Mixed Precision Fermi-Operator Expansion on Tensor Cores from a Machine Learning Perspective
We present a second-order recursive Fermi-operator expansion scheme using mixed precision floating point operations to perform electronic structure calculations using tensor core units. A performance of over 100 teraFLOPs is achieved for half-precision floating point operations on Nvidia’s A100 tens...
Saved in:
Published in: | Journal of chemical theory and computation Vol. 17; no. 4; pp. 2256 - 2265 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
13-04-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We present a second-order recursive Fermi-operator expansion scheme using mixed precision floating point operations to perform electronic structure calculations using tensor core units. A performance of over 100 teraFLOPs is achieved for half-precision floating point operations on Nvidia’s A100 tensor core units. The second-order recursive Fermi-operator scheme is formulated in terms of a generalized, differentiable deep neural network structure, which solves the quantum mechanical electronic structure problem. We demonstrate how this network can be accelerated by optimizing the weight and bias values to substantially reduce the number of layers required for convergence. We also show how this machine learning approach can be used to optimize the coefficients of the recursive Fermi-operator expansion to accurately represent the fractional occupation numbers of the electronic states at finite temperatures. |
---|---|
AbstractList | We present a second-order recursive Fermi-operator expansion scheme using mixed precision floating point operations to perform electronic structure calculations using tensor core units. A performance of over 100 teraFLOPs is achieved for half-precision floating point operations on Nvidia's A100 tensor core units. The second-order recursive Fermi-operator scheme is formulated in terms of a generalized, differentiable deep neural network structure, which solves the quantum mechanical electronic structure problem. We demonstrate how this network can be accelerated by optimizing the weight and bias values to substantially reduce the number of layers required for convergence. We also show how this machine learning approach can be used to optimize the coefficients of the recursive Fermi-operator expansion to accurately represent the fractional occupation numbers of the electronic states at finite temperatures. Here we present a second-order recursive Fermi-operator expansion scheme using mixed precision floating point operations to perform electronic structure calculations using tensor core units. A performance of over 100 teraFLOPs is achieved for half-precision floating point operations on Nvidia’s A100 tensor core units. The second-order recursive Fermi-operator scheme is formulated in terms of a generalized, differentiable deep neural network structure, which solves the quantum mechanical electronic structure problem. We demonstrate how this network can be accelerated by optimizing the weight and bias values to substantially reduce the number of layers required for convergence. We also show how this machine learning approach can be used to optimize the coefficients of the recursive Fermi-operator expansion to accurately represent the fractional occupation numbers of the electronic states at finite temperatures. |
Author | Mniszewski, Susan M Rubensson, Emanuel H Barros, Kipton Negre, Christian F. A Niklasson, Anders M. N Smith, Justin S Finkelstein, Joshua |
AuthorAffiliation | Computer, Computational, and Statistical Sciences Division Theoretical Division Division of Scientific Computing, Department of Information Technology Los Alamos National Laboratory |
AuthorAffiliation_xml | – name: Theoretical Division – name: Division of Scientific Computing, Department of Information Technology – name: Los Alamos National Laboratory – name: Computer, Computational, and Statistical Sciences Division |
Author_xml | – sequence: 1 givenname: Joshua orcidid: 0000-0002-1506-6008 surname: Finkelstein fullname: Finkelstein, Joshua email: jdf@lanl.gov organization: Theoretical Division – sequence: 2 givenname: Justin S surname: Smith fullname: Smith, Justin S organization: Theoretical Division – sequence: 3 givenname: Susan M orcidid: 0000-0002-0077-0537 surname: Mniszewski fullname: Mniszewski, Susan M organization: Los Alamos National Laboratory – sequence: 4 givenname: Kipton surname: Barros fullname: Barros, Kipton organization: Theoretical Division – sequence: 5 givenname: Christian F. A surname: Negre fullname: Negre, Christian F. A email: cnegre@lanl.gov organization: Theoretical Division – sequence: 6 givenname: Emanuel H surname: Rubensson fullname: Rubensson, Emanuel H organization: Division of Scientific Computing, Department of Information Technology – sequence: 7 givenname: Anders M. N surname: Niklasson fullname: Niklasson, Anders M. N email: amn@lanl.gov organization: Theoretical Division |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33797253$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1804430$$D View this record in Osti.gov https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-439572$$DView record from Swedish Publication Index |
BookMark | eNp1kd1rFDEUxYNU7Ie--ySDvvjgrPlO5rGsrQpb2ofqkxAymTttlp1kmsxo_e9Nu9sVBCFwQ-7vnNzLOUYHIQZA6DXBC4Ip-WhdXqzd5BbEYYyFeoaOiOBN3UgqD_Z3og_Rcc5rjBnjlL1Ah4ypRlHBjtCPC38PXXWVwPnsY6jOIQ2-vhwh2Smm6ux-tOGxUc41hFzeljFBrvoUh8pWF9bd-gDVCmwKPtxUV5DyCG7yP-Elet7bTYZXu3qCvp2fXS-_1KvLz1-Xp6vacqqnGqQS2BHcSist71TfsE42LW4119RSSRrmuHLUdpr0vFcU45ZT0JRq0mndsRP0Yeubf8E4t2ZMfrDpt4nWm0_--6mJ6cbMs-GsEYoW_O0Wj3nyJjs_gbt1MYQytSEac85wgd5voTHFuxnyZAafHWw2NkCcs6ECa6GkpKyg7_5B13FOoWxcKMobISjlhcJbyqWYc4J-PybB5iFNU9I0D2maXZpF8mZnPLcDdHvBU3x_F3-UPn36X78_SL6rNA |
CitedBy_id | crossref_primary_10_1021_acs_jctc_2c00090 crossref_primary_10_1021_acs_jctc_3c00419 crossref_primary_10_1021_acs_jpclett_3c03405 crossref_primary_10_1021_acs_jctc_2c00983 crossref_primary_10_1063_5_0137119 crossref_primary_10_1021_acs_jctc_2c00274 crossref_primary_10_1016_j_jcp_2021_110354 crossref_primary_10_1021_acs_jctc_1c00726 crossref_primary_10_1063_5_0150287 |
Cites_doi | 10.1088/0034-4885/75/3/036503 10.1016/j.compeleceng.2020.106848 10.1103/physrevb.68.233104 10.1209/epl/i2001-00380-5 10.1103/revmodphys.71.1085 10.1063/1.1308546 10.1016/j.cpc.2020.107314 10.1016/j.jmgm.2010.06.010 10.1021/acs.jctc.8b00887 10.1137/130911585 10.1021/acs.jctc.6b00626 10.1098/rspa.1956.0100 10.1021/ct800526s 10.1103/physrevlett.73.122 10.1073/pnas.79.20.6391 10.1021/ct3004645 10.1016/0038-1098(82)90320-9 10.1021/acs.chemrev.0c00700 10.1103/physreve.92.063301 10.1109/IPDPS.2019.00022 10.1021/acs.jctc.0c00243 10.1016/s0010-4655(99)00221-0 10.1021/ct2001705 10.1021/acs.jctc.6b00154 10.1006/jcph.1999.6215 10.1021/ct9003004 10.1016/j.cplett.2012.10.090 10.1021/ct700268q 10.1103/physrevb.66.155115 10.1088/0953-8984/23/7/075502 10.1103/revmodphys.32.335 10.1016/s0009-2614(01)00409-2 10.1103/physrevb.48.17573 10.1016/j.neunet.2014.09.003 10.1093/acprof:oso/9780198509776.001.0001 10.1103/physrevb.75.035123 10.1007/3-540-28841-4 10.1103/revmodphys.78.275 10.1002/jcc.23096 10.1021/acs.jctc.5b00370 10.1006/jcph.1996.0048 10.1103/physrevb.58.12704 10.1063/1.4943213 10.1063/1.1853378 10.1137/18m1165748 10.1142/s0129183194000842 10.1088/0953-8984/25/29/295501 10.1021/ct100701w |
ContentType | Journal Article |
Copyright | 2021 American Chemical
Society Copyright American Chemical Society Apr 13, 2021 |
Copyright_xml | – notice: 2021 American Chemical Society – notice: Copyright American Chemical Society Apr 13, 2021 |
CorporateAuthor | Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
CorporateAuthor_xml | – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
DBID | NPM AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 OIOZB OTOTI ADTPV AOWAS DF2 |
DOI | 10.1021/acs.jctc.1c00057 |
DatabaseName | PubMed CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Mathematics |
EISSN | 1549-9626 |
EndPage | 2265 |
ExternalDocumentID | oai_DiVA_org_uu_439572 1804430 10_1021_acs_jctc_1c00057 33797253 c959824555 |
Genre | Journal Article |
GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACIWK ACS ACSAX AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L DU5 EBS ED ED~ F5P GNL IH9 J9A JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F ABJNI ABQRX ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 OIOZB OTOTI ADTPV AOWAS DF2 EJD IHE LG6 |
ID | FETCH-LOGICAL-a428t-e6750c10b6a6a4d7f93d69b0b8482a26193c47c2ad81f4f7200b42e82281d88d3 |
IEDL.DBID | ACS |
ISSN | 1549-9618 1549-9626 |
IngestDate | Sat Aug 24 00:47:19 EDT 2024 Thu May 18 22:20:23 EDT 2023 Fri Aug 16 08:43:32 EDT 2024 Thu Oct 10 18:07:53 EDT 2024 Fri Aug 23 02:39:04 EDT 2024 Sat Sep 28 08:23:20 EDT 2024 Thu Apr 15 04:07:07 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a428t-e6750c10b6a6a4d7f93d69b0b8482a26193c47c2ad81f4f7200b42e82281d88d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 89233218CNA000001 LA-UR-21-20350 USDOE Laboratory Directed Research and Development (LDRD) Program USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0002-1506-6008 0000-0002-0077-0537 0000000173147896 0000000200770537 0000000213335972 0000000157200255 0000000318564982 0000000300737371 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1804430 |
PMID | 33797253 |
PQID | 2524955224 |
PQPubID | 2048741 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_439572 osti_scitechconnect_1804430 proquest_miscellaneous_2508576623 proquest_journals_2524955224 crossref_primary_10_1021_acs_jctc_1c00057 pubmed_primary_33797253 acs_journals_10_1021_acs_jctc_1c00057 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ABFRP ACS AEESW AFEFF ABMVS ABUCX ACSAX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-13 |
PublicationDateYYYYMMDD | 2021-04-13 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of chemical theory and computation |
PublicationTitleAlternate | J. Chem. Theory Comput |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 Finnis M. (ref3/cit3) 2003 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 Szabo A. (ref4/cit4) 1989 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref51/cit51 ref43/cit43 Economou E. N. (ref5/cit5) 2006 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref33/cit33 doi: 10.1088/0034-4885/75/3/036503 – ident: ref52/cit52 doi: 10.1016/j.compeleceng.2020.106848 – ident: ref38/cit38 doi: 10.1103/physrevb.68.233104 – ident: ref9/cit9 – volume-title: Modern Quantum Chemistry year: 1989 ident: ref4/cit4 contributor: fullname: Szabo A. – ident: ref28/cit28 doi: 10.1209/epl/i2001-00380-5 – ident: ref32/cit32 doi: 10.1103/revmodphys.71.1085 – ident: ref35/cit35 doi: 10.1063/1.1308546 – ident: ref18/cit18 doi: 10.1016/j.cpc.2020.107314 – ident: ref13/cit13 doi: 10.1016/j.jmgm.2010.06.010 – ident: ref50/cit50 – ident: ref47/cit47 – ident: ref46/cit46 doi: 10.1021/acs.jctc.8b00887 – ident: ref42/cit42 doi: 10.1137/130911585 – ident: ref48/cit48 doi: 10.1021/acs.jctc.6b00626 – ident: ref1/cit1 doi: 10.1098/rspa.1956.0100 – ident: ref11/cit11 doi: 10.1021/ct800526s – ident: ref26/cit26 doi: 10.1103/physrevlett.73.122 – ident: ref6/cit6 doi: 10.1073/pnas.79.20.6391 – ident: ref15/cit15 doi: 10.1021/ct3004645 – ident: ref27/cit27 doi: 10.1016/0038-1098(82)90320-9 – ident: ref19/cit19 doi: 10.1021/acs.chemrev.0c00700 – ident: ref53/cit53 doi: 10.1103/physreve.92.063301 – ident: ref51/cit51 doi: 10.1109/IPDPS.2019.00022 – ident: ref20/cit20 doi: 10.1021/acs.jctc.0c00243 – ident: ref8/cit8 doi: 10.1016/s0010-4655(99)00221-0 – ident: ref45/cit45 doi: 10.1021/ct2001705 – ident: ref23/cit23 doi: 10.1021/acs.jctc.6b00154 – ident: ref44/cit44 doi: 10.1006/jcph.1999.6215 – ident: ref49/cit49 – ident: ref12/cit12 doi: 10.1021/ct9003004 – ident: ref41/cit41 doi: 10.1016/j.cplett.2012.10.090 – ident: ref10/cit10 doi: 10.1021/ct700268q – ident: ref37/cit37 doi: 10.1103/physrevb.66.155115 – ident: ref40/cit40 doi: 10.1088/0953-8984/23/7/075502 – ident: ref2/cit2 doi: 10.1103/revmodphys.32.335 – ident: ref36/cit36 doi: 10.1016/s0009-2614(01)00409-2 – ident: ref29/cit29 doi: 10.1103/physrevb.48.17573 – ident: ref21/cit21 doi: 10.1016/j.neunet.2014.09.003 – volume-title: Interatomic Forces in Condensed Matter year: 2003 ident: ref3/cit3 doi: 10.1093/acprof:oso/9780198509776.001.0001 contributor: fullname: Finnis M. – ident: ref30/cit30 doi: 10.1103/physrevb.75.035123 – volume-title: Green’s Functions in Quantum Physics year: 2006 ident: ref5/cit5 doi: 10.1007/3-540-28841-4 contributor: fullname: Economou E. N. – ident: ref25/cit25 doi: 10.1103/revmodphys.78.275 – ident: ref16/cit16 doi: 10.1002/jcc.23096 – ident: ref17/cit17 doi: 10.1021/acs.jctc.5b00370 – ident: ref34/cit34 doi: 10.1006/jcph.1996.0048 – ident: ref7/cit7 doi: 10.1103/physrevb.58.12704 – ident: ref43/cit43 doi: 10.1063/1.4943213 – ident: ref39/cit39 doi: 10.1063/1.1853378 – ident: ref22/cit22 doi: 10.1137/18m1165748 – ident: ref24/cit24 doi: 10.1142/s0129183194000842 – ident: ref31/cit31 doi: 10.1088/0953-8984/25/29/295501 – ident: ref14/cit14 doi: 10.1021/ct100701w |
SSID | ssj0033423 |
Score | 2.461133 |
Snippet | We present a second-order recursive Fermi-operator expansion scheme using mixed precision floating point operations to perform electronic structure... Here we present a second-order recursive Fermi-operator expansion scheme using mixed precision floating point operations to perform electronic structure... |
SourceID | swepub osti proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2256 |
SubjectTerms | algorithms, chemical calculations Artificial neural networks deep neural networks Electron states Electronic structure fermi operator expansion Floating point arithmetic Hamiltonians INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY layers Machine learning Mathematical analysis mathematics mixed precision Optimization Quantum Electronic Structure Quantum mechanics tensor cores Tensors Thermal expansion |
Title | Mixed Precision Fermi-Operator Expansion on Tensor Cores from a Machine Learning Perspective |
URI | http://dx.doi.org/10.1021/acs.jctc.1c00057 https://www.ncbi.nlm.nih.gov/pubmed/33797253 https://www.proquest.com/docview/2524955224 https://search.proquest.com/docview/2508576623 https://www.osti.gov/servlets/purl/1804430 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-439572 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcmgvLbSUpjxkpHLgEIgfWTvH1bIrLjwkaNVDJctxHLQcdhG7kfj5nfFml4IQAiknj-Uknhn7G834M8DPTIdCIVBNeVBVqkyNLpUbmWpR4kKZG-3jQdrTK33-x5wM_qfJeZ7BF_zY-enRrZ_5I-4JYOhVWBM6MxRo9fpXi1VXEpNd5EZVxDjJTZuSfGkE2oj89MlG1JmgQ70EMp8xiMZdZ_j5Pd-7Dp9abMl6c2PYgJUw_gIf-osr3b7C37PRQ6jY5X17sQ4bUilMenEXYrKdDR5wbYgCfK4xwMW2_gQDckanUJhjZ7H0MrCWlfWGXT6e1dyEX8PBdf80ba9XSB3GHLM0YKyQeZ6VXdd1qtJ1IatuUWalUUY4iqykV9oLVxleq1qjP5VKBEQUiHGNqeQ36Iwn4_AdWBGCqn3tcCCpyhKjRs9z42uTm1oK7xI4wGmxrXtMbcx8C25jI86VbecqgcOFTuzdnG3jlb7bpDSLSIHobj3VBfmZ5SZTSmYJ7Cx0-fhakdNN24g4VQL7SzHqgJIkbhwmDfUhzv8uosIEtuY2sPwUKXWhRY6Sg7lRLCVE0n0y-t2zaAm2aayi9Kf48cbf3oaPgkpliEJS7kBndt-EXVidVs1eNPJ_pJ31cg |
link.rule.ids | 230,315,782,786,887,2771,27087,27935,27936,56750,56800 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9i5TAufH-EDTASO3AIiz9SO8eqa1XEOiatIA5IluM4aBzaaWmk_fm85yatQBNCSDnZkeO8D_v39OzfA3iX6VAoBKopD6pKlanRpXIjUy1KXChzo328SDu70GffzMmEaHJ4fxcGJ9HgSE1M4u_YBfgxtf30a_-Be8IZeg_u5gh2qVrDaHzRL76SCO0iRaoi4kluuszkbSPQfuSb3_ajwQr96jas-QeRaNx8pg_-Y9oP4X6HNNloYxqP4E5YPob9cV_g7Ql8n1_ehIqdX3dldtiUDsakn69CTL2zyQ2uFLEDnwWGu9g2XmF4zuhOCnNsHg9iBtZxtP5g57ubm0_hy3SyGM_SrthC6jACWaeBhOl5Vg7d0KlK14WshkWZlUYZ4SjOkl5pL1xleK1qjd5VKhEQXyDiNaaSz2CwXC3DC2BFCKr2tcOBpCpLjCE9z42vTW5qKbxL4AjFYjtnaWzMgwtuYyPKynaySuB9rxp7teHe-Mu7B6Q7i7iByG89nRLya8tNppTMEjjsVbr7rMip7jbiT5XA22036oBSJm4ZVi29QxUAhogRE3i-MYXtVKTUhRY59hxtbGPbQ5TdJ5dfRxatwbatVZQMFS__8bffwP5sMT-1px_PPh3APUGHaIhcUh7CYH3dhlew11Tt62j3vwCmGP3X |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RRQIuvKGhBYxEDxwCie3EzrHah4qgZaUWxAHJchwbtYfdVbOR-vOZ8SZbgSqEkHLyRI5jz9jfaMbfALzNlK8kAtU097JJpQ5oUoUWqeI1bpSFVi5epD06VSff9WRKNDnFcBcGB9FiT20M4pNVr5rQMwzkH6j9wq3d-9wR1lA7cLsoEfEQIhqfDhuwIFK7SJMqiXwy13108qYe6Exy7W9n0miJtnUT3vyDTDQeQLMH_zn0h3C_R5zscKMij-CWXzyGu-Oh0NsT-HF8fuUbNr_sy-2wGSXIpF9WPobg2fQKd4wowOcM3V5sGy_RTWd0N4VZdhwTMj3ruVp_svn1Dc6n8HU2PRsfpX3RhdSiJ7JOPXoQmcuzurSllY0KlWjKqs5qLTW35G8JJ5XjttF5kEGhldWSe8QZiHy1bsQzGC2WC78LrPJeBhcsdiRkXaMv6fJCu6ALHQR3NoEDnBbTG01rYjyc5yY24lyZfq4SeDcsj1ltODj-8u4erZ9B_EAkuI6yhdza5DqTUmQJ7A_Lev1ZXlD9bcShMoE3WzGuAYVO7MIvO3qHKgGUiBUTeL5Rh-1QhFCV4gVKDjb6sZUQdffk_NuhQY0wXWckBUX5i3_87ddwZz6Zmc8fTz7twT1OuTTEMSn2YbS-7PxL2Gmb7lVU_V_X_QBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+Precision+Fermi-Operator+Expansion+on+Tensor+Cores+from+a+Machine+Learning+Perspective&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Finkelstein%2C+Joshua&rft.au=Smith%2C+Justin+S&rft.au=Mniszewski%2C+Susan+M&rft.au=Barros%2C+Kipton&rft.date=2021-04-13&rft.eissn=1549-9626&rft.volume=17&rft.issue=4&rft.spage=2256&rft.epage=2265&rft_id=info:doi/10.1021%2Facs.jctc.1c00057&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |