Electrical Transport Mechanisms in Graphene Nanoplatelet Doped Polydimethylsiloxane and Application to Ultrasensitive Temperature Sensors
The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications has been investigated under electrical impedance spectroscopy (EIS) analysis. AC measurements showed a very prevalent frequency-dependent be...
Saved in:
Published in: | ACS applied materials & interfaces Vol. 15; no. 18; pp. 22377 - 22394 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
10-05-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications has been investigated under electrical impedance spectroscopy (EIS) analysis. AC measurements showed a very prevalent frequency-dependent behavior in low filled nanocomposites due to the lower charge density. In fact, 4 wt % GNP samples showed a nonideal capacitive behavior due to scattering effects. Therefore, the standard RC-LRC circuit varies with the substitution of capacitive elements by CPEs, where a CPE is a constant phase element which denotes energy dissipation. In this regard, the temperature promotes a prevalence of scattering effects, with an increase of resistance and inductance and a decrease of capacitance values in both RC (intrinsic and contact mechanisms) and LRC (tunneling mechanisms) elements and, even, a change from ideal to nonideal capacitive behavior as in the case of 6 wt % GNP samples. In this way, a deeper understanding of electronic mechanisms depending on GNP content and temperature is achieved in a very intuitive way. Finally, a proof-of-concept carried out as temperature sensors showed a huge sensitivity (from 0.05 to 11.7 °C–1) in comparison to most of the consulted studies (below 0.01 °C–1), proving, thus, excellent capabilities never seen before for this type of application. |
---|---|
AbstractList | The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications has been investigated under electrical impedance spectroscopy (EIS) analysis. AC measurements showed a very prevalent frequency-dependent behavior in low filled nanocomposites due to the lower charge density. In fact, 4 wt % GNP samples showed a nonideal capacitive behavior due to scattering effects. Therefore, the standard RC-LRC circuit varies with the substitution of capacitive elements by CPEs, where a CPE is a constant phase element which denotes energy dissipation. In this regard, the temperature promotes a prevalence of scattering effects, with an increase of resistance and inductance and a decrease of capacitance values in both RC (intrinsic and contact mechanisms) and LRC (tunneling mechanisms) elements and, even, a change from ideal to nonideal capacitive behavior as in the case of 6 wt % GNP samples. In this way, a deeper understanding of electronic mechanisms depending on GNP content and temperature is achieved in a very intuitive way. Finally, a proof-of-concept carried out as temperature sensors showed a huge sensitivity (from 0.05 to 11.7 °C
) in comparison to most of the consulted studies (below 0.01 °C
), proving, thus, excellent capabilities never seen before for this type of application. The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications has been investigated under electrical impedance spectroscopy (EIS) analysis. AC measurements showed a very prevalent frequency-dependent behavior in low filled nanocomposites due to the lower charge density. In fact, 4 wt % GNP samples showed a nonideal capacitive behavior due to scattering effects. Therefore, the standard RC-LRC circuit varies with the substitution of capacitive elements by CPEs, where a CPE is a constant phase element which denotes energy dissipation. In this regard, the temperature promotes a prevalence of scattering effects, with an increase of resistance and inductance and a decrease of capacitance values in both RC (intrinsic and contact mechanisms) and LRC (tunneling mechanisms) elements and, even, a change from ideal to nonideal capacitive behavior as in the case of 6 wt % GNP samples. In this way, a deeper understanding of electronic mechanisms depending on GNP content and temperature is achieved in a very intuitive way. Finally, a proof-of-concept carried out as temperature sensors showed a huge sensitivity (from 0.05 to 11.7 °C–1) in comparison to most of the consulted studies (below 0.01 °C–1), proving, thus, excellent capabilities never seen before for this type of application. The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications has been investigated under electrical impedance spectroscopy (EIS) analysis. AC measurements showed a very prevalent frequency-dependent behavior in low filled nanocomposites due to the lower charge density. In fact, 4 wt % GNP samples showed a nonideal capacitive behavior due to scattering effects. Therefore, the standard RC-LRC circuit varies with the substitution of capacitive elements by CPEs, where a CPE is a constant phase element which denotes energy dissipation. In this regard, the temperature promotes a prevalence of scattering effects, with an increase of resistance and inductance and a decrease of capacitance values in both RC (intrinsic and contact mechanisms) and LRC (tunneling mechanisms) elements and, even, a change from ideal to nonideal capacitive behavior as in the case of 6 wt % GNP samples. In this way, a deeper understanding of electronic mechanisms depending on GNP content and temperature is achieved in a very intuitive way. Finally, a proof-of-concept carried out as temperature sensors showed a huge sensitivity (from 0.05 to 11.7 °C –1 ) in comparison to most of the consulted studies (below 0.01 °C –1 ), proving, thus, excellent capabilities never seen before for this type of application. |
Author | Sánchez, María Fernández Sánchez-Romate, Xoan Xosé del Bosque García, Antonio Ureña, Alejandro |
AuthorAffiliation | Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología |
AuthorAffiliation_xml | – name: Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología |
Author_xml | – sequence: 1 givenname: Xoan Xosé orcidid: 0000-0001-9283-4712 surname: Fernández Sánchez-Romate fullname: Fernández Sánchez-Romate, Xoan Xosé email: xoan.fernandez.sanchezromate@urjc.es – sequence: 2 givenname: Antonio orcidid: 0000-0002-8301-2159 surname: del Bosque García fullname: del Bosque García, Antonio – sequence: 3 givenname: María surname: Sánchez fullname: Sánchez, María – sequence: 4 givenname: Alejandro surname: Ureña fullname: Ureña, Alejandro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37120855$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1vVCEUhompsR-6dWlYGpMZgcv9Wpmm1tqkrSZO1-QM91yHhgsI3Mb5Cf5rMTNO6sIVBJ7zngPPKTly3iEhrzlbcib4e9AJJrMUWgjeiGfkhPdSLjpRi6PDXspjcprSA2NNJVj9ghxXLResq-sT8uvSos7RaLB0FcGl4GOmt6g34EyaEjWOXkUIG3RI78D5YCGjxUw_-oAD_ertdjAT5s3WJmP9TygcuIGeh2BLajbe0ezpvc0RErpksnlEusIpYIQ8R6TfyqmP6SV5PoJN-Gq_npH7T5eri8-Lmy9X1xfnNwuQosmLtYZ2rJqBj30nK6bF2LZNNQDorgfBGBvWAzR9z2pedQxZI2s9rGXfj4BjK6vqjHzY5YZ5PeGg0ZXJrArRTBC3yoNR_944s1Hf_aPijLeNbNuS8HafEP2PGVNWk0karS1v93NSomNdsdHWsqDLHaqjTynieOjDmfojUO0Eqr3AUvDm6XQH_K-xArzbAaVQPfg5uvJZ_0v7DcGjrNA |
CitedBy_id | crossref_primary_10_1080_10420150_2024_2318725 crossref_primary_10_1039_D3TA04077A crossref_primary_10_1088_1361_6528_ad3e87 |
Cites_doi | 10.3390/mi3030550 10.1016/j.compscitech.2022.109628 10.1088/0022-3727/46/38/385305 10.1016/j.mtchem.2021.100496 10.1002/adfm.201910809 10.1016/j.carbon.2013.06.084 10.1016/j.compositesb.2016.10.034 10.1016/j.carbon.2018.07.030 10.1016/j.compscitech.2018.12.010 10.1021/acsami.2c02340 10.1038/s41928-018-0041-0 10.1016/j.carbon.2018.06.037 10.1021/jp1117163 10.1016/j.electacta.2013.02.101 10.1021/acsami.1c14671 10.1021/acsami.7b04935 10.1021/acsami.7b12104 10.1016/j.carbon.2019.01.090 10.1002/adfm.201504755 10.1021/am502515u 10.1016/j.compscitech.2021.108950 10.1002/adfm.201002442 10.1021/acsami.8b16139 10.1016/j.carbon.2022.02.043 10.1002/pat.5960 10.1002/adma.201504659 10.1016/j.carbon.2018.08.011 10.1002/adma.201504441 10.1016/j.carbon.2012.11.033 10.1016/j.diamond.2022.109001 10.1016/j.egyr.2021.12.020 10.1016/j.polymer.2009.08.038 10.1021/acsami.9b04045 10.1002/adfm.202007661 10.1016/j.electacta.2021.137746 10.1063/1.1702682 10.1016/j.sna.2020.112101 10.1002/adma.201301796 10.1109/TED.2010.2102031 10.1007/s12274-016-1294-4 10.1063/1.3580761 10.1016/j.compscitech.2019.05.026 10.1002/adfm.201702390 10.1021/nn800376x 10.1002/adfm.201702891 10.1016/j.matchemphys.2015.08.056 10.1002/adfm.201403809 10.1063/1.4905110 10.1016/j.polymer.2018.01.063 10.1016/j.carbon.2015.09.103 10.1088/0964-1726/24/12/125013 10.1016/j.polymertesting.2020.106638 10.1109/JSEN.2021.3089827 10.1021/acs.jpclett.1c03782 10.1038/s41928-017-0010-z 10.1016/j.compscitech.2005.10.016 10.1016/j.polymertesting.2020.106682 10.1080/09243046.2019.1616409 10.1140/epje/s10189-021-00079-w 10.1021/nn900795n 10.1016/j.scriptamat.2007.12.041 10.1016/j.mattod.2019.12.004 10.1016/j.compscitech.2019.107697 10.1016/j.pmatsci.2019.02.003 10.1063/1.369732 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society 2023 The Authors. Published by American Chemical Society 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society – notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acsami.2c22162 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 22394 |
ExternalDocumentID | 10_1021_acsami_2c22162 37120855 b525925043 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 2986 – fundername: ; grantid: PID2019- 107874RB-I00 – fundername: ; grantid: S2018/NMT-4411 |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAHBH ABJNI BAANH CUPRZ NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a426t-bca7f36d1f98430c2f7763daac89a2000dbda699051380e0645cdb499faef7433 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Tue Sep 17 21:31:57 EDT 2024 Sat Aug 17 04:08:48 EDT 2024 Fri Aug 23 02:32:43 EDT 2024 Sat Sep 28 08:17:36 EDT 2024 Thu Jul 06 08:30:37 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Temperature sensor Graphene nanoplatelets Electrical properties Electrical impedance spectroscopy PDMS |
Language | English |
License | Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a426t-bca7f36d1f98430c2f7763daac89a2000dbda699051380e0645cdb499faef7433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8301-2159 0000-0001-9283-4712 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10176477 |
PMID | 37120855 |
PQID | 2808216754 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10176477 proquest_miscellaneous_2808216754 crossref_primary_10_1021_acsami_2c22162 pubmed_primary_37120855 acs_journals_10_1021_acsami_2c22162 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-10 |
PublicationDateYYYYMMDD | 2023-05-10 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref64/cit64 doi: 10.3390/mi3030550 – ident: ref28/cit28 doi: 10.1016/j.compscitech.2022.109628 – ident: ref45/cit45 doi: 10.1088/0022-3727/46/38/385305 – ident: ref2/cit2 doi: 10.1016/j.mtchem.2021.100496 – ident: ref16/cit16 doi: 10.1002/adfm.201910809 – ident: ref26/cit26 doi: 10.1016/j.carbon.2013.06.084 – ident: ref23/cit23 doi: 10.1016/j.compositesb.2016.10.034 – ident: ref5/cit5 doi: 10.1016/j.carbon.2018.07.030 – ident: ref18/cit18 doi: 10.1016/j.compscitech.2018.12.010 – ident: ref38/cit38 doi: 10.1021/acsami.2c02340 – ident: ref67/cit67 doi: 10.1038/s41928-018-0041-0 – ident: ref7/cit7 doi: 10.1016/j.carbon.2018.06.037 – ident: ref27/cit27 doi: 10.1021/jp1117163 – ident: ref47/cit47 doi: 10.1016/j.electacta.2013.02.101 – ident: ref11/cit11 doi: 10.1021/acsami.1c14671 – ident: ref14/cit14 doi: 10.1021/acsami.7b04935 – ident: ref24/cit24 doi: 10.1021/acsami.7b12104 – ident: ref33/cit33 doi: 10.1016/j.carbon.2019.01.090 – ident: ref10/cit10 doi: 10.1002/adfm.201504755 – ident: ref25/cit25 doi: 10.1021/am502515u – ident: ref15/cit15 doi: 10.1016/j.compscitech.2021.108950 – ident: ref19/cit19 doi: 10.1002/adfm.201002442 – ident: ref31/cit31 doi: 10.1021/acsami.8b16139 – ident: ref41/cit41 doi: 10.1016/j.carbon.2022.02.043 – ident: ref42/cit42 doi: 10.1002/pat.5960 – ident: ref63/cit63 doi: 10.1002/adma.201504659 – ident: ref17/cit17 doi: 10.1016/j.carbon.2018.08.011 – ident: ref40/cit40 doi: 10.1002/adma.201504441 – ident: ref49/cit49 doi: 10.1016/j.carbon.2012.11.033 – ident: ref44/cit44 doi: 10.1016/j.diamond.2022.109001 – ident: ref54/cit54 doi: 10.1016/j.egyr.2021.12.020 – ident: ref56/cit56 doi: 10.1016/j.polymer.2009.08.038 – ident: ref39/cit39 doi: 10.1021/acsami.9b04045 – ident: ref66/cit66 doi: 10.1002/adfm.202007661 – ident: ref48/cit48 doi: 10.1016/j.electacta.2021.137746 – ident: ref55/cit55 doi: 10.1063/1.1702682 – ident: ref37/cit37 doi: 10.1016/j.sna.2020.112101 – ident: ref30/cit30 doi: 10.1002/adma.201301796 – ident: ref36/cit36 doi: 10.1109/TED.2010.2102031 – ident: ref53/cit53 doi: 10.1007/s12274-016-1294-4 – ident: ref29/cit29 doi: 10.1063/1.3580761 – ident: ref35/cit35 doi: 10.1016/j.compscitech.2019.05.026 – ident: ref65/cit65 doi: 10.1002/adfm.201702390 – ident: ref4/cit4 doi: 10.1021/nn800376x – ident: ref6/cit6 doi: 10.1002/adfm.201702891 – ident: ref1/cit1 doi: 10.1016/j.matchemphys.2015.08.056 – ident: ref13/cit13 doi: 10.1002/adfm.201403809 – ident: ref60/cit60 doi: 10.1063/1.4905110 – ident: ref43/cit43 doi: 10.1016/j.polymer.2018.01.063 – ident: ref20/cit20 doi: 10.1016/j.carbon.2015.09.103 – ident: ref62/cit62 doi: 10.1088/0964-1726/24/12/125013 – ident: ref21/cit21 doi: 10.1016/j.polymertesting.2020.106638 – ident: ref59/cit59 doi: 10.1109/JSEN.2021.3089827 – ident: ref51/cit51 doi: 10.1021/acs.jpclett.1c03782 – ident: ref46/cit46 doi: 10.1038/s41928-017-0010-z – ident: ref3/cit3 doi: 10.1016/j.compscitech.2005.10.016 – ident: ref8/cit8 doi: 10.1016/j.carbon.2018.06.037 – ident: ref32/cit32 doi: 10.1016/j.polymertesting.2020.106682 – ident: ref34/cit34 doi: 10.1080/09243046.2019.1616409 – ident: ref50/cit50 doi: 10.1140/epje/s10189-021-00079-w – ident: ref22/cit22 doi: 10.1021/nn900795n – ident: ref57/cit57 doi: 10.1016/j.scriptamat.2007.12.041 – ident: ref9/cit9 doi: 10.1016/j.mattod.2019.12.004 – ident: ref52/cit52 doi: 10.1016/j.compscitech.2019.107697 – ident: ref58/cit58 doi: 10.1002/adma.201301796 – ident: ref12/cit12 doi: 10.1016/j.pmatsci.2019.02.003 – ident: ref61/cit61 doi: 10.1063/1.369732 |
SSID | ssj0063205 |
Score | 2.4754336 |
Snippet | The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications... The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications... |
SourceID | pubmedcentral proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 22377 |
SubjectTerms | Functional Nanostructured Materials (including low-D carbon) |
Title | Electrical Transport Mechanisms in Graphene Nanoplatelet Doped Polydimethylsiloxane and Application to Ultrasensitive Temperature Sensors |
URI | http://dx.doi.org/10.1021/acsami.2c22162 https://www.ncbi.nlm.nih.gov/pubmed/37120855 https://search.proquest.com/docview/2808216754 https://pubmed.ncbi.nlm.nih.gov/PMC10176477 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XvTg-1FfrCjoZTHZpHkcSx_2oghtwVvYZDcYiEnptmB_gv_amaStraXQa7IJyczszDfszDeEPITcUbbgknFlxcx2eMx8y7SZUQtdF-KJETvY79zpum8fXrOFNDlPa07wufksIo2jcHjEuYnOdoe7ABMQBDW6M5_rWLwoVoSM3GYeRKwZPePK8xiEIr0chFaQ5f8CyYWI0z7Y_FsPyf4UVdJ6aQZHZEtlx2RvgWvwhPy0ioE3qBM6ZzSnrwo7fxP9pWmS0RdkrwbnR8Hn5oMUYCholTbzgZL0PU8nMsGB05NUJ2n-LWCdyCSt_x2B01FO-yn8i8ayeHSktKcAl5e8zbQLV_OhPiX9dqvX6LDpHAYmIH6PWBgJN7Ycaca-Z1tGxGMXvJIUIvJ8ga0-MpTC8ZHpy_IMhQx4kQwhlYqFigGhWGekkuWZuiAUTMOv-U6kIO2zTeEK1_AhZZNc1uwQUr0quQcZBtN9pIPiiJybQSnYYCrYKnmcqS8YlKQca1fezbQbwL7BwxCQTj7WAfcA_JiQLtlVcl5qe_4uC6wU6_eqxFuyg_kC5ORevpMlnwU3N3o47O293OhHrsgujq9nBRvsNamMhmN1Q7a1HN8W9v0Lzpb5fA |
link.rule.ids | 230,315,782,786,887,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4t7AE4sLssj-zTiJX2ZDVx0jyOCMoW0SKkFolb5MSOiBSSCrcS_AT-NTNJUyhoJbg6jmV7xvPQzHwD8CcRvvakUFxoN-OeLzIeuY7H7W4SBKhP7Myneuf-KDi_Co97BJPTaWthcBMGVzJ1EP8JXcDp4Bh1xBGpEA7J3I9dHy1hsoWORq3o9V1R5yyiY-7xEBVXi9L46n_SRalZ1kWvDMyXeZLPFM_Jp3dv-TNszm1MdtgwxRf4oMst2HiGPPgVHnp1-xuiEFvgm7Ohpjrg3NwYlpfsH2FZoyhkKIGrSYFGKdKYHVcTrdhFVdyrnNpP3xcmL6o7ifNkqdjhU0CcTSt2WeCRDCXJk1hlY41WeoPizEY4Wt2abbg86Y2P-nzelYFL1OZTnqQyyFxfOVkUeq6diixAGaWkTMNIUuGPSpT0I8L9ckNbEx5eqhJ0rDKpM7RX3B1YLatS7wFDRom6kZ9qdAI9RwYysCN04JRQXS9Bx8-CA7zDeP6qTFwHzIUTNxcbzy_Wgr8tFeNJA9Hx35n7LZFjfEUUGsHbqWYmFiGaQg46T54Fuw3RF2u5yLOUzWdBuMQOiwmE0L38pcyva6RukndU6fvtTQf5DWv98XAQD07Pz77DOjW25zVO7A9Ynd7O9E9YMWr2q2b5RwQVAfg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7aBEpzaJK2aTbpQ6GFnkRsyevHccnuNqVJCGwCvRnZkojBtZdoF5qf0H_dGT822YZC6VWWhaQZzYOZ-QbgUyZCEyihuTDS8iAUlifSD7g3zKII9YlnQ6p3Pp1FF9_j8YRgcmRfC4ObcLiSa4L49Krn2nYIA_4xjlNXHJEL4ZPc3RyGUUIe1-hk1ovfUIombxGd84DHqLx6pMZH_5M-yt26PnpkZP6ZK_lA-Uy3_2vbO_CiszXZqGWOXXhiqpew9QCB8BX8mjRtcIhSbIVzzs4N1QMX7odjRcW-EKY1ikSGkriel2icIq3ZuJ4bzS7r8k4X1Ib6rnRFWf9UOE9Vmo3uA-NsUbPrEo_lKFmexCu7Mmitt2jObIaj9a17DdfTydXJKe-6M3CFWn3Bs1xFVobat0kcSC8XNkJZpZXK40RRAZDOtAoTwv-SsWcIFy_XGTpYVhmLdovcg42qrsw-MGSYZJiEuUFnMPBVpCIvQUdOCz0MMnQAB_AR7zDtXpdLm8C58NP2YtPuYgfwuadkOm-hOv4686gndIqviUIkeDv10qUiRpPIRycqGMCblvCrtSTyLmX1DSBeY4nVBELqXv9SFTcNYjfJPar4Pfing3yAZ5fjaXr29eLbITyn_va8gYt9CxuL26V5B0-dXr5vuP43QtMEew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+Transport+Mechanisms+in+Graphene+Nanoplatelet+Doped+Polydimethylsiloxane+and+Application+to+Ultrasensitive+Temperature+Sensors&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Fern%C3%A1ndez+S%C3%A1nchez-Romate%2C+Xoan+Xos%C3%A9&rft.au=Del+Bosque+Garc%C3%ADa%2C+Antonio&rft.au=S%C3%A1nchez%2C+Mar%C3%ADa&rft.au=Ure%C3%B1a%2C+Alejandro&rft.date=2023-05-10&rft.eissn=1944-8252&rft.volume=15&rft.issue=18&rft.spage=22377&rft.epage=22394&rft_id=info:doi/10.1021%2Facsami.2c22162&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |