Self-Assembly Dynamics of Reconfigurable Colloidal Molecules
Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental realizations are missing the structural flexibility present in real molecules thereby restricting their use as model systems. We overcome this limitatio...
Saved in:
Published in: | ACS nano Vol. 16; no. 2; pp. 2471 - 2480 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
22-02-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental realizations are missing the structural flexibility present in real molecules thereby restricting their use as model systems. We overcome this limitation by assembling reconfigurable colloidal molecules from silica particles functionalized with mobile DNA linkers in high yields. We achieve this by steering the self-assembly pathway toward the formation of finite-sized clusters by employing high number ratios of particles functionalized with complementary DNA strands. The size ratio of the two species of particles provides control over the overall cluster size, i.e., the number of bound particles N, as well as the degree of reconfigurability. The bond flexibility provided by the mobile linkers allows the successful assembly of colloidal clusters with the geometrically expected maximum number of bound particles and shape. We quantitatively examine the self-assembly dynamics of these flexible colloidal molecules by a combination of experiments, agent-based simulations, and an analytical model. Our “flexible colloidal molecules” are exciting building blocks for investigating and exploiting the self-assembly of complex hierarchical structures, photonic crystals, and colloidal metamaterials. |
---|---|
AbstractList | Colloidal molecules
are designed to mimic their molecular analogues
through their anisotropic shape and interactions. However, current
experimental realizations are missing the structural flexibility present
in real molecules thereby restricting their use as model systems.
We overcome this limitation by assembling reconfigurable colloidal
molecules from silica particles functionalized with mobile DNA linkers
in high yields. We achieve this by steering the self-assembly pathway
toward the formation of finite-sized clusters by employing high number
ratios of particles functionalized with complementary DNA strands.
The size ratio of the two species of particles provides control over
the overall cluster size,
i.e.
, the number of bound
particles
N
, as well as the degree of reconfigurability.
The bond flexibility provided by the mobile linkers allows the successful
assembly of colloidal clusters with the geometrically expected maximum
number of bound particles and shape. We quantitatively examine the
self-assembly dynamics of these flexible colloidal molecules by a
combination of experiments, agent-based simulations, and an analytical
model. Our “flexible colloidal molecules” are exciting
building blocks for investigating and exploiting the self-assembly
of complex hierarchical structures, photonic crystals, and colloidal
metamaterials. Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental realizations are missing the structural flexibility present in real molecules thereby restricting their use as model systems. We overcome this limitation by assembling reconfigurable colloidal molecules from silica particles functionalized with mobile DNA linkers in high yields. We achieve this by steering the self-assembly pathway toward the formation of finite-sized clusters by employing high number ratios of particles functionalized with complementary DNA strands. The size ratio of the two species of particles provides control over the overall cluster size, i.e., the number of bound particles N, as well as the degree of reconfigurability. The bond flexibility provided by the mobile linkers allows the successful assembly of colloidal clusters with the geometrically expected maximum number of bound particles and shape. We quantitatively examine the self-assembly dynamics of these flexible colloidal molecules by a combination of experiments, agent-based simulations, and an analytical model. Our “flexible colloidal molecules” are exciting building blocks for investigating and exploiting the self-assembly of complex hierarchical structures, photonic crystals, and colloidal metamaterials. Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental realizations are missing the structural flexibility present in real molecules thereby restricting their use as model systems. We overcome this limitation by assembling reconfigurable colloidal molecules from silica particles functionalized with mobile DNA linkers in high yields. We achieve this by steering the self-assembly pathway toward the formation of finite-sized clusters by employing high number ratios of particles functionalized with complementary DNA strands. The size ratio of the two species of particles provides control over the overall cluster size, , the number of bound particles , as well as the degree of reconfigurability. The bond flexibility provided by the mobile linkers allows the successful assembly of colloidal clusters with the geometrically expected maximum number of bound particles and shape. We quantitatively examine the self-assembly dynamics of these flexible colloidal molecules by a combination of experiments, agent-based simulations, and an analytical model. Our "flexible colloidal molecules" are exciting building blocks for investigating and exploiting the self-assembly of complex hierarchical structures, photonic crystals, and colloidal metamaterials. |
Author | Matysik, Sabine C Verweij, Ruben W Kraft, Daniela J Giomi, Luca Chakraborty, Indrani Pearce, Daniel J. G |
AuthorAffiliation | Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory Massachusetts Institute of Technology Yusuf Hamied Department of Chemistry Institute-Lorentz University of Geneva Birla Institute of Technology and Science Department of Theoretical Physics Department of Mathematics Department of Physics |
AuthorAffiliation_xml | – name: Birla Institute of Technology and Science – name: Institute-Lorentz – name: Department of Mathematics – name: Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory – name: Department of Physics – name: University of Geneva – name: Department of Theoretical Physics – name: Yusuf Hamied Department of Chemistry – name: Massachusetts Institute of Technology |
Author_xml | – sequence: 1 givenname: Indrani surname: Chakraborty fullname: Chakraborty, Indrani organization: Birla Institute of Technology and Science – sequence: 2 givenname: Daniel J. G surname: Pearce fullname: Pearce, Daniel J. G organization: University of Geneva – sequence: 3 givenname: Ruben W orcidid: 0000-0003-3925-5732 surname: Verweij fullname: Verweij, Ruben W organization: Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory – sequence: 4 givenname: Sabine C orcidid: 0000-0002-7305-5171 surname: Matysik fullname: Matysik, Sabine C organization: Yusuf Hamied Department of Chemistry – sequence: 5 givenname: Luca surname: Giomi fullname: Giomi, Luca organization: Institute-Lorentz – sequence: 6 givenname: Daniela J orcidid: 0000-0002-2221-6473 surname: Kraft fullname: Kraft, Daniela J email: Kraft@Physics.LeidenUniv.nl organization: Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35080387$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1LAzEQhoNU7IeevckeBdk2yXazWRCh1E-oCNqDt5DNTuqWbFKTrtB_75bWogdPM0yeeSc8fdSxzgJC5wQPCaZkJFWw0rohUTjHnB-hHskTFmPO3juHPiVd1A9hiXGa8YydoG6SYo4TnvXQ9RsYHU9CgLowm-h2Y2VdqRA5Hb2CclZXi8bLwkA0dca4qpQmenYGVGMgnKJjLU2As30doPn93Xz6GM9eHp6mk1ksxzRfx5CWisgCK67GYw20ZFByyEiqMMsIScuUlW0tZUa51inWkhYYCswJbQckGaCbXeyqKWooFdi1l0asfFVLvxFOVuLvi60-xMJ9Cc5ZluO8DbjcB3j32UBYi7oKCoyRFlwTBGWU5iyhyRYd7VDlXQge9OEMwWKrXOyVi73yduPi9-8O_I_jFrjaAe2mWLrG29bVv3Hf5k6QAQ |
CitedBy_id | crossref_primary_10_1016_j_jcis_2022_08_158 crossref_primary_10_3390_mi13071102 crossref_primary_10_1038_s41467_023_43390_0 crossref_primary_10_1002_smll_202402389 crossref_primary_10_1039_D3SM00194F crossref_primary_10_1063_5_0140847 crossref_primary_10_1002_smtd_202300383 crossref_primary_10_1039_D3SM00196B crossref_primary_10_1126_science_adl5549 crossref_primary_10_1021_acsami_4c09497 crossref_primary_10_1021_jacsau_3c00812 crossref_primary_10_1021_acsnano_3c05569 crossref_primary_10_1063_5_0130796 crossref_primary_10_1021_acsnano_3c00751 crossref_primary_10_1103_PhysRevE_107_064605 crossref_primary_10_1039_D3SM01255G |
Cites_doi | 10.1038/nphys2693 10.1103/PhysRevLett.121.138002 10.1021/la048569r 10.1016/S0921-5093(97)80041-X 10.1126/science.1113207 10.1201/b11712 10.1039/C0SM01246G 10.1038/439545a 10.1039/C4SM00796D 10.1021/ja3091615 10.1039/C8CC03637C 10.1103/PhysRevE.87.032305 10.1038/nature08906 10.1126/sciadv.1501779 10.1038/320340a0 10.1103/PhysRevX.5.021012 10.1103/PhysRevLett.118.158001 10.1021/ja301344n 10.1103/PhysRevE.86.041124 10.1021/acsnano.5b05058 10.1038/nphys3030 10.1080/1478643031000098828 10.1039/C8SM01661E 10.1126/sciadv.1700321 10.1021/ja406226b 10.1126/science.287.5453.627 10.1209/0295-5075/119/40002 10.1021/ja908364k 10.1039/c0cs00048e 10.1038/nature14043 10.1038/nature12591 10.1021/nn500978p 10.1126/science.287.5451.290 10.1038/s41586-020-2718-6 10.1126/science.1086189 10.1103/PhysRevLett.110.148303 10.1126/science.1087140 10.1002/adfm.201908242 10.1021/acsnano.8b00521 10.1039/C6NR08069C 10.1002/asia.201900962 10.1088/2515-7639/abf571 10.1039/c4sm00026a 10.1103/PhysRevResearch.2.033136 10.1021/ja017653f 10.1038/nature11564 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society 2022 The Authors. Published by American Chemical Society 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society – notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acsnano.1c09088 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 2480 |
ExternalDocumentID | 10_1021_acsnano_1c09088 35080387 b201844313 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: NA – fundername: ; grantid: 758383 |
GroupedDBID | - 23M 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED F5P GGK GNL IH9 IHE JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH ABJNI ABQRX ACBEA ACGFO ADHLV BAANH CGR CUPRZ CUY CVF ECM ED~ EIF JG~ NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a429t-e5dc1ab0c8c44fe2d6ed8e715c067115d56d711da728ff50fa2b0eb081228f13 |
IEDL.DBID | ACS |
ISSN | 1936-0851 |
IngestDate | Tue Sep 17 21:25:46 EDT 2024 Fri Aug 16 22:46:03 EDT 2024 Fri Aug 23 02:58:46 EDT 2024 Sat Sep 28 08:20:53 EDT 2024 Thu Feb 24 03:10:33 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | mobile DNA linkers colloidal clusters self-assembly structural flexibility controlled valence |
Language | English |
License | Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-e5dc1ab0c8c44fe2d6ed8e715c067115d56d711da728ff50fa2b0eb081228f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2221-6473 0000-0003-3925-5732 0000-0002-7305-5171 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8867909 |
PMID | 35080387 |
PQID | 2622963239 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8867909 proquest_miscellaneous_2622963239 crossref_primary_10_1021_acsnano_1c09088 pubmed_primary_35080387 acs_journals_10_1021_acsnano_1c09088 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-22 |
PublicationDateYYYYMMDD | 2022-02-22 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref22/cit22 doi: 10.1038/nphys2693 – ident: ref42/cit42 doi: 10.1103/PhysRevLett.121.138002 – ident: ref46/cit46 doi: 10.1021/la048569r – ident: ref41/cit41 doi: 10.1016/S0921-5093(97)80041-X – ident: ref3/cit3 doi: 10.1126/science.1113207 – ident: ref40/cit40 doi: 10.1201/b11712 – ident: ref2/cit2 doi: 10.1039/C0SM01246G – ident: ref10/cit10 doi: 10.1038/439545a – ident: ref28/cit28 doi: 10.1039/C4SM00796D – ident: ref44/cit44 doi: 10.1021/ja3091615 – ident: ref18/cit18 doi: 10.1039/C8CC03637C – ident: ref29/cit29 doi: 10.1103/PhysRevE.87.032305 – ident: ref37/cit37 doi: 10.1038/nature08906 – ident: ref14/cit14 doi: 10.1126/sciadv.1501779 – ident: ref1/cit1 doi: 10.1038/320340a0 – ident: ref33/cit33 doi: 10.1103/PhysRevX.5.021012 – ident: ref6/cit6 doi: 10.1103/PhysRevLett.118.158001 – ident: ref16/cit16 doi: 10.1021/ja301344n – ident: ref34/cit34 doi: 10.1103/PhysRevE.86.041124 – ident: ref12/cit12 doi: 10.1021/acsnano.5b05058 – ident: ref23/cit23 doi: 10.1038/nphys3030 – ident: ref26/cit26 doi: 10.1080/1478643031000098828 – ident: ref25/cit25 doi: 10.1039/C8SM01661E – ident: ref35/cit35 doi: 10.1126/sciadv.1700321 – ident: ref39/cit39 doi: 10.1021/ja406226b – ident: ref5/cit5 doi: 10.1126/science.287.5453.627 – ident: ref45/cit45 doi: 10.1209/0295-5075/119/40002 – ident: ref8/cit8 doi: 10.1021/ja908364k – ident: ref15/cit15 doi: 10.1039/c0cs00048e – ident: ref43/cit43 doi: 10.1038/nature14043 – ident: ref13/cit13 doi: 10.1038/nature12591 – ident: ref27/cit27 doi: 10.1021/nn500978p – ident: ref4/cit4 doi: 10.1126/science.287.5451.290 – ident: ref21/cit21 doi: 10.1038/s41586-020-2718-6 – ident: ref19/cit19 doi: 10.1126/science.1086189 – ident: ref31/cit31 doi: 10.1103/PhysRevLett.110.148303 – ident: ref9/cit9 doi: 10.1126/science.1087140 – ident: ref7/cit7 doi: 10.1002/adfm.201908242 – ident: ref36/cit36 doi: 10.1021/acsnano.8b00521 – ident: ref24/cit24 doi: 10.1039/C6NR08069C – ident: ref11/cit11 doi: 10.1002/asia.201900962 – ident: ref38/cit38 doi: 10.1088/2515-7639/abf571 – ident: ref30/cit30 doi: 10.1039/c4sm00026a – ident: ref20/cit20 doi: 10.1103/PhysRevResearch.2.033136 – ident: ref32/cit32 doi: 10.1021/ja017653f – ident: ref17/cit17 doi: 10.1038/nature11564 |
SSID | ssj0057876 |
Score | 2.5563135 |
Snippet | Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental... Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental... |
SourceID | pubmedcentral proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2471 |
SubjectTerms | Anisotropy Colloids - chemistry Photons |
Title | Self-Assembly Dynamics of Reconfigurable Colloidal Molecules |
URI | http://dx.doi.org/10.1021/acsnano.1c09088 https://www.ncbi.nlm.nih.gov/pubmed/35080387 https://search.proquest.com/docview/2622963239 https://pubmed.ncbi.nlm.nih.gov/PMC8867909 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8NADLZoWWDg_SgvBakDDIHc5S2xoD7UBZZ2YIsu94BKJUFNO_DvsZu0aqkqwRTpcjrlbMv-Lj5_BmiaOA7x1CDt0KTS9qSv7dQT2mahMIGvReDFVCjc64evb1G7QzQ59xsy-Jw9CllkIssfmHToTk4NtnmIOIFQUKs_d7pkd0GZQMYDMqKIBYvP2gIUhmSxGobWsOXvK5JLMae7_4-vPYC9Clhaz6UlHMKWzo5gd4lu8Bie-npkbErzfqajb6tdNqMvrNxYdArNzPB9OqZSKot-J-RDheu9lO1zdXECg25n0OrZVfcEW2CMmdjaV5KJ1JGR9DyjuQq0inTIfIkBCnGg8gOFTyVCHhnjO0bw1NEpQgSOA8w9hXqWZ_ocLHSmrhtIo7THUI8GIa5gkjgfje_JwGlAE7edVMZfJLO8NmdJJYukkkUD7uYiT75KKo3NU2_nKknQ3CmHITKdT4uEB5yjz-Bu3ICzUkWLxVwEm5SNb0C4orzFBKLSXn2TDT9mlNoR8Q468cXfdnIJO5yqIKiynV9BfTKe6muoFWp6M7PKHxDE374 |
link.rule.ids | 230,315,782,786,887,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5RGICB96M8g8TAEoidxEkkFkRBRdAu7cAWOX5AJUgQoQP_nrsmLRSEBFMkxzrZdxff55zvM8CxTZIIdw3KjWym3ECFxs0CaVwWSStCI0WQUKFwuxd17-PWFdHkeONaGBxEiZLKURL_k12AnWFbLvPilCmPjuY0YC4UCIUJDF32xmsvuZ-o8si4T0YwMSHz-SGAopEqp6PRD4j5_aTkl9Bzvfz_Qa_AUg0znYvKL1ZhxuRrsPiFfHAdznvmybqU9H3Ont6dVnU1fekU1qE9aW4HD8NXKqxy6OdCMdAor1NdpmvKDehfX_Uv2259l4IrMeK8uSbUisnMU7EKAmu4FkbHJmKhwnCFqFCHQuNTy4jH1oaelTzzTIaAgWMD8zdhNi9ysw0OLq2-L5TVJmBoVYuAVzJFDJA2DJTwmnCM007rT6FMR1luztJaF2mtiyacjDWfvlTEGr93PRpbJkXnp4yGzE0xLFMuOMcVhPtJE7YqS02E-Qg9KTffhGjKhpMORKw9_SYfPI4ItmNiIfSSnb_N5BDm2_3OXXp3073dhQVO9RFU8873YPbtdWj2oVHq4cHIUT8Aj4HoKw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOjB92N9VvDgpdqkbdqCF3FdFB8IuwdvJc1DF7SV7e7Bf-_Mtru4LoJ4KqRhSDJJ5ptM5gvAiU2SCL0G5UY2U26gQuNmgTQui6QVoZEiSChR-KYdPT7HzWuiyQlGuTDYiBIllcMgPq3qD21rhgF2juW5zIszpjy6njML86GIEnK5Lq_ao_2XpqCoYsnoKyOgGBP6TAkgi6TKSYs0BTN_3pb8Zn5aK_9r-Cos13DTuazmxxrMmHwdlr6REG7ARdu8WZeCv-_Z26fTrJ6oL53COuSb5rb7MuhRgpVDhwxFV6O8h-pRXVNuQqd13bm6ces3FVyJlqfvmlArJjNPxSoIrOFaGB2biIUKzRaiQx0KjV8tIx5bG3pW8swzGQIHjgXM34K5vMjNDji4xfq-UFabgKF2LQJfyRQxQdowUMJrwAl2O62XRJkOo92cpfVYpPVYNOB0NPrpR0Ww8XvV45F2UlwEFNmQuSkGZcoF57iTcD9pwHalrbEwHyEoxegbEE3ocVyBCLYn_-Td1yHRdkxshF6y-7eeHMHCU7OV3t8-3u3BIqc0CUp95_sw1-8NzAHMlnpwOJyrXyA26q4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Assembly+Dynamics+of+Reconfigurable+Colloidal+Molecules&rft.jtitle=ACS+nano&rft.au=Chakraborty%2C+Indrani&rft.au=Pearce%2C+Daniel+J+G&rft.au=Verweij%2C+Ruben+W&rft.au=Matysik%2C+Sabine+C&rft.date=2022-02-22&rft.eissn=1936-086X&rft.volume=16&rft.issue=2&rft.spage=2471&rft.epage=2480&rft_id=info:doi/10.1021%2Facsnano.1c09088&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |