Self-Assembly Dynamics of Reconfigurable Colloidal Molecules

Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental realizations are missing the structural flexibility present in real molecules thereby restricting their use as model systems. We overcome this limitatio...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano Vol. 16; no. 2; pp. 2471 - 2480
Main Authors: Chakraborty, Indrani, Pearce, Daniel J. G, Verweij, Ruben W, Matysik, Sabine C, Giomi, Luca, Kraft, Daniela J
Format: Journal Article
Language:English
Published: United States American Chemical Society 22-02-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental realizations are missing the structural flexibility present in real molecules thereby restricting their use as model systems. We overcome this limitation by assembling reconfigurable colloidal molecules from silica particles functionalized with mobile DNA linkers in high yields. We achieve this by steering the self-assembly pathway toward the formation of finite-sized clusters by employing high number ratios of particles functionalized with complementary DNA strands. The size ratio of the two species of particles provides control over the overall cluster size, i.e., the number of bound particles N, as well as the degree of reconfigurability. The bond flexibility provided by the mobile linkers allows the successful assembly of colloidal clusters with the geometrically expected maximum number of bound particles and shape. We quantitatively examine the self-assembly dynamics of these flexible colloidal molecules by a combination of experiments, agent-based simulations, and an analytical model. Our “flexible colloidal molecules” are exciting building blocks for investigating and exploiting the self-assembly of complex hierarchical structures, photonic crystals, and colloidal metamaterials.
AbstractList Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental realizations are missing the structural flexibility present in real molecules thereby restricting their use as model systems. We overcome this limitation by assembling reconfigurable colloidal molecules from silica particles functionalized with mobile DNA linkers in high yields. We achieve this by steering the self-assembly pathway toward the formation of finite-sized clusters by employing high number ratios of particles functionalized with complementary DNA strands. The size ratio of the two species of particles provides control over the overall cluster size, i.e. , the number of bound particles N , as well as the degree of reconfigurability. The bond flexibility provided by the mobile linkers allows the successful assembly of colloidal clusters with the geometrically expected maximum number of bound particles and shape. We quantitatively examine the self-assembly dynamics of these flexible colloidal molecules by a combination of experiments, agent-based simulations, and an analytical model. Our “flexible colloidal molecules” are exciting building blocks for investigating and exploiting the self-assembly of complex hierarchical structures, photonic crystals, and colloidal metamaterials.
Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental realizations are missing the structural flexibility present in real molecules thereby restricting their use as model systems. We overcome this limitation by assembling reconfigurable colloidal molecules from silica particles functionalized with mobile DNA linkers in high yields. We achieve this by steering the self-assembly pathway toward the formation of finite-sized clusters by employing high number ratios of particles functionalized with complementary DNA strands. The size ratio of the two species of particles provides control over the overall cluster size, i.e., the number of bound particles N, as well as the degree of reconfigurability. The bond flexibility provided by the mobile linkers allows the successful assembly of colloidal clusters with the geometrically expected maximum number of bound particles and shape. We quantitatively examine the self-assembly dynamics of these flexible colloidal molecules by a combination of experiments, agent-based simulations, and an analytical model. Our “flexible colloidal molecules” are exciting building blocks for investigating and exploiting the self-assembly of complex hierarchical structures, photonic crystals, and colloidal metamaterials.
Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental realizations are missing the structural flexibility present in real molecules thereby restricting their use as model systems. We overcome this limitation by assembling reconfigurable colloidal molecules from silica particles functionalized with mobile DNA linkers in high yields. We achieve this by steering the self-assembly pathway toward the formation of finite-sized clusters by employing high number ratios of particles functionalized with complementary DNA strands. The size ratio of the two species of particles provides control over the overall cluster size, , the number of bound particles , as well as the degree of reconfigurability. The bond flexibility provided by the mobile linkers allows the successful assembly of colloidal clusters with the geometrically expected maximum number of bound particles and shape. We quantitatively examine the self-assembly dynamics of these flexible colloidal molecules by a combination of experiments, agent-based simulations, and an analytical model. Our "flexible colloidal molecules" are exciting building blocks for investigating and exploiting the self-assembly of complex hierarchical structures, photonic crystals, and colloidal metamaterials.
Author Matysik, Sabine C
Verweij, Ruben W
Kraft, Daniela J
Giomi, Luca
Chakraborty, Indrani
Pearce, Daniel J. G
AuthorAffiliation Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory
Massachusetts Institute of Technology
Yusuf Hamied Department of Chemistry
Institute-Lorentz
University of Geneva
Birla Institute of Technology and Science
Department of Theoretical Physics
Department of Mathematics
Department of Physics
AuthorAffiliation_xml – name: Birla Institute of Technology and Science
– name: Institute-Lorentz
– name: Department of Mathematics
– name: Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory
– name: Department of Physics
– name: University of Geneva
– name: Department of Theoretical Physics
– name: Yusuf Hamied Department of Chemistry
– name: Massachusetts Institute of Technology
Author_xml – sequence: 1
  givenname: Indrani
  surname: Chakraborty
  fullname: Chakraborty, Indrani
  organization: Birla Institute of Technology and Science
– sequence: 2
  givenname: Daniel J. G
  surname: Pearce
  fullname: Pearce, Daniel J. G
  organization: University of Geneva
– sequence: 3
  givenname: Ruben W
  orcidid: 0000-0003-3925-5732
  surname: Verweij
  fullname: Verweij, Ruben W
  organization: Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory
– sequence: 4
  givenname: Sabine C
  orcidid: 0000-0002-7305-5171
  surname: Matysik
  fullname: Matysik, Sabine C
  organization: Yusuf Hamied Department of Chemistry
– sequence: 5
  givenname: Luca
  surname: Giomi
  fullname: Giomi, Luca
  organization: Institute-Lorentz
– sequence: 6
  givenname: Daniela J
  orcidid: 0000-0002-2221-6473
  surname: Kraft
  fullname: Kraft, Daniela J
  email: Kraft@Physics.LeidenUniv.nl
  organization: Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35080387$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LAzEQhoNU7IeevckeBdk2yXazWRCh1E-oCNqDt5DNTuqWbFKTrtB_75bWogdPM0yeeSc8fdSxzgJC5wQPCaZkJFWw0rohUTjHnB-hHskTFmPO3juHPiVd1A9hiXGa8YydoG6SYo4TnvXQ9RsYHU9CgLowm-h2Y2VdqRA5Hb2CclZXi8bLwkA0dca4qpQmenYGVGMgnKJjLU2As30doPn93Xz6GM9eHp6mk1ksxzRfx5CWisgCK67GYw20ZFByyEiqMMsIScuUlW0tZUa51inWkhYYCswJbQckGaCbXeyqKWooFdi1l0asfFVLvxFOVuLvi60-xMJ9Cc5ZluO8DbjcB3j32UBYi7oKCoyRFlwTBGWU5iyhyRYd7VDlXQge9OEMwWKrXOyVi73yduPi9-8O_I_jFrjaAe2mWLrG29bVv3Hf5k6QAQ
CitedBy_id crossref_primary_10_1016_j_jcis_2022_08_158
crossref_primary_10_3390_mi13071102
crossref_primary_10_1038_s41467_023_43390_0
crossref_primary_10_1002_smll_202402389
crossref_primary_10_1039_D3SM00194F
crossref_primary_10_1063_5_0140847
crossref_primary_10_1002_smtd_202300383
crossref_primary_10_1039_D3SM00196B
crossref_primary_10_1126_science_adl5549
crossref_primary_10_1021_acsami_4c09497
crossref_primary_10_1021_jacsau_3c00812
crossref_primary_10_1021_acsnano_3c05569
crossref_primary_10_1063_5_0130796
crossref_primary_10_1021_acsnano_3c00751
crossref_primary_10_1103_PhysRevE_107_064605
crossref_primary_10_1039_D3SM01255G
Cites_doi 10.1038/nphys2693
10.1103/PhysRevLett.121.138002
10.1021/la048569r
10.1016/S0921-5093(97)80041-X
10.1126/science.1113207
10.1201/b11712
10.1039/C0SM01246G
10.1038/439545a
10.1039/C4SM00796D
10.1021/ja3091615
10.1039/C8CC03637C
10.1103/PhysRevE.87.032305
10.1038/nature08906
10.1126/sciadv.1501779
10.1038/320340a0
10.1103/PhysRevX.5.021012
10.1103/PhysRevLett.118.158001
10.1021/ja301344n
10.1103/PhysRevE.86.041124
10.1021/acsnano.5b05058
10.1038/nphys3030
10.1080/1478643031000098828
10.1039/C8SM01661E
10.1126/sciadv.1700321
10.1021/ja406226b
10.1126/science.287.5453.627
10.1209/0295-5075/119/40002
10.1021/ja908364k
10.1039/c0cs00048e
10.1038/nature14043
10.1038/nature12591
10.1021/nn500978p
10.1126/science.287.5451.290
10.1038/s41586-020-2718-6
10.1126/science.1086189
10.1103/PhysRevLett.110.148303
10.1126/science.1087140
10.1002/adfm.201908242
10.1021/acsnano.8b00521
10.1039/C6NR08069C
10.1002/asia.201900962
10.1088/2515-7639/abf571
10.1039/c4sm00026a
10.1103/PhysRevResearch.2.033136
10.1021/ja017653f
10.1038/nature11564
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsnano.1c09088
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 2480
ExternalDocumentID 10_1021_acsnano_1c09088
35080387
b201844313
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: NA
– fundername: ;
  grantid: 758383
GroupedDBID -
23M
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
BAANH
CGR
CUPRZ
CUY
CVF
ECM
ED~
EIF
JG~
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a429t-e5dc1ab0c8c44fe2d6ed8e715c067115d56d711da728ff50fa2b0eb081228f13
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Tue Sep 17 21:25:46 EDT 2024
Fri Aug 16 22:46:03 EDT 2024
Fri Aug 23 02:58:46 EDT 2024
Sat Sep 28 08:20:53 EDT 2024
Thu Feb 24 03:10:33 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords mobile DNA linkers
colloidal clusters
self-assembly
structural flexibility
controlled valence
Language English
License Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-e5dc1ab0c8c44fe2d6ed8e715c067115d56d711da728ff50fa2b0eb081228f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2221-6473
0000-0003-3925-5732
0000-0002-7305-5171
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8867909
PMID 35080387
PQID 2622963239
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8867909
proquest_miscellaneous_2622963239
crossref_primary_10_1021_acsnano_1c09088
pubmed_primary_35080387
acs_journals_10_1021_acsnano_1c09088
PublicationCentury 2000
PublicationDate 2022-02-22
PublicationDateYYYYMMDD 2022-02-22
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref22/cit22
  doi: 10.1038/nphys2693
– ident: ref42/cit42
  doi: 10.1103/PhysRevLett.121.138002
– ident: ref46/cit46
  doi: 10.1021/la048569r
– ident: ref41/cit41
  doi: 10.1016/S0921-5093(97)80041-X
– ident: ref3/cit3
  doi: 10.1126/science.1113207
– ident: ref40/cit40
  doi: 10.1201/b11712
– ident: ref2/cit2
  doi: 10.1039/C0SM01246G
– ident: ref10/cit10
  doi: 10.1038/439545a
– ident: ref28/cit28
  doi: 10.1039/C4SM00796D
– ident: ref44/cit44
  doi: 10.1021/ja3091615
– ident: ref18/cit18
  doi: 10.1039/C8CC03637C
– ident: ref29/cit29
  doi: 10.1103/PhysRevE.87.032305
– ident: ref37/cit37
  doi: 10.1038/nature08906
– ident: ref14/cit14
  doi: 10.1126/sciadv.1501779
– ident: ref1/cit1
  doi: 10.1038/320340a0
– ident: ref33/cit33
  doi: 10.1103/PhysRevX.5.021012
– ident: ref6/cit6
  doi: 10.1103/PhysRevLett.118.158001
– ident: ref16/cit16
  doi: 10.1021/ja301344n
– ident: ref34/cit34
  doi: 10.1103/PhysRevE.86.041124
– ident: ref12/cit12
  doi: 10.1021/acsnano.5b05058
– ident: ref23/cit23
  doi: 10.1038/nphys3030
– ident: ref26/cit26
  doi: 10.1080/1478643031000098828
– ident: ref25/cit25
  doi: 10.1039/C8SM01661E
– ident: ref35/cit35
  doi: 10.1126/sciadv.1700321
– ident: ref39/cit39
  doi: 10.1021/ja406226b
– ident: ref5/cit5
  doi: 10.1126/science.287.5453.627
– ident: ref45/cit45
  doi: 10.1209/0295-5075/119/40002
– ident: ref8/cit8
  doi: 10.1021/ja908364k
– ident: ref15/cit15
  doi: 10.1039/c0cs00048e
– ident: ref43/cit43
  doi: 10.1038/nature14043
– ident: ref13/cit13
  doi: 10.1038/nature12591
– ident: ref27/cit27
  doi: 10.1021/nn500978p
– ident: ref4/cit4
  doi: 10.1126/science.287.5451.290
– ident: ref21/cit21
  doi: 10.1038/s41586-020-2718-6
– ident: ref19/cit19
  doi: 10.1126/science.1086189
– ident: ref31/cit31
  doi: 10.1103/PhysRevLett.110.148303
– ident: ref9/cit9
  doi: 10.1126/science.1087140
– ident: ref7/cit7
  doi: 10.1002/adfm.201908242
– ident: ref36/cit36
  doi: 10.1021/acsnano.8b00521
– ident: ref24/cit24
  doi: 10.1039/C6NR08069C
– ident: ref11/cit11
  doi: 10.1002/asia.201900962
– ident: ref38/cit38
  doi: 10.1088/2515-7639/abf571
– ident: ref30/cit30
  doi: 10.1039/c4sm00026a
– ident: ref20/cit20
  doi: 10.1103/PhysRevResearch.2.033136
– ident: ref32/cit32
  doi: 10.1021/ja017653f
– ident: ref17/cit17
  doi: 10.1038/nature11564
SSID ssj0057876
Score 2.5563135
Snippet Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental...
Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2471
SubjectTerms Anisotropy
Colloids - chemistry
Photons
Title Self-Assembly Dynamics of Reconfigurable Colloidal Molecules
URI http://dx.doi.org/10.1021/acsnano.1c09088
https://www.ncbi.nlm.nih.gov/pubmed/35080387
https://search.proquest.com/docview/2622963239
https://pubmed.ncbi.nlm.nih.gov/PMC8867909
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8NADLZoWWDg_SgvBakDDIHc5S2xoD7UBZZ2YIsu94BKJUFNO_DvsZu0aqkqwRTpcjrlbMv-Lj5_BmiaOA7x1CDt0KTS9qSv7dQT2mahMIGvReDFVCjc64evb1G7QzQ59xsy-Jw9CllkIssfmHToTk4NtnmIOIFQUKs_d7pkd0GZQMYDMqKIBYvP2gIUhmSxGobWsOXvK5JLMae7_4-vPYC9Clhaz6UlHMKWzo5gd4lu8Bie-npkbErzfqajb6tdNqMvrNxYdArNzPB9OqZSKot-J-RDheu9lO1zdXECg25n0OrZVfcEW2CMmdjaV5KJ1JGR9DyjuQq0inTIfIkBCnGg8gOFTyVCHhnjO0bw1NEpQgSOA8w9hXqWZ_ocLHSmrhtIo7THUI8GIa5gkjgfje_JwGlAE7edVMZfJLO8NmdJJYukkkUD7uYiT75KKo3NU2_nKknQ3CmHITKdT4uEB5yjz-Bu3ICzUkWLxVwEm5SNb0C4orzFBKLSXn2TDT9mlNoR8Q468cXfdnIJO5yqIKiynV9BfTKe6muoFWp6M7PKHxDE374
link.rule.ids 230,315,782,786,887,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5RGICB96M8g8TAEoidxEkkFkRBRdAu7cAWOX5AJUgQoQP_nrsmLRSEBFMkxzrZdxff55zvM8CxTZIIdw3KjWym3ECFxs0CaVwWSStCI0WQUKFwuxd17-PWFdHkeONaGBxEiZLKURL_k12AnWFbLvPilCmPjuY0YC4UCIUJDF32xmsvuZ-o8si4T0YwMSHz-SGAopEqp6PRD4j5_aTkl9Bzvfz_Qa_AUg0znYvKL1ZhxuRrsPiFfHAdznvmybqU9H3Ont6dVnU1fekU1qE9aW4HD8NXKqxy6OdCMdAor1NdpmvKDehfX_Uv2259l4IrMeK8uSbUisnMU7EKAmu4FkbHJmKhwnCFqFCHQuNTy4jH1oaelTzzTIaAgWMD8zdhNi9ysw0OLq2-L5TVJmBoVYuAVzJFDJA2DJTwmnCM007rT6FMR1luztJaF2mtiyacjDWfvlTEGr93PRpbJkXnp4yGzE0xLFMuOMcVhPtJE7YqS02E-Qg9KTffhGjKhpMORKw9_SYfPI4ItmNiIfSSnb_N5BDm2_3OXXp3073dhQVO9RFU8873YPbtdWj2oVHq4cHIUT8Aj4HoKw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOjB92N9VvDgpdqkbdqCF3FdFB8IuwdvJc1DF7SV7e7Bf-_Mtru4LoJ4KqRhSDJJ5ptM5gvAiU2SCL0G5UY2U26gQuNmgTQui6QVoZEiSChR-KYdPT7HzWuiyQlGuTDYiBIllcMgPq3qD21rhgF2juW5zIszpjy6njML86GIEnK5Lq_ao_2XpqCoYsnoKyOgGBP6TAkgi6TKSYs0BTN_3pb8Zn5aK_9r-Cos13DTuazmxxrMmHwdlr6REG7ARdu8WZeCv-_Z26fTrJ6oL53COuSb5rb7MuhRgpVDhwxFV6O8h-pRXVNuQqd13bm6ces3FVyJlqfvmlArJjNPxSoIrOFaGB2biIUKzRaiQx0KjV8tIx5bG3pW8swzGQIHjgXM34K5vMjNDji4xfq-UFabgKF2LQJfyRQxQdowUMJrwAl2O62XRJkOo92cpfVYpPVYNOB0NPrpR0Ww8XvV45F2UlwEFNmQuSkGZcoF57iTcD9pwHalrbEwHyEoxegbEE3ocVyBCLYn_-Td1yHRdkxshF6y-7eeHMHCU7OV3t8-3u3BIqc0CUp95_sw1-8NzAHMlnpwOJyrXyA26q4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Assembly+Dynamics+of+Reconfigurable+Colloidal+Molecules&rft.jtitle=ACS+nano&rft.au=Chakraborty%2C+Indrani&rft.au=Pearce%2C+Daniel+J+G&rft.au=Verweij%2C+Ruben+W&rft.au=Matysik%2C+Sabine+C&rft.date=2022-02-22&rft.eissn=1936-086X&rft.volume=16&rft.issue=2&rft.spage=2471&rft.epage=2480&rft_id=info:doi/10.1021%2Facsnano.1c09088&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon