Dual Substrate Specificity of Bacillus subtilis PBP4a
Bacterial dd-peptidases are the targets of the β-lactam antibiotics. The sharp increase in bacterial resistance toward these antibiotics in recent years has stimulated the search for non-β-lactam alternatives. The substrates of dd-peptidases are elements of peptidoglycan from bacterial cell walls. A...
Saved in:
Published in: | Biochemistry (Easton) Vol. 52; no. 15; pp. 2627 - 2637 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article Web Resource |
Language: | English |
Published: |
United States
American Chemical Society
16-04-2013
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Bacterial dd-peptidases are the targets of the β-lactam antibiotics. The sharp increase in bacterial resistance toward these antibiotics in recent years has stimulated the search for non-β-lactam alternatives. The substrates of dd-peptidases are elements of peptidoglycan from bacterial cell walls. Attempts to base dd-peptidase inhibitor design on peptidoglycan structure, however, have not been particularly successful to date because the specific substrates for most of these enzymes are unknown. It is known, however, that the preferred substrates of low-molecular mass (LMM) class B and C dd-peptidases contain the free N-terminus of the relevant peptidoglycan. Two very similar LMMC enzymes, for example, the Actinomadura R39 dd-peptidase and Bacillus subtilis PBP4a, recognize a d-α-aminopimelyl terminus. The peptidoglycan of B. subtilis in the vegetative stage, however, has the N-terminal d-α-aminopimelyl carboxylic acid amidated. The question is, therefore, whether the dd-peptidases of B. subtilis are separately specific to carboxylate or carboxamide or have dual specificity. This paper describes an investigation of this issue with B. subtilis PBP4a. This enzyme was indeed found to have a dual specificity for peptide substrates, both in the acyl donor and in the acyl acceptor sites. In contrast, the R39 dd-peptidase, from an organism in which the peptidoglycan is not amidated, has a strong preference for a terminal carboxylate. It was also found that acyl acceptors, reacting with acyl–enzyme intermediates, were preferentially d-amino acid amides for PBP4a and the corresponding amino acids for the R39 dd-peptidase. Examination of the relevant crystal structures, aided by molecular modeling, suggested that the expansion of specificity in PBP4a accompanies a change of Arg351 in the R39 enzyme and most LMMC dd-peptidases to histidine in PBP4a and its orthologs in other Bacillus sp. This histidine, in neutral form at pH 7, appeared to be able to favorably interact with both carboxylate and carboxamide termini of substrates, in agreement with the kinetic data. It may still be possible, in specific cases, to combat bacteria with new antibiotics based on particular elements of their peptidoglycan structure. |
---|---|
AbstractList | Bacterial dd-peptidases are the targets of the β-lactam antibiotics. The sharp increase in bacterial resistance toward these antibiotics in recent years has stimulated the search for non-β-lactam alternatives. The substrates of dd-peptidases are elements of peptidoglycan from bacterial cell walls. Attempts to base dd-peptidase inhibitor design on peptidoglycan structure, however, have not been particularly successful to date because the specific substrates for most of these enzymes are unknown. It is known, however, that the preferred substrates of low-molecular mass (LMM) class B and C dd-peptidases contain the free N-terminus of the relevant peptidoglycan. Two very similar LMMC enzymes, for example, the Actinomadura R39 dd-peptidase and Bacillus subtilis PBP4a, recognize a d-α-aminopimelyl terminus. The peptidoglycan of B. subtilis in the vegetative stage, however, has the N-terminal d-α-aminopimelyl carboxylic acid amidated. The question is, therefore, whether the dd-peptidases of B. subtilis are separately specific to carboxylate or carboxamide or have dual specificity. This paper describes an investigation of this issue with B. subtilis PBP4a. This enzyme was indeed found to have a dual specificity for peptide substrates, both in the acyl donor and in the acyl acceptor sites. In contrast, the R39 dd-peptidase, from an organism in which the peptidoglycan is not amidated, has a strong preference for a terminal carboxylate. It was also found that acyl acceptors, reacting with acyl-enzyme intermediates, were preferentially d-amino acid amides for PBP4a and the corresponding amino acids for the R39 dd-peptidase. Examination of the relevant crystal structures, aided by molecular modeling, suggested that the expansion of specificity in PBP4a accompanies a change of Arg351 in the R39 enzyme and most LMMC dd-peptidases to histidine in PBP4a and its orthologs in other Bacillus sp. This histidine, in neutral form at pH 7, appeared to be able to favorably interact with both carboxylate and carboxamide termini of substrates, in agreement with the kinetic data. It may still be possible, in specific cases, to combat bacteria with new antibiotics based on particular elements of their peptidoglycan structure. Bacterial dd-peptidases are the targets of the beta -lactam antibiotics. The sharp increase in bacterial resistance toward these antibiotics in recent years has stimulated the search for non- beta -lactam alternatives. The substrates of dd-peptidases are elements of peptidoglycan from bacterial cell walls. Attempts to base dd-peptidase inhibitor design on peptidoglycan structure, however, have not been particularly successful to date because the specific substrates for most of these enzymes are unknown. It is known, however, that the preferred substrates of low-molecular mass (LMM) class B and C dd-peptidases contain the free N-terminus of the relevant peptidoglycan. Two very similar LMMC enzymes, for example, the Actinomadura R39 dd-peptidase and Bacillus subtilis PBP4a, recognize a d- alpha -aminopimelyl terminus. The peptidoglycan of B. subtilis in the vegetative stage, however, has the N-terminal d- alpha -aminopimelyl carboxylic acid amidated. The question is, therefore, whether the dd-peptidases of B. subtilis are separately specific to carboxylate or carboxamide or have dual specificity. This paper describes an investigation of this issue with B. subtilis PBP4a. This enzyme was indeed found to have a dual specificity for peptide substrates, both in the acyl donor and in the acyl acceptor sites. In contrast, the R39 dd-peptidase, from an organism in which the peptidoglycan is not amidated, has a strong preference for a terminal carboxylate. It was also found that acyl acceptors, reacting with acyl-enzyme intermediates, were preferentially d-amino acid amides for PBP4a and the corresponding amino acids for the R39 dd-peptidase. Examination of the relevant crystal structures, aided by molecular modeling, suggested that the expansion of specificity in PBP4a accompanies a change of Arg351 in the R39 enzyme and most LMMC dd-peptidases to histidine in PBP4a and its orthologs in other Bacillus sp. This histidine, in neutral form at pH 7, appeared to be able to favorably interact with both carboxylate and carboxamide termini of substrates, in agreement with the kinetic data. It may still be possible, in specific cases, to combat bacteria with new antibiotics based on particular elements of their peptidoglycan structure. Bacterial DD-peptidases are the targets of the β-lactam antibiotics. The sharp increase in bacterial resistance toward these antibiotics in recent years has stimulated the search for non- β-lactam alternatives. The substrates of DD-peptidases are elements of peptidoglycan from bacterial cell walls. Attempts to base DD-peptidase inhibitor design on peptidoglycan structure, however, have not been particularly successful to date because the specific substrates for most of these enzymes are unknown. It is known, however, that the preferred substrates of low-molecular mass (LMM) class B and C DD-peptidases contain the free N-terminus of the relevant peptidoglycan. Two very similar LMMC enzymes, for example, the Actinomadura R39 DD-peptidase and Bacillus subtilis PBP4a, recognize a D-α-aminopimelyl terminus. The peptidoglycan of B. subtilis in the vegetative stage, however, has the N-terminal D-α-aminopimelyl carboxylic acid amidated. The question is, therefore, whether the DD-peptidases of B. subtilis are separately specific to carboxylate or carboxamide or have dual specificity. This paper describes an investigation of this issue with B. subtilis PBP4a. This enzyme was indeed found to have a dual specificity for peptide substrates, both in the acyl donor and in the acyl acceptor sites. In contrast, the R39 DD-peptidase, from an organism in which the peptidoglycan is not amidated, has a strong preference for a terminal carboxylate. It was also found that acyl acceptors, reacting with acyl−enzyme intermediates, were preferentially D-amino acid amides for PBP4a and the corresponding amino acids for the R39 DD-peptidase. Examination of the relevant crystal structures, aided by molecular modeling, suggested that the expansion of specificity in PBP4a accompanies a change of Arg351 in the R39 enzyme and most LMMC DD-peptidases to histidine in PBP4a and its orthologs in other Bacillus sp. This histidine, in neutral form at pH 7, appeared to be able to favorably interact with both carboxylate and carboxamide termini of substrates, in agreement with the kinetic data. It may still be possible, in specific cases, to combat bacteria with new antibiotics based on particular elements of their peptidoglycan structure. |
Author | Duez, Colette Nemmara, Venkatesh V Adediran, S. A Dave, Kinjal Pratt, R. F |
AuthorAffiliation | Wesleyan University Université de Liège |
AuthorAffiliation_xml | – name: Université de Liège – name: Wesleyan University |
Author_xml | – sequence: 1 givenname: Venkatesh V surname: Nemmara fullname: Nemmara, Venkatesh V – sequence: 2 givenname: S. A surname: Adediran fullname: Adediran, S. A – sequence: 3 givenname: Kinjal surname: Dave fullname: Dave, Kinjal – sequence: 4 givenname: Colette surname: Duez fullname: Duez, Colette – sequence: 5 givenname: R. F surname: Pratt fullname: Pratt, R. F email: rpratt@wesleyan.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23560856$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxTAQhYMoen0s_APSjaCLapJm0nbpW0FQUNdhEqcSyb29No3gvzdSdSW4mTMD3zmLM5tsddEviLFdwY8El-LYesWzircVNhMgeanaFlbZjHOuS9lqvsE2Y3zNp-K1WmcbsgLNG9AzBucJQ_GQbBwHHKl4WJLznXd-_Cj6rjhF50NIsYjJjj74WNyf3ivcZmsdhkg737rFni4vHs-uy9u7q5uzk9sSlazH0hIqIVwHGhR2WgECYFNZKUmB4i1o1VKeGgFlS7pFQa1owDV1x0Vtqy1WTbnB0wuZfrDevEvTo5_2FF4MOmPJSKkbk62gILsOJtdy6N8SxdHMfXQUAi6oT9GIutZaNRz0_2glmxytlczo4YS6oY9xoM4sBz_H4cMIbr7eYH7fkNm979hk5_T8S_70noH9CUAXzWufhkWu8Y-gT0gUjFw |
CitedBy_id | crossref_primary_10_1002_cbic_202200693 crossref_primary_10_1021_ja410813j crossref_primary_10_1002_anie_201409927 crossref_primary_10_1021_ml400408c crossref_primary_10_1002_ange_201409927 crossref_primary_10_1021_ja505668f |
Cites_doi | 10.1073/pnas.54.4.1133 10.1016/j.jmb.2007.05.071 10.1007/s00018-008-7591-7 10.1042/bj20030217 10.1016/j.jmb.2008.06.012 10.1021/bi101760p 10.1111/j.1574-6968.2009.01761.x 10.1006/abio.1996.0238 10.1111/j.1574-6976.2006.00024.x 10.1016/S0022-2836(03)00305-X 10.1042/bj1190849 10.1021/ja903773f 10.1146/annurev.mi.45.100191.000345 10.1016/S0022-2836(02)00742-8 10.1074/jbc.M503271200 10.1039/b107097p 10.1042/bj2780801 10.1021/ja00023a029 10.1021/bi201326a 10.1002/tcr.20042 10.1099/mic.0.27692-0 10.1128/JB.180.18.4967-4973.1998 10.1021/bi061804f 10.1128/JB.181.13.3956-3966.1999 10.1016/j.mib.2003.10.002 10.1021/bi0268955 10.1021/bi100757c 10.1128/JB.05060-11 10.1021/bi00757a027 10.1073/pnas.64.2.528 10.1021/bi050542z 10.1021/ja9634942 10.1021/bi00731a001 10.1016/j.sbi.2010.09.014 10.1016/j.jmb.2004.10.076 10.1146/annurev.bi.52.070183.004141 10.1042/bj3020851 10.1021/ja01166a116 10.1021/ja01111a009 |
ContentType | Journal Article Web Resource |
Copyright | Copyright © 2013 American Chemical Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QL C1K Q33 |
DOI | 10.1021/bi400211q |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management Université de Liège - Open Repository and Bibliography (ORBI) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE - Academic Bacteriology Abstracts (Microbiology B) MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 2637 |
ExternalDocumentID | oai_orbi_ulg_ac_be_2268_185545 10_1021_bi400211q 23560856 c872914227 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation | This research was supported by National Institutes of Health Grant AI-17986 (R.F.P.) and in part by the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy programming (IAP n° P6/19). C.D. is a research associate of the FRS-FNRS, Belgium. |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI-17986 |
GroupedDBID | - .K2 02 23N 4.4 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AJYGW ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 KM L7B LG6 P2P ROL TN5 UI2 VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 --- -DZ -~X .55 ABJNI ABQRX ADHLV AGXLV AHGAQ CGR CUPRZ CUY CVF ECM EIF GGK NPM XSW ZCA ~02 ~KM AAYXX CITATION 7X8 7QL C1K Q33 |
ID | FETCH-LOGICAL-a427t-bea411cf5654af645a55a83b22e454095649e9566a5a29e69a1e9185c87f017b3 |
IEDL.DBID | ACS |
ISSN | 0006-2960 1520-4995 |
IngestDate | Fri Nov 08 14:55:10 EST 2024 Fri Aug 16 10:47:22 EDT 2024 Fri Aug 16 04:07:37 EDT 2024 Fri Aug 23 01:45:17 EDT 2024 Sat Sep 28 08:01:57 EDT 2024 Thu Aug 27 13:42:33 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a427t-bea411cf5654af645a55a83b22e454095649e9566a5a29e69a1e9185c87f017b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 scopus-id:2-s2.0-84876234867 |
OpenAccessLink | http://orbi.ulg.ac.be/handle/2268/185545 |
PMID | 23560856 |
PQID | 1328226642 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_185545 proquest_miscellaneous_1776648056 proquest_miscellaneous_1328226642 crossref_primary_10_1021_bi400211q pubmed_primary_23560856 acs_journals_10_1021_bi400211q |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2013-04-16 |
PublicationDateYYYYMMDD | 2013-04-16 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Anderson J. W. (ref20/cit20) 2003; 373 Johnson D. A. (ref21/cit21) 1953; 75 Pratt R. F. (ref29/cit29) 2002; 2 Silvaggi N. R. (ref35/cit35) 2003; 42 Kuzmic P. (ref24/cit24) 1996; 237 Dzhekieva L. (ref12/cit12) 2010; 49 Atrih A. (ref14/cit14) 1999; 181 Macheboeuf P. (ref2/cit2) 2006; 30 Warth A. D. (ref16/cit16) 1969; 64 Pratt R. F. (ref3/cit3) 2008; 65 Nemmara V. V. (ref4/cit4) 2011; 50 Bernard E. (ref17/cit17) 2011; 193 Kumar I. (ref27/cit27) 2005; 44 Leyh-Bouille M. (ref8/cit8) 1972; 11 Sauvage E. (ref13/cit13) 2007; 371 Hirotsu K. (ref37/cit37) 2005; 5 Hughes R. C. (ref36/cit36) 1970; 119 Matthei P.-J. (ref6/cit6) 2010; 20 Shimshock S. S. (ref26/cit26) 1991; 113 Ghuysen J.-M. (ref7/cit7) 1991; 45 Ghuysen J.-M. (ref9/cit9) 1973; 12 Duez C. (ref25/cit25) 2009; 300 Sauvage E. (ref11/cit11) 2008; 381 Warth A. D. (ref15/cit15) 1971; 180 Josephine H. R. (ref40/cit40) 2006; 45 Varetto L. (ref32/cit32) 1991; 278 Bullock T. L. (ref38/cit38) 2003; 328 Curley K. C. (ref33/cit33) 1997; 119 Xu Y. (ref22/cit22) 1994; 302 Pederson L. B. (ref18/cit18) 1998; 180 Waxman D. J. (ref1/cit1) 1983; 52 Adediran S. A. (ref23/cit23) 2011; 50 Scheffers D.-J. (ref19/cit19) 2005; 151 Silvaggi N. R. (ref30/cit30) 2005; 345 Sauvage E. (ref34/cit34) 2005; 280 Holysz R. P. (ref31/cit31) 1950; 72 McDonough M. A. (ref10/cit10) 2002; 322 Popham D. L. (ref5/cit5) 2003; 6 Chen Y. (ref39/cit39) 2009; 131 Tipper D. J. (ref28/cit28) 1965; 54 |
References_xml | – volume: 54 start-page: 1133 year: 1965 ident: ref28/cit28 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.54.4.1133 contributor: fullname: Tipper D. J. – volume: 371 start-page: 528 year: 2007 ident: ref13/cit13 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.071 contributor: fullname: Sauvage E. – volume: 65 start-page: 2138 year: 2008 ident: ref3/cit3 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-008-7591-7 contributor: fullname: Pratt R. F. – volume: 373 start-page: 949 year: 2003 ident: ref20/cit20 publication-title: Biochem. J. doi: 10.1042/bj20030217 contributor: fullname: Anderson J. W. – volume: 381 start-page: 383 year: 2008 ident: ref11/cit11 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.06.012 contributor: fullname: Sauvage E. – volume: 50 start-page: 367 year: 2011 ident: ref23/cit23 publication-title: Biochemistry doi: 10.1021/bi101760p contributor: fullname: Adediran S. A. – volume: 300 start-page: 42 year: 2009 ident: ref25/cit25 publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2009.01761.x contributor: fullname: Duez C. – volume: 237 start-page: 260 year: 1996 ident: ref24/cit24 publication-title: Anal. Biochem. doi: 10.1006/abio.1996.0238 contributor: fullname: Kuzmic P. – volume: 30 start-page: 673 year: 2006 ident: ref2/cit2 publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2006.00024.x contributor: fullname: Macheboeuf P. – volume: 328 start-page: 395 year: 2003 ident: ref38/cit38 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00305-X contributor: fullname: Bullock T. L. – volume: 119 start-page: 849 year: 1970 ident: ref36/cit36 publication-title: Biochem. J. doi: 10.1042/bj1190849 contributor: fullname: Hughes R. C. – volume: 131 start-page: 14345 year: 2009 ident: ref39/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903773f contributor: fullname: Chen Y. – volume: 45 start-page: 37 year: 1991 ident: ref7/cit7 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.mi.45.100191.000345 contributor: fullname: Ghuysen J.-M. – volume: 322 start-page: 111 year: 2002 ident: ref10/cit10 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)00742-8 contributor: fullname: McDonough M. A. – volume: 280 start-page: 31249 year: 2005 ident: ref34/cit34 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M503271200 contributor: fullname: Sauvage E. – volume: 2 start-page: 851 year: 2002 ident: ref29/cit29 publication-title: J. Chem. Soc., Perkin Trans. doi: 10.1039/b107097p contributor: fullname: Pratt R. F. – volume: 278 start-page: 801 year: 1991 ident: ref32/cit32 publication-title: Biochem. J. doi: 10.1042/bj2780801 contributor: fullname: Varetto L. – volume: 113 start-page: 8791 year: 1991 ident: ref26/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00023a029 contributor: fullname: Shimshock S. S. – volume: 180 start-page: 4967 year: 1971 ident: ref15/cit15 publication-title: J. Bacteriol. contributor: fullname: Warth A. D. – volume: 50 start-page: 10091 year: 2011 ident: ref4/cit4 publication-title: Biochemistry doi: 10.1021/bi201326a contributor: fullname: Nemmara V. V. – volume: 5 start-page: 160 year: 2005 ident: ref37/cit37 publication-title: Chem. Rec. doi: 10.1002/tcr.20042 contributor: fullname: Hirotsu K. – volume: 151 start-page: 999 year: 2005 ident: ref19/cit19 publication-title: Microbiology doi: 10.1099/mic.0.27692-0 contributor: fullname: Scheffers D.-J. – volume: 180 start-page: 4967 year: 1998 ident: ref18/cit18 publication-title: J. Bacteriol. doi: 10.1128/JB.180.18.4967-4973.1998 contributor: fullname: Pederson L. B. – volume: 45 start-page: 15873 year: 2006 ident: ref40/cit40 publication-title: Biochemistry doi: 10.1021/bi061804f contributor: fullname: Josephine H. R. – volume: 181 start-page: 3956 year: 1999 ident: ref14/cit14 publication-title: J. Bacteriol. doi: 10.1128/JB.181.13.3956-3966.1999 contributor: fullname: Atrih A. – volume: 6 start-page: 594 year: 2003 ident: ref5/cit5 publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2003.10.002 contributor: fullname: Popham D. L. – volume: 42 start-page: 1199 year: 2003 ident: ref35/cit35 publication-title: Biochemistry doi: 10.1021/bi0268955 contributor: fullname: Silvaggi N. R. – volume: 49 start-page: 6411 year: 2010 ident: ref12/cit12 publication-title: Biochemistry doi: 10.1021/bi100757c contributor: fullname: Dzhekieva L. – volume: 193 start-page: 6323 year: 2011 ident: ref17/cit17 publication-title: J. Bacteriol. doi: 10.1128/JB.05060-11 contributor: fullname: Bernard E. – volume: 11 start-page: 1290 year: 1972 ident: ref8/cit8 publication-title: Biochemistry doi: 10.1021/bi00757a027 contributor: fullname: Leyh-Bouille M. – volume: 64 start-page: 528 year: 1969 ident: ref16/cit16 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.64.2.528 contributor: fullname: Warth A. D. – volume: 44 start-page: 9971 year: 2005 ident: ref27/cit27 publication-title: Biochemistry doi: 10.1021/bi050542z contributor: fullname: Kumar I. – volume: 119 start-page: 1529 year: 1997 ident: ref33/cit33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9634942 contributor: fullname: Curley K. C. – volume: 12 start-page: 1243 year: 1973 ident: ref9/cit9 publication-title: Biochemistry doi: 10.1021/bi00731a001 contributor: fullname: Ghuysen J.-M. – volume: 20 start-page: 749 year: 2010 ident: ref6/cit6 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2010.09.014 contributor: fullname: Matthei P.-J. – volume: 345 start-page: 521 year: 2005 ident: ref30/cit30 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.10.076 contributor: fullname: Silvaggi N. R. – volume: 52 start-page: 825 year: 1983 ident: ref1/cit1 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.52.070183.004141 contributor: fullname: Waxman D. J. – volume: 302 start-page: 851 year: 1994 ident: ref22/cit22 publication-title: Biochem. J. doi: 10.1042/bj3020851 contributor: fullname: Xu Y. – volume: 72 start-page: 4760 year: 1950 ident: ref31/cit31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01166a116 contributor: fullname: Holysz R. P. – volume: 75 start-page: 3636 year: 1953 ident: ref21/cit21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01111a009 contributor: fullname: Johnson D. A. |
RestrictionsOnAccess | open access |
SSID | ssj0004074 |
Score | 2.1654563 |
Snippet | Bacterial dd-peptidases are the targets of the β-lactam antibiotics. The sharp increase in bacterial resistance toward these antibiotics in recent years has... Bacterial dd-peptidases are the targets of the beta -lactam antibiotics. The sharp increase in bacterial resistance toward these antibiotics in recent years... Bacterial DD-peptidases are the targets of the β-lactam antibiotics. The sharp increase in bacterial resistance toward these antibiotics in recent years has... |
SourceID | liege proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2627 |
SubjectTerms | Actinomadura Alanine - chemistry Alanine - metabolism Amides - chemistry Amides - metabolism Arginine - chemistry Arginine - metabolism Bacillus Bacillus subtilis Bacillus subtilis - enzymology Bacterial Proteins - chemistry Bacterial Proteins - metabolism Catalytic Domain enzymology Histidine - chemistry Histidine - metabolism Hydrolysis Kinetics Life sciences Low molecular mass PBP Microbiologie Microbiology Penicillin-Binding Proteins - chemistry Penicillin-Binding Proteins - metabolism Protein Conformation Sciences du vivant Serine-Type D-Ala-D-Ala Carboxypeptidase - chemistry Serine-Type D-Ala-D-Ala Carboxypeptidase - metabolism Substrate Specificity |
Title | Dual Substrate Specificity of Bacillus subtilis PBP4a |
URI | http://dx.doi.org/10.1021/bi400211q https://www.ncbi.nlm.nih.gov/pubmed/23560856 https://search.proquest.com/docview/1328226642 https://search.proquest.com/docview/1776648056 http://orbi.ulg.ac.be/handle/2268/185545 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsQwDLVYDnBhX4ZlFBZxomKaJml6hAHECSEBErcoaVNUqXRgOkXi73EyCyCxXaoeYiW10_o5dp8BDrkVPKOZCRAL0YBxKQIZZXnAjdHW8jzt-N6AV7fx9YM8v3A0OQc_ZPBpeGIK5hxR-DINszRGhODwT_f24-fHzohqGUNjinh8TB_0WdS5nrT-4npmS5eU_hlXev9yufivlS3Bwgg-ktOhvZdhylYrsHpaYej89EaOiC_o9CflKzDXHTdzWwV-3qCY-0p4Nlri28478ojBG-nl5EynRVk2NakbMyjKoiY3ZzdMr8H95cVd9yoYdUwINKPxIDBWszBMc0RpTOeCcc25lpGh1DqmPYyFWGLxKjTXNLEi0aFN0GOnMs7x1TTROsxUvcpuAsl44tjiJLPowGPDpRbGSI2CWUfmOW9BG1WqRju-Vj6ZTUM1UUoL9sfaVs9D5ozvBh17O6he3xTqlSrHdu3vm_JR6VQZqxAgShW6cjqcdG9sLoUKdLkNXdleg9NHrh5WYDT1y5g4xgESIV8LNoa2nqyMRgj9JBdbfz3WNsxT3xGDBaHYgZlBv7G7MF1nTdvvy3egSda4 |
link.rule.ids | 230,315,782,786,887,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5QCXUl7t0gIuQpyI2Di24xxhF7QIukICJG6WnThVpDTbbjaV9t937H0AEg_1EuXgiZ0ZJ_ONx_4G4JBbwTOamQCxEA0YlyKQUZYH3BhtLc_Tjq8N2L-NBw-yd76gyXFnYXAQNT6p9kn8R3aB8MQUzPmj8M8SLHOBINjBoO7t4xnIzoxxGSNkirB8ziL0VNR5oLR-5oGWS5ebfh1eejdzsfY_A_wEH2dgkpxOrb8OH2y1AZunFQbSvybkiPjtnX7dfANWuvPSbpvAew2KuX-G56Ylvgi9o5IYT8gwJ2c6LcqyqUndmHFRFjW5ObthegvuL87vuv1gVj8h0IzG48BYzcIwzRGzMZ0LxjXnWkaGUut49zAyYonFq9Bc08SKRIc2Qf-dyjjHD9VE29CqhpX9AiTjieOOk8yiO48Nl1oYIzUKZh2Z57wNe6gTNZv_tfKpbRqqhVLacDBXuvo95dF4qdGxN4cajkyh_lLluK_9fVP-VDpVxiqEi1KFbnMddvp9bjWFCnSZDl3ZYYPdR253rMDY6o02cYwNJALANnyemnwxMhohEJRc7Lz3Wvuw0r_7ca2uLwdXX2GV-loZLAjFN2iNR43dhaU6a_b8VP0HlnDfJQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB31Q4JeaGlpWVqKQYgTKRvHdpzjdrerolbVSgWJm2UndhUpZEuzQeq_Z-xNSpFaEJcoBzt2ZjyZNxn7DcB7bgUvaGEixEI0YlyKSCaFi7gx2lru8mGoDXh6mV58k5MTT5Nz1J-FwUk0-KQmJPG9VV8XrmMYiD-ZknmfFP9YhXUu0swHW6Px5e9zkMOOdRmjZIrQvGcSut_Ve6G8-cMLrVc-P_04xAyuZrr5v5PcgmcdqCSj5Sp4Diu23oadUY0B9fdb8oGEbZ7h__k2PB33Jd52gE9a7Oa_HYGjloRi9J5SYnFL5o4c67ysqrYhTWsWZVU2ZHY8Y_oFfJ2efBmfRl0dhUgzmi4iYzWL49whdmPaCcY151omhlLr-fcwQmKZxavQXNPMikzHNkM_nsvUocGaZBfW6nltXwIpeOY55CSz6NZTw6UWxkiNHYuhdI4P4BDlojo7aFRIcdNY3QllAO96wavrJZ_GQ40-BpWo-Y0p1U-qPAd2uG-rK6VzZaxC2ChV7DfZ4aBve80pFKDPeOjazlscPvG7ZAXGWH9pk6bYQCIQHMDeUu13M6MJAkLJxat_vdYbeDKbTNX554uzfdigoWQGi2JxAGuLm9a-htWmaA_Dav0FHnbhqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Substrate+Specificity+of+Bacillus+subtilis+PBP4a&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Nemmara%2C+Venkatesh+V&rft.au=Adediran%2C+SA&rft.au=Dave%2C+Kinjal&rft.au=Duez%2C+Colette&rft.date=2013-04-16&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=52&rft.issue=15&rft.spage=2627&rft.epage=2637-2627-2637&rft_id=info:doi/10.1021%2Fbi400211q&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |