586563de03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2015JC011488
PQID 1929860731
PQPubID 54728
PageCount 13
ParticipantIDs proquest_miscellaneous_1825547265
proquest_miscellaneous_1808654901
proquest_journals_1929860731
crossref_primary_10_1002_2015JC011488
wiley_primary_10_1002_2015JC011488_JGRC21682
PublicationCentury 2000
PublicationDate May 2016
2016-05-00
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May 2016
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of geophysical research. Oceans
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 56
2011; 116
2014; 119
2009; 83
2015; 97
2015; 120
2008; 35
2006
2008; 54
2005
2010; 181
2002
2011; 38
2011; 5
2007; 34
2005; 22
1987; 17
2009; 114
2006; 111
2014; 88
2010; 84
2012; 53
1999
2009; 56
2009; 36
2007; 112
2004; 31
2013; 59
2002; 29
2007; 170
2015; 42
2007; 111
2013; 118
2012; 59‐60
2005; 32
2009; 460
2011; 48
2008; 113
1968; 161
2014; 52
2012; 117
2006; 167
2006; 444
2014; 10
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
Aster R. (e_1_2_7_3_1) 2005
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Case K. (e_1_2_7_5_1) 2002
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 31
  start-page: L09607
  year: 2004
  article-title: The gravity recovery and climate experiment: Mission overview and early results
  publication-title: Geophys. Res. Lett.
– volume: 54
  start-page: 715
  issue: 187
  year: 2008
  end-page: 724
  article-title: Tidal influence on Rutford Ice Stream, West Antarctica: Observations of surface flow and basal processes from closely spaced GPS and passive seismic stations
  publication-title: J. Glaciol.
– volume: 10
  start-page: 267
  year: 2014
  end-page: 279
  article-title: Simulated melt rates for the Totten and Dalton ice shelves
  publication-title: Ocean Sci.
– year: 2005
– volume: 111
  start-page: C06023
  year: 2006
  article-title: Application of the convolution formalism to the ocean tide potential: Results from the Gravity and Recovery and Climate Experiment (GRACE)
  publication-title: J. Geophys. Res.
– volume: 34
  start-page: L21607
  year: 2007
  article-title: Ocean tidal solutions in Antarctica from GRACE inter‐satellite tracking data
  publication-title: Geophys. Res. Lett.
– volume: 48
  start-page: 1094
  issue: 6
  year: 2011
  end-page: 1107
  article-title: Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors
  publication-title: Adv. Space Res.
– volume: 116
  year: 2011
  article-title: On land ice loss and glacial isostatic adjustment at the Drake Passage: 2003‐2009
  publication-title: J. Geophys. Res.
– volume: 116
  start-page: C06006
  year: 2011
  article-title: Ocean tides in the Weddell Sea: New observations on the Filchner‐Ronne and Larsen C ice shelves and model validation
  publication-title: J. Geophys. Res.
– volume: 460
  start-page: 999
  year: 2009
  end-page: 1002
  article-title: Satellite‐based estimates of groundwater depletion in India
  publication-title: Nature
– volume: 83
  start-page: 915
  issue: 10
  year: 2009
  end-page: 923
  article-title: Quantifying FES2004 S 2 tidal model from multiple space‐geodesy techniques, GPS and GRACE, over North West Australia
  publication-title: J. Geod.
– volume: 56
  start-page: 157
  issue: 195
  year: 2010
  end-page: 161
  article-title: Flow of the Ross Ice Shelf, Antarctica, is modulated by the ocean tide
  publication-title: J. Glaciol.
– volume: 56
  start-page: 167
  issue: 195
  year: 2010
  end-page: 176
  article-title: Non‐linear responses of Rutford Ice Stream, Antarctica, to semi‐diurnal and diurnal tidal forcing
  publication-title: J. Glaciol.
– volume: 35
  start-page: L02505
  year: 2008
  article-title: A preliminary tidal analysis of ICESat laser altimetry: Southern Ross Ice Shelf
  publication-title: Geophys. Res. Lett.
– volume: 167
  start-page: 1055
  issue: 3
  year: 2006
  end-page: 1059
  article-title: Tide model errors and GRACE gravimetry: Towards a more realistic assessment
  publication-title: Geophys. J. Int.
– volume: 161
  start-page: 680
  issue: 3842
  year: 1968
  end-page: 684
  article-title: Mascons: Lunar mass concentrations
  publication-title: Science
– volume: 38
  start-page: L06601
  year: 2011
  article-title: Influence of tides on melting and freezing beneath Filchner‐Ronne Ice Shelf, Antarctica
  publication-title: Geophys. Res. Lett.
– volume: 56
  start-page: 818
  issue: 13‐14
  year: 2009
  end-page: 834
  article-title: Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water
  publication-title: Deep Sea Res., Part II
– volume: 36
  start-page: L20609
  year: 2009
  article-title: Assimilation of GRACE tide solutions into a numerical hydrodynamic inverse model
  publication-title: Geophys. Res. Lett.
– volume: 5
  start-page: 259
  issue: 1
  year: 2011
  end-page: 270
  article-title: Ice‐stream response to ocean tides and the form of the basal sliding law
  publication-title: Cryosphere
– volume: 88
  start-page: 503
  year: 2014
  end-page: 514
  article-title: Comparisons of atmospheric mass variations derived from ECMWF reanalysis and operational fields over 2003‐2011
  publication-title: J. Geod.
– volume: 17
  start-page: 784
  issue: 6
  year: 1987
  end-page: 791
  article-title: Diurnal shelf waves in the Southern Weddell Sea
  publication-title: J. Phys. Oceanogr.
– volume: 120
  start-page: 2648
  year: 2015
  end-page: 2671
  article-title: Improved methods for observing earth's time variable mass distribution with grace using spherical cap mascons
  publication-title: J. Geophys. Res. Solid Earth
– volume: 444
  start-page: 1063
  issue: 7122
  year: 2006
  end-page: 1064
  article-title: Fortnightly variations in the flow velocity of Rutford Ice Stream, West Antarctica
  publication-title: Nature
– volume: 29
  issue: 12
  year: 2002
  article-title: Tides on Filchner‐Ronne Ice Shelf from ERS radar altimetry
  publication-title: Geophys. Res. Lett.
– volume: 22
  start-page: 721
  issue: 6
  year: 2005
  end-page: 734
  article-title: Assimilation of ship‐mounted ADCP data for barotropic tides: Application to the Ross Sea
  publication-title: J. Atmos. Oceanic Technol.
– volume: 117
  year: 2012
  article-title: Impact of tide‐topography interactions on basal melting of Larsen C Ice Shelf Antarctica
  publication-title: J. Geophys. Res.
– volume: 97
  start-page: 40
  year: 2015
  end-page: 51
  article-title: Diurnal tides on the Barents Sea continental slope
  publication-title: Deep Sea Res., Part I
– volume: 118
  start-page: 1240
  year: 2013
  end-page: 1267
  article-title: Source parameter inversion for recent great earthquakes from a decade‐long observation of global gravity fields
  publication-title: J. Geophys. Res. Solid Earth
– volume: 111
  start-page: 247
  issue: 2‐3
  year: 2007
  end-page: 257
  article-title: MODIS‐based Mosaic of Antarctica (MOA) data sets: Continent‐wide surface morphology and snow grain size
  publication-title: Remote Sens. Environ.
– volume: 181
  start-page: 789
  issue: 2
  year: 2010
  end-page: 805
  article-title: Space‐borne gravimetric satellite constellations and ocean tides: Aliasing effects
  publication-title: Geophys. J. Int.
– volume: 53
  start-page: 156
  issue: 60
  year: 2012
  end-page: 162
  article-title: Sensitivity of the ice‐shelf/ocean system to the sub‐ice‐shelf cavity shape measured by NASA IceBridge in Pine Island Glacier, West Antarctica
  publication-title: Ann. Glaciol.
– volume: 32
  year: 2005
  article-title: GRACE observations of M2 and S2 ocean tides underneath the Filchner‐Ronne and Larsen ice shelves, Antarctica
  publication-title: Geophys. Res. Lett.
– volume: 116
  year: 2011
  article-title: Arctic Ocean tides from GRACE satellite accelerations
  publication-title: J. Geophys. Res.
– volume: 119
  start-page: 8130
  year: 2014
  end-page: 8137
  article-title: Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time‐variable gravity data
  publication-title: J. Geophys. Res. Space Phys.
– volume: 84
  start-page: 715
  year: 2010
  end-page: 729
  article-title: One centimeter‐level observations of diurnal ocean tides from global monthly mean time‐variable gravity fields
  publication-title: J. Geod.
– volume: 38
  start-page: L10504
  year: 2011
  article-title: Antarctic grounding line mapping from differential satellite radar interferometry
  publication-title: Geophys. Res. Lett.
– volume: 59
  start-page: 613
  issue: 216
  year: 2013
  end-page: 631
  article-title: Antarctica, Greenland, and Gulf of Alaska land‐ice evolution from an iterated GRACE global mascon solution
  publication-title: J. Glaciol.
– volume: 42
  start-page: 8114
  year: 2015
  end-page: 8121
  article-title: North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies
  publication-title: Geophys. Res. Lett.
– volume: 34
  year: 2007
  article-title: Ice flow modulated by tides at up to annual periods at Rutford Ice Stream, West Antarctica
  publication-title: Geophys. Res. Lett.
– year: 2002
– year: 2006
– volume: 59‐60
  start-page: 28
  year: 2012
  end-page: 38
  article-title: Ocean tides from satellite altimetry and GRACE
  publication-title: J. Geodyn.
– volume: 113
  start-page: F02005
  year: 2008
  article-title: Antarctic ice mass balance estimates from GRACE: Tidal aliasing effects
  publication-title: J. Geophys. Res.
– volume: 170
  start-page: 337
  issue: 1
  year: 2007
  end-page: 345
  article-title: Estimating the model resolution matrix for large seismic tomography problems based on Lanczos bidiagonalization with partial reorthogonalization
  publication-title: Geophys. J. Int.
– volume: 52
  start-page: 243
  year: 2014
  end-page: 282
  article-title: Accuracy assessment of global barotropic ocean tide models
  publication-title: Rev. Geophys.
– volume: 35
  start-page: L22504
  year: 2008
  article-title: Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves
  publication-title: Geophys. Res. Lett.
– volume: 114
  start-page: C09017
  year: 2009
  article-title: Qualitative comparisons of global ocean tide models by analysis of inter‐satellite ranging data
  publication-title: J. Geophys. Res.
– volume: 112
  start-page: F04007
  year: 2007
  article-title: Tides and the flow of Rutford ice stream, west Antarctica
  publication-title: J. Geophys. Res
– year: 1999
– ident: e_1_2_7_37_1
  doi: 10.1029/2009JC005362
– ident: e_1_2_7_15_1
  doi: 10.1029/2005GL024296
– ident: e_1_2_7_28_1
  doi: 10.1175/1520-0485(1987)017<0784:DSWITS>2.0.CO;2
– ident: e_1_2_7_34_1
  doi: 10.1016/j.dsr2.2008.10.026
– volume-title: GRACE Level 1B Data Product User Handbook, JPL Publ. D‐22027
  year: 2002
  ident: e_1_2_7_5_1
  contributor:
    fullname: Case K.
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1365-246X.2006.03229.x
– ident: e_1_2_7_19_1
  doi: 10.1029/2010JB007607
– ident: e_1_2_7_6_1
  doi: 10.1029/2005JC003361
– ident: e_1_2_7_43_1
  doi: 10.1016/j.dsr.2014.11.008
– ident: e_1_2_7_30_1
  doi: 10.1029/2011JC007263
– ident: e_1_2_7_8_1
  doi: 10.1175/JTECH1735.1
– ident: e_1_2_7_12_1
  doi: 10.1029/2006JF000731
– ident: e_1_2_7_45_1
  doi: 10.1029/2004GL019920
– ident: e_1_2_7_38_1
– ident: e_1_2_7_39_1
  doi: 10.1029/2011GL047109
– ident: e_1_2_7_40_1
  doi: 10.1038/nature08238
– ident: e_1_2_7_48_1
  doi: 10.1002/2014JB011547
– ident: e_1_2_7_35_1
  doi: 10.1029/2007GL032125
– ident: e_1_2_7_17_1
  doi: 10.1007/s00190-010-0405-3
– ident: e_1_2_7_44_1
  doi: 10.1002/2014RG000450
– ident: e_1_2_7_26_1
  doi: 10.1016/j.jog.2011.10.009
– ident: e_1_2_7_49_1
  doi: 10.1016/j.asr.2011.05.027
– ident: e_1_2_7_27_1
  doi: 10.1007/s00190-009-0309-2
– ident: e_1_2_7_41_1
  doi: 10.1016/j.rse.2006.12.020
– ident: e_1_2_7_51_1
  doi: 10.1111/j.1365-246X.2007.03418.x
– ident: e_1_2_7_10_1
  doi: 10.1029/2001GL014175
– ident: e_1_2_7_20_1
  doi: 10.1029/2011JC007111
– ident: e_1_2_7_33_1
  doi: 10.1029/2008GL035592
– ident: e_1_2_7_46_1
  doi: 10.1002/2014GL061052
– ident: e_1_2_7_14_1
  doi: 10.5194/os-10-267-2014
– ident: e_1_2_7_25_1
  doi: 10.1029/2010GL046462
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1365-246X.2010.04557.x
– ident: e_1_2_7_21_1
  doi: 10.3189/002214310791190848
– ident: e_1_2_7_9_1
  doi: 10.1007/s00190-014-0696-x
– ident: e_1_2_7_23_1
  doi: 10.1002/2015GL065730
– ident: e_1_2_7_29_1
  doi: 10.1029/2007JF000871
– ident: e_1_2_7_2_1
  doi: 10.3189/002214308786570872
– ident: e_1_2_7_7_1
  doi: 10.1029/2009GL040376
– ident: e_1_2_7_24_1
  doi: 10.3189/2013JoG12J147
– ident: e_1_2_7_16_1
  doi: 10.1029/2007GL031540
– ident: e_1_2_7_22_1
  doi: 10.1029/2011JC006949
– ident: e_1_2_7_32_1
  doi: 10.1029/2007GL031207
– ident: e_1_2_7_4_1
  doi: 10.3189/002214310791190875
– ident: e_1_2_7_50_1
– volume-title: Parameter Estimation and Inverse Problems
  year: 2005
  ident: e_1_2_7_3_1
  contributor:
    fullname: Aster R.
– ident: e_1_2_7_11_1
  doi: 10.1038/nature05430
– ident: e_1_2_7_13_1
  doi: 10.5194/tc-5-259-2011
– ident: e_1_2_7_31_1
  doi: 10.1126/science.161.3842.680
– ident: e_1_2_7_42_1
  doi: 10.3189/2012AoG60A073
– ident: e_1_2_7_18_1
  doi: 10.1002/jgrb.50116
SSID ssj0000818449
Score 2.078508
Snippet The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 2874
SubjectTerms Amplitudes
Antarctic tides
Antarctica
Corrections
Errors
Estimates
Geophysics
GRACE
GRACE (experiment)
GRACE accelerations
GRACE satellite
Ice
Ice shelves
Land ice
Latitude
Marine
Ocean models
Ocean tides
Oceans
Regularization
Regularization methods
Satellite altimetry
Satellites
Solutions
Tidal amplitude
Tidal constituents
Tides
time variable gravity
Title Antarctic tides from GRACE satellite accelerations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015JC011488
https://www.proquest.com/docview/1929860731
https://search.proquest.com/docview/1808654901
https://search.proquest.com/docview/1825547265
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66JxF8i9VVKujN4DZJ0_QiLHUf7EFlVfBW8ip46Yrt_n8naffhZUE8ZxrCZJL5vjTzBaEbE3FDIsOwoonCLNESAwXTOO7xgluiZFo4ojh-TZ4-xOPAyeQ8LGphGn2I5YGbWxl-v3YLXKrqfiUaCpkrnmQez7taXyAKvoKDviyPWJxaG_MAmEQ8xSlJ4vbqO_Rwv_7976S0QprreNUnnOH-f4d6gPZaqBn2m9g4RFu2PEK7z9rKstWpPkakX9YQ6mAR1p_GVqErNwlH0342CCvp1TprG0qtITs1sVKdoPfh4C0b4_YZBSwZZQQryEAM7JiA1F3YVMG0cS3cC_OCSiOMtEDCtIypSSQF-gQcSoGvBEA9amyPnqJOOSvtGQot5dQBNJ3ymMmUAzosmCFOQCahvFABul34Mf9q1DLyRheZ5OtOCFB34eS8XTNVDlgzFRy2nChA18tmiHb3C0OWdjYHGwEUDChtb6MN0CSWEB4H6M5Py8ax5JPRNIMAEeT8b-YXaAcaeHP7sYs69ffcXqLtysyvfBz-AEcs1wk
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-4eVAEv8Xp1Ap6s2xL0jQ9yaj7cM4pc4K3kjYpeOnEdv-_L2334WUgnnrII4SXl7zfL837BeBGtbgiLcXskLqhzdxI2kjBIttp8phrEkovNkSx_-aOPsRDx8jk3M9rYQp9iMWBm1kZ-X5tFrg5kG4sVUMxdTkDPwf0ogKbjOPX1HDQ18Uhi9FrYzkEJi3u2R5xnfLyO3bRWO3gd1paYs1VxJqnnO7evwe7D7sl2rTaRXgcwIZODmHnJdIyKaWqj4C0kwyjHS2s7FPp1DIVJ1Zv3PY7Vipzwc5MWzKKMEEV4ZIew3u3M_H7dvmSgi0ZZcQOMQkxtGMCs3esvRBnjkfCPDIvqFRCSY08LJIOVa6kyKCQRoXoLIFojyrdpCdQTaaJPgVLU04NRos87jDpcQSIMVPEaMi4lMdhDW7njgy-CsGMoJBGJsGqE2pQn3s5KJdNGiDc9ATHXadVg-tFMwa8-YshEz2doY1AFoastrnWBpkScwl3anCXz8vasQSD3tjHCBHk7G_mV7DVnzwPg-Hj6OkcttGIF5ch61DNvmf6Aiqpml3mQfkDCDPbMQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL24CSKC32J1agV9s2xL0jR9EUb35ZQ5poJvJW1S8KUbdvv_3rTdhy8D8bmHEG5ucs9JkxOAO9XkijQVcyLqRQ7zYumgBIsdt8ETrkkk_cQIxf6bN_wU7Y6xyXlc3IUp_CGWG25mZuTrtZngU5XUV6ahWLncQZDzeVGBbYZM3HjnUzpa7rEYuzaWM2DS5L7jE88tz75jE_X1Bn5XpRXVXCesecXpHvy3r4ewX3JNu1UkxxFs6fQY9l5jLdPSqPoESCudYa4jwp59KZ3Z5r6J3Ru3go6dydyuc6ZtGcdYnopkyU7ho9t5D_pO-Y6CIxllxImwBDHEMYG1O9F-hOPGY2GemBdUKqGkRhUWS5cqT1LUTyiiIoyVQK5HlW7QM6imk1Sfg60pp4ahxT53mfQ50sOEKWIcZDzKk8iC-0Ucw2lhlxEWxsgkXA-CBbVFkMNy0mQhkk1fcFxzmhbcLj9jupt_GDLVkzliBGow1LSNjRjUScwj3LXgIR-WjX0JB71xgAkiyMXf4DewM2p3w5en4fMl7CKGFycha1Cdfc_1FVQyNb_OU_IHZWnZ1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antarctic+tides+from+GRACE+satellite+accelerations&rft.jtitle=Journal+of+geophysical+research.+Oceans&rft.au=Wiese%2C+D.+N.&rft.au=Killett%2C+B.&rft.au=Watkins%2C+M.+M.&rft.au=Yuan%2C+D.%E2%80%90N.&rft.date=2016-05-01&rft.issn=2169-9275&rft.eissn=2169-9291&rft.volume=121&rft.issue=5&rft.spage=2874&rft.epage=2886&rft_id=info:doi/10.1002%2F2015JC011488&rft.externalDBID=10.1002%252F2015JC011488&rft.externalDocID=JGRC21682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9275&client=summon