Electrical Transport Mechanisms in Graphene Nanoplatelet Doped Polydimethylsiloxane and Application to Ultrasensitive Temperature Sensors

The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications has been investigated under electrical impedance spectroscopy (EIS) analysis. AC measurements showed a very prevalent frequency-dependent be...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces Vol. 15; no. 18; pp. 22377 - 22394
Main Authors: Fernández Sánchez-Romate, Xoan Xosé, del Bosque García, Antonio, Sánchez, María, Ureña, Alejandro
Format: Journal Article
Language:English
Published: United States American Chemical Society 10-05-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications has been investigated under electrical impedance spectroscopy (EIS) analysis. AC measurements showed a very prevalent frequency-dependent behavior in low filled nanocomposites due to the lower charge density. In fact, 4 wt % GNP samples showed a nonideal capacitive behavior due to scattering effects. Therefore, the standard RC-LRC circuit varies with the substitution of capacitive elements by CPEs, where a CPE is a constant phase element which denotes energy dissipation. In this regard, the temperature promotes a prevalence of scattering effects, with an increase of resistance and inductance and a decrease of capacitance values in both RC (intrinsic and contact mechanisms) and LRC (tunneling mechanisms) elements and, even, a change from ideal to nonideal capacitive behavior as in the case of 6 wt % GNP samples. In this way, a deeper understanding of electronic mechanisms depending on GNP content and temperature is achieved in a very intuitive way. Finally, a proof-of-concept carried out as temperature sensors showed a huge sensitivity (from 0.05 to 11.7 °C–1) in comparison to most of the consulted studies (below 0.01 °C–1), proving, thus, excellent capabilities never seen before for this type of application.
AbstractList The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications has been investigated under electrical impedance spectroscopy (EIS) analysis. AC measurements showed a very prevalent frequency-dependent behavior in low filled nanocomposites due to the lower charge density. In fact, 4 wt % GNP samples showed a nonideal capacitive behavior due to scattering effects. Therefore, the standard RC-LRC circuit varies with the substitution of capacitive elements by CPEs, where a CPE is a constant phase element which denotes energy dissipation. In this regard, the temperature promotes a prevalence of scattering effects, with an increase of resistance and inductance and a decrease of capacitance values in both RC (intrinsic and contact mechanisms) and LRC (tunneling mechanisms) elements and, even, a change from ideal to nonideal capacitive behavior as in the case of 6 wt % GNP samples. In this way, a deeper understanding of electronic mechanisms depending on GNP content and temperature is achieved in a very intuitive way. Finally, a proof-of-concept carried out as temperature sensors showed a huge sensitivity (from 0.05 to 11.7 °C ) in comparison to most of the consulted studies (below 0.01 °C ), proving, thus, excellent capabilities never seen before for this type of application.
The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications has been investigated under electrical impedance spectroscopy (EIS) analysis. AC measurements showed a very prevalent frequency-dependent behavior in low filled nanocomposites due to the lower charge density. In fact, 4 wt % GNP samples showed a nonideal capacitive behavior due to scattering effects. Therefore, the standard RC-LRC circuit varies with the substitution of capacitive elements by CPEs, where a CPE is a constant phase element which denotes energy dissipation. In this regard, the temperature promotes a prevalence of scattering effects, with an increase of resistance and inductance and a decrease of capacitance values in both RC (intrinsic and contact mechanisms) and LRC (tunneling mechanisms) elements and, even, a change from ideal to nonideal capacitive behavior as in the case of 6 wt % GNP samples. In this way, a deeper understanding of electronic mechanisms depending on GNP content and temperature is achieved in a very intuitive way. Finally, a proof-of-concept carried out as temperature sensors showed a huge sensitivity (from 0.05 to 11.7 °C–1) in comparison to most of the consulted studies (below 0.01 °C–1), proving, thus, excellent capabilities never seen before for this type of application.
The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications has been investigated under electrical impedance spectroscopy (EIS) analysis. AC measurements showed a very prevalent frequency-dependent behavior in low filled nanocomposites due to the lower charge density. In fact, 4 wt % GNP samples showed a nonideal capacitive behavior due to scattering effects. Therefore, the standard RC-LRC circuit varies with the substitution of capacitive elements by CPEs, where a CPE is a constant phase element which denotes energy dissipation. In this regard, the temperature promotes a prevalence of scattering effects, with an increase of resistance and inductance and a decrease of capacitance values in both RC (intrinsic and contact mechanisms) and LRC (tunneling mechanisms) elements and, even, a change from ideal to nonideal capacitive behavior as in the case of 6 wt % GNP samples. In this way, a deeper understanding of electronic mechanisms depending on GNP content and temperature is achieved in a very intuitive way. Finally, a proof-of-concept carried out as temperature sensors showed a huge sensitivity (from 0.05 to 11.7 °C –1 ) in comparison to most of the consulted studies (below 0.01 °C –1 ), proving, thus, excellent capabilities never seen before for this type of application.
Author Sánchez, María
Fernández Sánchez-Romate, Xoan Xosé
del Bosque García, Antonio
Ureña, Alejandro
AuthorAffiliation Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología
AuthorAffiliation_xml – name: Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología
Author_xml – sequence: 1
  givenname: Xoan Xosé
  orcidid: 0000-0001-9283-4712
  surname: Fernández Sánchez-Romate
  fullname: Fernández Sánchez-Romate, Xoan Xosé
  email: xoan.fernandez.sanchezromate@urjc.es
– sequence: 2
  givenname: Antonio
  orcidid: 0000-0002-8301-2159
  surname: del Bosque García
  fullname: del Bosque García, Antonio
– sequence: 3
  givenname: María
  surname: Sánchez
  fullname: Sánchez, María
– sequence: 4
  givenname: Alejandro
  surname: Ureña
  fullname: Ureña, Alejandro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37120855$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1vVCEUhompsR-6dWlYGpMZgcv9Wpmm1tqkrSZO1-QM91yHhgsI3Mb5Cf5rMTNO6sIVBJ7zngPPKTly3iEhrzlbcib4e9AJJrMUWgjeiGfkhPdSLjpRi6PDXspjcprSA2NNJVj9ghxXLResq-sT8uvSos7RaLB0FcGl4GOmt6g34EyaEjWOXkUIG3RI78D5YCGjxUw_-oAD_ertdjAT5s3WJmP9TygcuIGeh2BLajbe0ezpvc0RErpksnlEusIpYIQ8R6TfyqmP6SV5PoJN-Gq_npH7T5eri8-Lmy9X1xfnNwuQosmLtYZ2rJqBj30nK6bF2LZNNQDorgfBGBvWAzR9z2pedQxZI2s9rGXfj4BjK6vqjHzY5YZ5PeGg0ZXJrArRTBC3yoNR_944s1Hf_aPijLeNbNuS8HafEP2PGVNWk0karS1v93NSomNdsdHWsqDLHaqjTynieOjDmfojUO0Eqr3AUvDm6XQH_K-xArzbAaVQPfg5uvJZ_0v7DcGjrNA
CitedBy_id crossref_primary_10_1080_10420150_2024_2318725
crossref_primary_10_1039_D3TA04077A
crossref_primary_10_1088_1361_6528_ad3e87
Cites_doi 10.3390/mi3030550
10.1016/j.compscitech.2022.109628
10.1088/0022-3727/46/38/385305
10.1016/j.mtchem.2021.100496
10.1002/adfm.201910809
10.1016/j.carbon.2013.06.084
10.1016/j.compositesb.2016.10.034
10.1016/j.carbon.2018.07.030
10.1016/j.compscitech.2018.12.010
10.1021/acsami.2c02340
10.1038/s41928-018-0041-0
10.1016/j.carbon.2018.06.037
10.1021/jp1117163
10.1016/j.electacta.2013.02.101
10.1021/acsami.1c14671
10.1021/acsami.7b04935
10.1021/acsami.7b12104
10.1016/j.carbon.2019.01.090
10.1002/adfm.201504755
10.1021/am502515u
10.1016/j.compscitech.2021.108950
10.1002/adfm.201002442
10.1021/acsami.8b16139
10.1016/j.carbon.2022.02.043
10.1002/pat.5960
10.1002/adma.201504659
10.1016/j.carbon.2018.08.011
10.1002/adma.201504441
10.1016/j.carbon.2012.11.033
10.1016/j.diamond.2022.109001
10.1016/j.egyr.2021.12.020
10.1016/j.polymer.2009.08.038
10.1021/acsami.9b04045
10.1002/adfm.202007661
10.1016/j.electacta.2021.137746
10.1063/1.1702682
10.1016/j.sna.2020.112101
10.1002/adma.201301796
10.1109/TED.2010.2102031
10.1007/s12274-016-1294-4
10.1063/1.3580761
10.1016/j.compscitech.2019.05.026
10.1002/adfm.201702390
10.1021/nn800376x
10.1002/adfm.201702891
10.1016/j.matchemphys.2015.08.056
10.1002/adfm.201403809
10.1063/1.4905110
10.1016/j.polymer.2018.01.063
10.1016/j.carbon.2015.09.103
10.1088/0964-1726/24/12/125013
10.1016/j.polymertesting.2020.106638
10.1109/JSEN.2021.3089827
10.1021/acs.jpclett.1c03782
10.1038/s41928-017-0010-z
10.1016/j.compscitech.2005.10.016
10.1016/j.polymertesting.2020.106682
10.1080/09243046.2019.1616409
10.1140/epje/s10189-021-00079-w
10.1021/nn900795n
10.1016/j.scriptamat.2007.12.041
10.1016/j.mattod.2019.12.004
10.1016/j.compscitech.2019.107697
10.1016/j.pmatsci.2019.02.003
10.1063/1.369732
ContentType Journal Article
Copyright 2023 The Authors. Published by American Chemical Society
2023 The Authors. Published by American Chemical Society 2023 The Authors
Copyright_xml – notice: 2023 The Authors. Published by American Chemical Society
– notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsami.2c22162
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 22394
ExternalDocumentID 10_1021_acsami_2c22162
37120855
b525925043
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2986
– fundername: ;
  grantid: PID2019- 107874RB-I00
– fundername: ;
  grantid: S2018/NMT-4411
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAHBH
ABJNI
BAANH
CUPRZ
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a426t-bca7f36d1f98430c2f7763daac89a2000dbda699051380e0645cdb499faef7433
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Tue Sep 17 21:31:57 EDT 2024
Sat Aug 17 04:08:48 EDT 2024
Fri Aug 23 02:32:43 EDT 2024
Sat Sep 28 08:17:36 EDT 2024
Thu Jul 06 08:30:37 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Temperature sensor
Graphene nanoplatelets
Electrical properties
Electrical impedance spectroscopy
PDMS
Language English
License Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a426t-bca7f36d1f98430c2f7763daac89a2000dbda699051380e0645cdb499faef7433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8301-2159
0000-0001-9283-4712
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10176477
PMID 37120855
PQID 2808216754
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10176477
proquest_miscellaneous_2808216754
crossref_primary_10_1021_acsami_2c22162
pubmed_primary_37120855
acs_journals_10_1021_acsami_2c22162
PublicationCentury 2000
PublicationDate 2023-05-10
PublicationDateYYYYMMDD 2023-05-10
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref64/cit64
  doi: 10.3390/mi3030550
– ident: ref28/cit28
  doi: 10.1016/j.compscitech.2022.109628
– ident: ref45/cit45
  doi: 10.1088/0022-3727/46/38/385305
– ident: ref2/cit2
  doi: 10.1016/j.mtchem.2021.100496
– ident: ref16/cit16
  doi: 10.1002/adfm.201910809
– ident: ref26/cit26
  doi: 10.1016/j.carbon.2013.06.084
– ident: ref23/cit23
  doi: 10.1016/j.compositesb.2016.10.034
– ident: ref5/cit5
  doi: 10.1016/j.carbon.2018.07.030
– ident: ref18/cit18
  doi: 10.1016/j.compscitech.2018.12.010
– ident: ref38/cit38
  doi: 10.1021/acsami.2c02340
– ident: ref67/cit67
  doi: 10.1038/s41928-018-0041-0
– ident: ref7/cit7
  doi: 10.1016/j.carbon.2018.06.037
– ident: ref27/cit27
  doi: 10.1021/jp1117163
– ident: ref47/cit47
  doi: 10.1016/j.electacta.2013.02.101
– ident: ref11/cit11
  doi: 10.1021/acsami.1c14671
– ident: ref14/cit14
  doi: 10.1021/acsami.7b04935
– ident: ref24/cit24
  doi: 10.1021/acsami.7b12104
– ident: ref33/cit33
  doi: 10.1016/j.carbon.2019.01.090
– ident: ref10/cit10
  doi: 10.1002/adfm.201504755
– ident: ref25/cit25
  doi: 10.1021/am502515u
– ident: ref15/cit15
  doi: 10.1016/j.compscitech.2021.108950
– ident: ref19/cit19
  doi: 10.1002/adfm.201002442
– ident: ref31/cit31
  doi: 10.1021/acsami.8b16139
– ident: ref41/cit41
  doi: 10.1016/j.carbon.2022.02.043
– ident: ref42/cit42
  doi: 10.1002/pat.5960
– ident: ref63/cit63
  doi: 10.1002/adma.201504659
– ident: ref17/cit17
  doi: 10.1016/j.carbon.2018.08.011
– ident: ref40/cit40
  doi: 10.1002/adma.201504441
– ident: ref49/cit49
  doi: 10.1016/j.carbon.2012.11.033
– ident: ref44/cit44
  doi: 10.1016/j.diamond.2022.109001
– ident: ref54/cit54
  doi: 10.1016/j.egyr.2021.12.020
– ident: ref56/cit56
  doi: 10.1016/j.polymer.2009.08.038
– ident: ref39/cit39
  doi: 10.1021/acsami.9b04045
– ident: ref66/cit66
  doi: 10.1002/adfm.202007661
– ident: ref48/cit48
  doi: 10.1016/j.electacta.2021.137746
– ident: ref55/cit55
  doi: 10.1063/1.1702682
– ident: ref37/cit37
  doi: 10.1016/j.sna.2020.112101
– ident: ref30/cit30
  doi: 10.1002/adma.201301796
– ident: ref36/cit36
  doi: 10.1109/TED.2010.2102031
– ident: ref53/cit53
  doi: 10.1007/s12274-016-1294-4
– ident: ref29/cit29
  doi: 10.1063/1.3580761
– ident: ref35/cit35
  doi: 10.1016/j.compscitech.2019.05.026
– ident: ref65/cit65
  doi: 10.1002/adfm.201702390
– ident: ref4/cit4
  doi: 10.1021/nn800376x
– ident: ref6/cit6
  doi: 10.1002/adfm.201702891
– ident: ref1/cit1
  doi: 10.1016/j.matchemphys.2015.08.056
– ident: ref13/cit13
  doi: 10.1002/adfm.201403809
– ident: ref60/cit60
  doi: 10.1063/1.4905110
– ident: ref43/cit43
  doi: 10.1016/j.polymer.2018.01.063
– ident: ref20/cit20
  doi: 10.1016/j.carbon.2015.09.103
– ident: ref62/cit62
  doi: 10.1088/0964-1726/24/12/125013
– ident: ref21/cit21
  doi: 10.1016/j.polymertesting.2020.106638
– ident: ref59/cit59
  doi: 10.1109/JSEN.2021.3089827
– ident: ref51/cit51
  doi: 10.1021/acs.jpclett.1c03782
– ident: ref46/cit46
  doi: 10.1038/s41928-017-0010-z
– ident: ref3/cit3
  doi: 10.1016/j.compscitech.2005.10.016
– ident: ref8/cit8
  doi: 10.1016/j.carbon.2018.06.037
– ident: ref32/cit32
  doi: 10.1016/j.polymertesting.2020.106682
– ident: ref34/cit34
  doi: 10.1080/09243046.2019.1616409
– ident: ref50/cit50
  doi: 10.1140/epje/s10189-021-00079-w
– ident: ref22/cit22
  doi: 10.1021/nn900795n
– ident: ref57/cit57
  doi: 10.1016/j.scriptamat.2007.12.041
– ident: ref9/cit9
  doi: 10.1016/j.mattod.2019.12.004
– ident: ref52/cit52
  doi: 10.1016/j.compscitech.2019.107697
– ident: ref58/cit58
  doi: 10.1002/adma.201301796
– ident: ref12/cit12
  doi: 10.1016/j.pmatsci.2019.02.003
– ident: ref61/cit61
  doi: 10.1063/1.369732
SSID ssj0063205
Score 2.4754336
Snippet The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications...
The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 22377
SubjectTerms Functional Nanostructured Materials (including low-D carbon)
Title Electrical Transport Mechanisms in Graphene Nanoplatelet Doped Polydimethylsiloxane and Application to Ultrasensitive Temperature Sensors
URI http://dx.doi.org/10.1021/acsami.2c22162
https://www.ncbi.nlm.nih.gov/pubmed/37120855
https://search.proquest.com/docview/2808216754
https://pubmed.ncbi.nlm.nih.gov/PMC10176477
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XvTg-1FfrCjoZTHZpHkcSx_2oghtwVvYZDcYiEnptmB_gv_amaStraXQa7IJyczszDfszDeEPITcUbbgknFlxcx2eMx8y7SZUQtdF-KJETvY79zpum8fXrOFNDlPa07wufksIo2jcHjEuYnOdoe7ABMQBDW6M5_rWLwoVoSM3GYeRKwZPePK8xiEIr0chFaQ5f8CyYWI0z7Y_FsPyf4UVdJ6aQZHZEtlx2RvgWvwhPy0ioE3qBM6ZzSnrwo7fxP9pWmS0RdkrwbnR8Hn5oMUYCholTbzgZL0PU8nMsGB05NUJ2n-LWCdyCSt_x2B01FO-yn8i8ayeHSktKcAl5e8zbQLV_OhPiX9dqvX6LDpHAYmIH6PWBgJN7Ycaca-Z1tGxGMXvJIUIvJ8ga0-MpTC8ZHpy_IMhQx4kQwhlYqFigGhWGekkuWZuiAUTMOv-U6kIO2zTeEK1_AhZZNc1uwQUr0quQcZBtN9pIPiiJybQSnYYCrYKnmcqS8YlKQca1fezbQbwL7BwxCQTj7WAfcA_JiQLtlVcl5qe_4uC6wU6_eqxFuyg_kC5ORevpMlnwU3N3o47O293OhHrsgujq9nBRvsNamMhmN1Q7a1HN8W9v0Lzpb5fA
link.rule.ids 230,315,782,786,887,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4t7AE4sLssj-zTiJX2ZDVx0jyOCMoW0SKkFolb5MSOiBSSCrcS_AT-NTNJUyhoJbg6jmV7xvPQzHwD8CcRvvakUFxoN-OeLzIeuY7H7W4SBKhP7Myneuf-KDi_Co97BJPTaWthcBMGVzJ1EP8JXcDp4Bh1xBGpEA7J3I9dHy1hsoWORq3o9V1R5yyiY-7xEBVXi9L46n_SRalZ1kWvDMyXeZLPFM_Jp3dv-TNszm1MdtgwxRf4oMst2HiGPPgVHnp1-xuiEFvgm7Ohpjrg3NwYlpfsH2FZoyhkKIGrSYFGKdKYHVcTrdhFVdyrnNpP3xcmL6o7ifNkqdjhU0CcTSt2WeCRDCXJk1hlY41WeoPizEY4Wt2abbg86Y2P-nzelYFL1OZTnqQyyFxfOVkUeq6diixAGaWkTMNIUuGPSpT0I8L9ckNbEx5eqhJ0rDKpM7RX3B1YLatS7wFDRom6kZ9qdAI9RwYysCN04JRQXS9Bx8-CA7zDeP6qTFwHzIUTNxcbzy_Wgr8tFeNJA9Hx35n7LZFjfEUUGsHbqWYmFiGaQg46T54Fuw3RF2u5yLOUzWdBuMQOiwmE0L38pcyva6RukndU6fvtTQf5DWv98XAQD07Pz77DOjW25zVO7A9Ynd7O9E9YMWr2q2b5RwQVAfg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7aBEpzaJK2aTbpQ6GFnkRsyevHccnuNqVJCGwCvRnZkojBtZdoF5qf0H_dGT822YZC6VWWhaQZzYOZ-QbgUyZCEyihuTDS8iAUlifSD7g3zKII9YlnQ6p3Pp1FF9_j8YRgcmRfC4ObcLiSa4L49Krn2nYIA_4xjlNXHJEL4ZPc3RyGUUIe1-hk1ovfUIombxGd84DHqLx6pMZH_5M-yt26PnpkZP6ZK_lA-Uy3_2vbO_CiszXZqGWOXXhiqpew9QCB8BX8mjRtcIhSbIVzzs4N1QMX7odjRcW-EKY1ikSGkriel2icIq3ZuJ4bzS7r8k4X1Ib6rnRFWf9UOE9Vmo3uA-NsUbPrEo_lKFmexCu7Mmitt2jObIaj9a17DdfTydXJKe-6M3CFWn3Bs1xFVobat0kcSC8XNkJZpZXK40RRAZDOtAoTwv-SsWcIFy_XGTpYVhmLdovcg42qrsw-MGSYZJiEuUFnMPBVpCIvQUdOCz0MMnQAB_AR7zDtXpdLm8C58NP2YtPuYgfwuadkOm-hOv4686gndIqviUIkeDv10qUiRpPIRycqGMCblvCrtSTyLmX1DSBeY4nVBELqXv9SFTcNYjfJPar4Pfing3yAZ5fjaXr29eLbITyn_va8gYt9CxuL26V5B0-dXr5vuP43QtMEew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+Transport+Mechanisms+in+Graphene+Nanoplatelet+Doped+Polydimethylsiloxane+and+Application+to+Ultrasensitive+Temperature+Sensors&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Fern%C3%A1ndez+S%C3%A1nchez-Romate%2C+Xoan+Xos%C3%A9&rft.au=Del+Bosque+Garc%C3%ADa%2C+Antonio&rft.au=S%C3%A1nchez%2C+Mar%C3%ADa&rft.au=Ure%C3%B1a%2C+Alejandro&rft.date=2023-05-10&rft.eissn=1944-8252&rft.volume=15&rft.issue=18&rft.spage=22377&rft.epage=22394&rft_id=info:doi/10.1021%2Facsami.2c22162&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon