Mixed Precision Fermi-Operator Expansion on Tensor Cores from a Machine Learning Perspective

We present a second-order recursive Fermi-operator expansion scheme using mixed precision floating point operations to perform electronic structure calculations using tensor core units. A performance of over 100 teraFLOPs is achieved for half-precision floating point operations on Nvidia’s A100 tens...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation Vol. 17; no. 4; pp. 2256 - 2265
Main Authors: Finkelstein, Joshua, Smith, Justin S, Mniszewski, Susan M, Barros, Kipton, Negre, Christian F. A, Rubensson, Emanuel H, Niklasson, Anders M. N
Format: Journal Article
Language:English
Published: United States American Chemical Society 13-04-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a second-order recursive Fermi-operator expansion scheme using mixed precision floating point operations to perform electronic structure calculations using tensor core units. A performance of over 100 teraFLOPs is achieved for half-precision floating point operations on Nvidia’s A100 tensor core units. The second-order recursive Fermi-operator scheme is formulated in terms of a generalized, differentiable deep neural network structure, which solves the quantum mechanical electronic structure problem. We demonstrate how this network can be accelerated by optimizing the weight and bias values to substantially reduce the number of layers required for convergence. We also show how this machine learning approach can be used to optimize the coefficients of the recursive Fermi-operator expansion to accurately represent the fractional occupation numbers of the electronic states at finite temperatures.
AbstractList We present a second-order recursive Fermi-operator expansion scheme using mixed precision floating point operations to perform electronic structure calculations using tensor core units. A performance of over 100 teraFLOPs is achieved for half-precision floating point operations on Nvidia's A100 tensor core units. The second-order recursive Fermi-operator scheme is formulated in terms of a generalized, differentiable deep neural network structure, which solves the quantum mechanical electronic structure problem. We demonstrate how this network can be accelerated by optimizing the weight and bias values to substantially reduce the number of layers required for convergence. We also show how this machine learning approach can be used to optimize the coefficients of the recursive Fermi-operator expansion to accurately represent the fractional occupation numbers of the electronic states at finite temperatures.
Here we present a second-order recursive Fermi-operator expansion scheme using mixed precision floating point operations to perform electronic structure calculations using tensor core units. A performance of over 100 teraFLOPs is achieved for half-precision floating point operations on Nvidia’s A100 tensor core units. The second-order recursive Fermi-operator scheme is formulated in terms of a generalized, differentiable deep neural network structure, which solves the quantum mechanical electronic structure problem. We demonstrate how this network can be accelerated by optimizing the weight and bias values to substantially reduce the number of layers required for convergence. We also show how this machine learning approach can be used to optimize the coefficients of the recursive Fermi-operator expansion to accurately represent the fractional occupation numbers of the electronic states at finite temperatures.
Author Mniszewski, Susan M
Rubensson, Emanuel H
Barros, Kipton
Negre, Christian F. A
Niklasson, Anders M. N
Smith, Justin S
Finkelstein, Joshua
AuthorAffiliation Computer, Computational, and Statistical Sciences Division
Theoretical Division
Division of Scientific Computing, Department of Information Technology
Los Alamos National Laboratory
AuthorAffiliation_xml – name: Theoretical Division
– name: Division of Scientific Computing, Department of Information Technology
– name: Los Alamos National Laboratory
– name: Computer, Computational, and Statistical Sciences Division
Author_xml – sequence: 1
  givenname: Joshua
  orcidid: 0000-0002-1506-6008
  surname: Finkelstein
  fullname: Finkelstein, Joshua
  email: jdf@lanl.gov
  organization: Theoretical Division
– sequence: 2
  givenname: Justin S
  surname: Smith
  fullname: Smith, Justin S
  organization: Theoretical Division
– sequence: 3
  givenname: Susan M
  orcidid: 0000-0002-0077-0537
  surname: Mniszewski
  fullname: Mniszewski, Susan M
  organization: Los Alamos National Laboratory
– sequence: 4
  givenname: Kipton
  surname: Barros
  fullname: Barros, Kipton
  organization: Theoretical Division
– sequence: 5
  givenname: Christian F. A
  surname: Negre
  fullname: Negre, Christian F. A
  email: cnegre@lanl.gov
  organization: Theoretical Division
– sequence: 6
  givenname: Emanuel H
  surname: Rubensson
  fullname: Rubensson, Emanuel H
  organization: Division of Scientific Computing, Department of Information Technology
– sequence: 7
  givenname: Anders M. N
  surname: Niklasson
  fullname: Niklasson, Anders M. N
  email: amn@lanl.gov
  organization: Theoretical Division
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33797253$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1804430$$D View this record in Osti.gov
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-439572$$DView record from Swedish Publication Index
BookMark eNp1kd1rFDEUxYNU7Ie--ySDvvjgrPlO5rGsrQpb2ofqkxAymTttlp1kmsxo_e9Nu9sVBCFwQ-7vnNzLOUYHIQZA6DXBC4Ip-WhdXqzd5BbEYYyFeoaOiOBN3UgqD_Z3og_Rcc5rjBnjlL1Ah4ypRlHBjtCPC38PXXWVwPnsY6jOIQ2-vhwh2Smm6ux-tOGxUc41hFzeljFBrvoUh8pWF9bd-gDVCmwKPtxUV5DyCG7yP-Elet7bTYZXu3qCvp2fXS-_1KvLz1-Xp6vacqqnGqQS2BHcSist71TfsE42LW4119RSSRrmuHLUdpr0vFcU45ZT0JRq0mndsRP0Yeubf8E4t2ZMfrDpt4nWm0_--6mJ6cbMs-GsEYoW_O0Wj3nyJjs_gbt1MYQytSEac85wgd5voTHFuxnyZAafHWw2NkCcs6ECa6GkpKyg7_5B13FOoWxcKMobISjlhcJbyqWYc4J-PybB5iFNU9I0D2maXZpF8mZnPLcDdHvBU3x_F3-UPn36X78_SL6rNA
CitedBy_id crossref_primary_10_1021_acs_jctc_2c00090
crossref_primary_10_1021_acs_jctc_3c00419
crossref_primary_10_1021_acs_jpclett_3c03405
crossref_primary_10_1021_acs_jctc_2c00983
crossref_primary_10_1063_5_0137119
crossref_primary_10_1021_acs_jctc_2c00274
crossref_primary_10_1016_j_jcp_2021_110354
crossref_primary_10_1021_acs_jctc_1c00726
crossref_primary_10_1063_5_0150287
Cites_doi 10.1088/0034-4885/75/3/036503
10.1016/j.compeleceng.2020.106848
10.1103/physrevb.68.233104
10.1209/epl/i2001-00380-5
10.1103/revmodphys.71.1085
10.1063/1.1308546
10.1016/j.cpc.2020.107314
10.1016/j.jmgm.2010.06.010
10.1021/acs.jctc.8b00887
10.1137/130911585
10.1021/acs.jctc.6b00626
10.1098/rspa.1956.0100
10.1021/ct800526s
10.1103/physrevlett.73.122
10.1073/pnas.79.20.6391
10.1021/ct3004645
10.1016/0038-1098(82)90320-9
10.1021/acs.chemrev.0c00700
10.1103/physreve.92.063301
10.1109/IPDPS.2019.00022
10.1021/acs.jctc.0c00243
10.1016/s0010-4655(99)00221-0
10.1021/ct2001705
10.1021/acs.jctc.6b00154
10.1006/jcph.1999.6215
10.1021/ct9003004
10.1016/j.cplett.2012.10.090
10.1021/ct700268q
10.1103/physrevb.66.155115
10.1088/0953-8984/23/7/075502
10.1103/revmodphys.32.335
10.1016/s0009-2614(01)00409-2
10.1103/physrevb.48.17573
10.1016/j.neunet.2014.09.003
10.1093/acprof:oso/9780198509776.001.0001
10.1103/physrevb.75.035123
10.1007/3-540-28841-4
10.1103/revmodphys.78.275
10.1002/jcc.23096
10.1021/acs.jctc.5b00370
10.1006/jcph.1996.0048
10.1103/physrevb.58.12704
10.1063/1.4943213
10.1063/1.1853378
10.1137/18m1165748
10.1142/s0129183194000842
10.1088/0953-8984/25/29/295501
10.1021/ct100701w
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright American Chemical Society Apr 13, 2021
Copyright_xml – notice: 2021 American Chemical Society
– notice: Copyright American Chemical Society Apr 13, 2021
CorporateAuthor Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
DBID NPM
AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
OIOZB
OTOTI
ADTPV
AOWAS
DF2
DOI 10.1021/acs.jctc.1c00057
DatabaseName PubMed
CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Materials Research Database


PubMed

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Mathematics
EISSN 1549-9626
EndPage 2265
ExternalDocumentID oai_DiVA_org_uu_439572
1804430
10_1021_acs_jctc_1c00057
33797253
c959824555
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACIWK
ACS
ACSAX
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
J9A
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
OIOZB
OTOTI
ADTPV
AOWAS
DF2
EJD
IHE
LG6
ID FETCH-LOGICAL-a428t-e6750c10b6a6a4d7f93d69b0b8482a26193c47c2ad81f4f7200b42e82281d88d3
IEDL.DBID ACS
ISSN 1549-9618
1549-9626
IngestDate Sat Aug 24 00:47:19 EDT 2024
Thu May 18 22:20:23 EDT 2023
Fri Aug 16 08:43:32 EDT 2024
Thu Oct 10 18:07:53 EDT 2024
Fri Aug 23 02:39:04 EDT 2024
Sat Sep 28 08:23:20 EDT 2024
Thu Apr 15 04:07:07 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a428t-e6750c10b6a6a4d7f93d69b0b8482a26193c47c2ad81f4f7200b42e82281d88d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
89233218CNA000001
LA-UR-21-20350
USDOE Laboratory Directed Research and Development (LDRD) Program
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0002-1506-6008
0000-0002-0077-0537
0000000173147896
0000000200770537
0000000213335972
0000000157200255
0000000318564982
0000000300737371
OpenAccessLink https://www.osti.gov/servlets/purl/1804430
PMID 33797253
PQID 2524955224
PQPubID 2048741
PageCount 10
ParticipantIDs swepub_primary_oai_DiVA_org_uu_439572
osti_scitechconnect_1804430
proquest_miscellaneous_2508576623
proquest_journals_2524955224
crossref_primary_10_1021_acs_jctc_1c00057
pubmed_primary_33797253
acs_journals_10_1021_acs_jctc_1c00057
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ABFRP
ACS
AEESW
AFEFF
ABMVS
ABUCX
ACSAX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2021-04-13
PublicationDateYYYYMMDD 2021-04-13
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
Finnis M. (ref3/cit3) 2003
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
Szabo A. (ref4/cit4) 1989
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref51/cit51
ref43/cit43
Economou E. N. (ref5/cit5) 2006
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref33/cit33
  doi: 10.1088/0034-4885/75/3/036503
– ident: ref52/cit52
  doi: 10.1016/j.compeleceng.2020.106848
– ident: ref38/cit38
  doi: 10.1103/physrevb.68.233104
– ident: ref9/cit9
– volume-title: Modern Quantum Chemistry
  year: 1989
  ident: ref4/cit4
  contributor:
    fullname: Szabo A.
– ident: ref28/cit28
  doi: 10.1209/epl/i2001-00380-5
– ident: ref32/cit32
  doi: 10.1103/revmodphys.71.1085
– ident: ref35/cit35
  doi: 10.1063/1.1308546
– ident: ref18/cit18
  doi: 10.1016/j.cpc.2020.107314
– ident: ref13/cit13
  doi: 10.1016/j.jmgm.2010.06.010
– ident: ref50/cit50
– ident: ref47/cit47
– ident: ref46/cit46
  doi: 10.1021/acs.jctc.8b00887
– ident: ref42/cit42
  doi: 10.1137/130911585
– ident: ref48/cit48
  doi: 10.1021/acs.jctc.6b00626
– ident: ref1/cit1
  doi: 10.1098/rspa.1956.0100
– ident: ref11/cit11
  doi: 10.1021/ct800526s
– ident: ref26/cit26
  doi: 10.1103/physrevlett.73.122
– ident: ref6/cit6
  doi: 10.1073/pnas.79.20.6391
– ident: ref15/cit15
  doi: 10.1021/ct3004645
– ident: ref27/cit27
  doi: 10.1016/0038-1098(82)90320-9
– ident: ref19/cit19
  doi: 10.1021/acs.chemrev.0c00700
– ident: ref53/cit53
  doi: 10.1103/physreve.92.063301
– ident: ref51/cit51
  doi: 10.1109/IPDPS.2019.00022
– ident: ref20/cit20
  doi: 10.1021/acs.jctc.0c00243
– ident: ref8/cit8
  doi: 10.1016/s0010-4655(99)00221-0
– ident: ref45/cit45
  doi: 10.1021/ct2001705
– ident: ref23/cit23
  doi: 10.1021/acs.jctc.6b00154
– ident: ref44/cit44
  doi: 10.1006/jcph.1999.6215
– ident: ref49/cit49
– ident: ref12/cit12
  doi: 10.1021/ct9003004
– ident: ref41/cit41
  doi: 10.1016/j.cplett.2012.10.090
– ident: ref10/cit10
  doi: 10.1021/ct700268q
– ident: ref37/cit37
  doi: 10.1103/physrevb.66.155115
– ident: ref40/cit40
  doi: 10.1088/0953-8984/23/7/075502
– ident: ref2/cit2
  doi: 10.1103/revmodphys.32.335
– ident: ref36/cit36
  doi: 10.1016/s0009-2614(01)00409-2
– ident: ref29/cit29
  doi: 10.1103/physrevb.48.17573
– ident: ref21/cit21
  doi: 10.1016/j.neunet.2014.09.003
– volume-title: Interatomic Forces in Condensed Matter
  year: 2003
  ident: ref3/cit3
  doi: 10.1093/acprof:oso/9780198509776.001.0001
  contributor:
    fullname: Finnis M.
– ident: ref30/cit30
  doi: 10.1103/physrevb.75.035123
– volume-title: Green’s Functions in Quantum Physics
  year: 2006
  ident: ref5/cit5
  doi: 10.1007/3-540-28841-4
  contributor:
    fullname: Economou E. N.
– ident: ref25/cit25
  doi: 10.1103/revmodphys.78.275
– ident: ref16/cit16
  doi: 10.1002/jcc.23096
– ident: ref17/cit17
  doi: 10.1021/acs.jctc.5b00370
– ident: ref34/cit34
  doi: 10.1006/jcph.1996.0048
– ident: ref7/cit7
  doi: 10.1103/physrevb.58.12704
– ident: ref43/cit43
  doi: 10.1063/1.4943213
– ident: ref39/cit39
  doi: 10.1063/1.1853378
– ident: ref22/cit22
  doi: 10.1137/18m1165748
– ident: ref24/cit24
  doi: 10.1142/s0129183194000842
– ident: ref31/cit31
  doi: 10.1088/0953-8984/25/29/295501
– ident: ref14/cit14
  doi: 10.1021/ct100701w
SSID ssj0033423
Score 2.461133
Snippet We present a second-order recursive Fermi-operator expansion scheme using mixed precision floating point operations to perform electronic structure...
Here we present a second-order recursive Fermi-operator expansion scheme using mixed precision floating point operations to perform electronic structure...
SourceID swepub
osti
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2256
SubjectTerms algorithms, chemical calculations
Artificial neural networks
deep neural networks
Electron states
Electronic structure
fermi operator expansion
Floating point arithmetic
Hamiltonians
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
layers
Machine learning
Mathematical analysis
mathematics
mixed precision
Optimization
Quantum Electronic Structure
Quantum mechanics
tensor cores
Tensors
Thermal expansion
Title Mixed Precision Fermi-Operator Expansion on Tensor Cores from a Machine Learning Perspective
URI http://dx.doi.org/10.1021/acs.jctc.1c00057
https://www.ncbi.nlm.nih.gov/pubmed/33797253
https://www.proquest.com/docview/2524955224
https://search.proquest.com/docview/2508576623
https://www.osti.gov/servlets/purl/1804430
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-439572
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcmgvLbSUpjxkpHLgEIgfWTvH1bIrLjwkaNVDJctxHLQcdhG7kfj5nfFml4IQAiknj-Uknhn7G834M8DPTIdCIVBNeVBVqkyNLpUbmWpR4kKZG-3jQdrTK33-x5wM_qfJeZ7BF_zY-enRrZ_5I-4JYOhVWBM6MxRo9fpXi1VXEpNd5EZVxDjJTZuSfGkE2oj89MlG1JmgQ70EMp8xiMZdZ_j5Pd-7Dp9abMl6c2PYgJUw_gIf-osr3b7C37PRQ6jY5X17sQ4bUilMenEXYrKdDR5wbYgCfK4xwMW2_gQDckanUJhjZ7H0MrCWlfWGXT6e1dyEX8PBdf80ba9XSB3GHLM0YKyQeZ6VXdd1qtJ1IatuUWalUUY4iqykV9oLVxleq1qjP5VKBEQUiHGNqeQ36Iwn4_AdWBGCqn3tcCCpyhKjRs9z42uTm1oK7xI4wGmxrXtMbcx8C25jI86VbecqgcOFTuzdnG3jlb7bpDSLSIHobj3VBfmZ5SZTSmYJ7Cx0-fhakdNN24g4VQL7SzHqgJIkbhwmDfUhzv8uosIEtuY2sPwUKXWhRY6Sg7lRLCVE0n0y-t2zaAm2aayi9Kf48cbf3oaPgkpliEJS7kBndt-EXVidVs1eNPJ_pJ31cg
link.rule.ids 230,315,782,786,887,2771,27087,27935,27936,56750,56800
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9i5TAufH-EDTASO3AIiz9SO8eqa1XEOiatIA5IluM4aBzaaWmk_fm85yatQBNCSDnZkeO8D_v39OzfA3iX6VAoBKopD6pKlanRpXIjUy1KXChzo328SDu70GffzMmEaHJ4fxcGJ9HgSE1M4u_YBfgxtf30a_-Be8IZeg_u5gh2qVrDaHzRL76SCO0iRaoi4kluuszkbSPQfuSb3_ajwQr96jas-QeRaNx8pg_-Y9oP4X6HNNloYxqP4E5YPob9cV_g7Ql8n1_ehIqdX3dldtiUDsakn69CTL2zyQ2uFLEDnwWGu9g2XmF4zuhOCnNsHg9iBtZxtP5g57ubm0_hy3SyGM_SrthC6jACWaeBhOl5Vg7d0KlK14WshkWZlUYZ4SjOkl5pL1xleK1qjd5VKhEQXyDiNaaSz2CwXC3DC2BFCKr2tcOBpCpLjCE9z42vTW5qKbxL4AjFYjtnaWzMgwtuYyPKynaySuB9rxp7teHe-Mu7B6Q7i7iByG89nRLya8tNppTMEjjsVbr7rMip7jbiT5XA22036oBSJm4ZVi29QxUAhogRE3i-MYXtVKTUhRY59hxtbGPbQ5TdJ5dfRxatwbatVZQMFS__8bffwP5sMT-1px_PPh3APUGHaIhcUh7CYH3dhlew11Tt62j3vwCmGP3X
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RRQIuvKGhBYxEDxwCie3EzrHah4qgZaUWxAHJchwbtYfdVbOR-vOZ8SZbgSqEkHLyRI5jz9jfaMbfALzNlK8kAtU097JJpQ5oUoUWqeI1bpSFVi5epD06VSff9WRKNDnFcBcGB9FiT20M4pNVr5rQMwzkH6j9wq3d-9wR1lA7cLsoEfEQIhqfDhuwIFK7SJMqiXwy13108qYe6Exy7W9n0miJtnUT3vyDTDQeQLMH_zn0h3C_R5zscKMij-CWXzyGu-Oh0NsT-HF8fuUbNr_sy-2wGSXIpF9WPobg2fQKd4wowOcM3V5sGy_RTWd0N4VZdhwTMj3ruVp_svn1Dc6n8HU2PRsfpX3RhdSiJ7JOPXoQmcuzurSllY0KlWjKqs5qLTW35G8JJ5XjttF5kEGhldWSe8QZiHy1bsQzGC2WC78LrPJeBhcsdiRkXaMv6fJCu6ALHQR3NoEDnBbTG01rYjyc5yY24lyZfq4SeDcsj1ltODj-8u4erZ9B_EAkuI6yhdza5DqTUmQJ7A_Lev1ZXlD9bcShMoE3WzGuAYVO7MIvO3qHKgGUiBUTeL5Rh-1QhFCV4gVKDjb6sZUQdffk_NuhQY0wXWckBUX5i3_87ddwZz6Zmc8fTz7twT1OuTTEMSn2YbS-7PxL2Gmb7lVU_V_X_QBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+Precision+Fermi-Operator+Expansion+on+Tensor+Cores+from+a+Machine+Learning+Perspective&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Finkelstein%2C+Joshua&rft.au=Smith%2C+Justin+S&rft.au=Mniszewski%2C+Susan+M&rft.au=Barros%2C+Kipton&rft.date=2021-04-13&rft.eissn=1549-9626&rft.volume=17&rft.issue=4&rft.spage=2256&rft.epage=2265&rft_id=info:doi/10.1021%2Facs.jctc.1c00057&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon