Multifunctional Oxazolone Derivative as an Optical Amplifier, Generator, and Modulator

An optical control of many working optoelectronic systems (real-time sensors, optical modulators, light amplifiers, or phase retarders) giving efficient optical gain or remote signal modulation is currently included as scientifically and industrially interesting. In here, an oxazolone derivative as...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B Vol. 126; no. 8; pp. 1742 - 1757
Main Authors: Szukalski, Adam, Krawczyk, Przemysław, Sahraoui, Bouchta, Jędrzejewska, Beata
Format: Journal Article
Language:English
Published: United States American Chemical Society 03-03-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An optical control of many working optoelectronic systems (real-time sensors, optical modulators, light amplifiers, or phase retarders) giving efficient optical gain or remote signal modulation is currently included as scientifically and industrially interesting. In here, an oxazolone derivative as the multifunctional organic system is given in this contribution. The molecule possesses a stilbene group and an oxazolone heteroatomic ring, which implies effective refractive index manipulation and multimode lasing action, respectively. The light modulation is repeatable and stable, also in the hundreds of Hz regime. On the other hand, the amplified optical signal can be easily generated by an external optical pumping source. Thus, signal control is fully available, as is read-in and read-out of the information in real time. Furthermore, this third-order, nonlinear, optical phenomenon using a third harmonic generation technique was also observed. We discovered that only by changing the energy and time regime of the supplied optical signal is the optical or nonlinear optical response observed. Two heteroenergetic molecular states (trans (E) and cis (Z)) can efficiently operate in modern multifunctional optoelectronic systems, which can provide and generate an optical signal. Such functionalities are commonly used in all-optical photonic switchers and logic gates and can be utilized in optical-core networks and computers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.1c08056