Emplacement of long lava flows on planetary surfaces

Three long lava flows on Mars, Venus, and the Moon were examined in order to evaluate their possible emplacement rate and condition. On the Moon, flows of the last (phase III) effusion within the Imbrium impact basin were examined using Apollo photography. The longest phase III flow can be followed...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research Vol. 103; no. B11; pp. 27503 - 27516
Main Author: Zimbelman, James R.
Format: Journal Article
Language:English
Published: Washington, DC Blackwell Publishing Ltd 10-11-1998
American Geophysical Union
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Three long lava flows on Mars, Venus, and the Moon were examined in order to evaluate their possible emplacement rate and condition. On the Moon, flows of the last (phase III) effusion within the Imbrium impact basin were examined using Apollo photography. The longest phase III flow can be followed for 250 km, terminating ∼400 km from the probable source vent. This flow has a width of 10 to 25 km, thickness of 10 to 30 m, and a medial channel preserved in its proximal reach, and it was emplaced on a regional slope of ∼0.3°. In the Tharsis region of Mars, a well‐defined set of lava flows extends north from the topographic saddle between Ascraeus and Pavonis Montes. Viking Orbiter images show one flow that can be traced for 480 km, with a width ranging from 5 to 50 km, thickness of 30 to 100 m and a prominent medial channel in its proximal reach, and was emplaced on a regional slope of ∼0.5° to ∼0.1°. The Strenia Fluctus area on Venus consists of an array of intermixed radar‐bright and radar‐dark lobate flows, one of which can be traced for 180 km, with a width of 5 to 20 km, and an unknown thickness (but inferred to be ∼30 m), and was emplaced on the lowland plains where the regional slope is only ∼0.03°. When viewed at the full Magellan resolution, this flow contains several flow margins, indicating its compound nature. Effusion rates were calculated for the simple lunar and Martian flows using published empirical and theoretical relationships, resulting in a broad range of 500 to 108 (Moon) and 600 to 2×108 (Mars) m3/s, with most likely values of ∼5×104 to ∼105 for both flows. The compound Venus flow would have required 494 years for emplacement at the typical Kilauea rate of ∼5 m3/s, but the thermal balance of planetary tube systems could also be consistent with a rate at least an order of magnitude larger. The distinction between simple and compound flows is important to any evaluation of flow emplacement based solely on remote sensing data.
AbstractList Three long lava flows on Mars, Venus, and the Moon were examined in order to evaluate their possible emplacement rate and condition. On the Moon, flows of the last (phase III) effusion within the Imbrium impact basin were examined using Apollo photography. The longest phase III flow can be followed for 250 km, terminating ∼400 km from the probable source vent. This flow has a width of 10 to 25 km, thickness of 10 to 30 m, and a medial channel preserved in its proximal reach, and it was emplaced on a regional slope of ∼0.3°. In the Tharsis region of Mars, a well‐defined set of lava flows extends north from the topographic saddle between Ascraeus and Pavonis Montes. Viking Orbiter images show one flow that can be traced for 480 km, with a width ranging from 5 to 50 km, thickness of 30 to 100 m and a prominent medial channel in its proximal reach, and was emplaced on a regional slope of ∼0.5° to ∼0.1°. The Strenia Fluctus area on Venus consists of an array of intermixed radar‐bright and radar‐dark lobate flows, one of which can be traced for 180 km, with a width of 5 to 20 km, and an unknown thickness (but inferred to be ∼30 m), and was emplaced on the lowland plains where the regional slope is only ∼0.03°. When viewed at the full Magellan resolution, this flow contains several flow margins, indicating its compound nature. Effusion rates were calculated for the simple lunar and Martian flows using published empirical and theoretical relationships, resulting in a broad range of 500 to 108 (Moon) and 600 to 2×108 (Mars) m3/s, with most likely values of ∼5×104 to ∼105 for both flows. The compound Venus flow would have required 494 years for emplacement at the typical Kilauea rate of ∼5 m3/s, but the thermal balance of planetary tube systems could also be consistent with a rate at least an order of magnitude larger. The distinction between simple and compound flows is important to any evaluation of flow emplacement based solely on remote sensing data.
Three long lava flows on Mars, Venus, and the Moon were examined in order to evaluate their possible emplacement rate and condition. On the Moon, flows of the last (phase III) effusion within the Imbrium impact basin were examined using Apollo photography. The longest phase III flow can be followed for 250 km, terminating ∼400 km from the probable source vent. This flow has a width of 10 to 25 km, thickness of 10 to 30 m, and a medial channel preserved in its proximal reach, and it was emplaced on a regional slope of ∼0.3°. In the Tharsis region of Mars, a well‐defined set of lava flows extends north from the topographic saddle between Ascraeus and Pavonis Montes. Viking Orbiter images show one flow that can be traced for 480 km, with a width ranging from 5 to 50 km, thickness of 30 to 100 m and a prominent medial channel in its proximal reach, and was emplaced on a regional slope of ∼0.5° to ∼0.1°. The Strenia Fluctus area on Venus consists of an array of intermixed radar‐bright and radar‐dark lobate flows, one of which can be traced for 180 km, with a width of 5 to 20 km, and an unknown thickness (but inferred to be ∼30 m), and was emplaced on the lowland plains where the regional slope is only ∼0.03°. When viewed at the full Magellan resolution, this flow contains several flow margins, indicating its compound nature. Effusion rates were calculated for the simple lunar and Martian flows using published empirical and theoretical relationships, resulting in a broad range of 500 to 10 8 (Moon) and 600 to 2×10 8 (Mars) m 3 /s, with most likely values of ∼5×10 4 to ∼10 5 for both flows. The compound Venus flow would have required 494 years for emplacement at the typical Kilauea rate of ∼5 m 3 /s, but the thermal balance of planetary tube systems could also be consistent with a rate at least an order of magnitude larger. The distinction between simple and compound flows is important to any evaluation of flow emplacement based solely on remote sensing data.
Three long lava flows on Mars, Venus, and the moon were examined in order to evaluate their possible emplacement rate and condition. On the moon, flows of the last (phase III) effusion within the Imbrium impact basin were examined using Apollo photography. The longest phase III flow can be followed for 250 km, terminating about 400 km from the probable source vent. This flow has a width of 10 to 25 km, a thickness of 10 to 30 m, and a medial channel preserved in its proximal reach, and it was emplaced on a regional slope of about 0.3 deg. In the Tharsis region of Mars, a well-defined set of lava flows extends north from the topographic saddle between Ascraeus and Pavonis Montes. Viking Orbiter images show one flow that can be traced for 480 km, with a width ranging from 5 to 50 km, a thickness of 30 to 100 m, and a prominent medial channel in its proximal reach. Effusion rates were calculated for the simple lunar and Martian flows using published empirical and theoretical relationships, resulting in a broad range of 500 to 10 exp 8 (moon) and 600 to 2 x 10 exp 8 (Mars) cu m/s, with most likely values of about 5 x 10 exp 4 to about 10 exp 5 for both flows. (Author)
Author Zimbelman, James R.
Author_xml – sequence: 1
  givenname: James R.
  surname: Zimbelman
  fullname: Zimbelman, James R.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1589400$$DView record in Pascal Francis
BookMark eNp1kDFPwzAUhC1UJErpwD_IgJAYAs8vjh2PtGoDVQUCgYpYLDd1UMBJip1S-u9J1Qom3nLD--50umPSqerKEHJK4ZICyiuZTAZAKUYHpIs05iEiYId0gbIkBERxRPrev0N7LOYMaJewUbm0OjOlqZqgzgNbV2-B1V86yG299kFdBe2_Mo12m8CvXN6y_oQc5tp6099rjzyPR0_Dm3B6n94Or6ehZshoKCMpDJtzijEKgxxjoflcZ3xuFsxwyVFoypnJuYwSgIXgUiaYRbiATOaaRj1yvstduvpzZXyjysJnxm4L1SuvkHMmQbAWvNiBmau9dyZXS1eUbWVFQW2nUb_TtOzZPlT7TNvc6Sor_J8hTiQDaDHYYevCms3_eWqSPg4ojWFbN9xZCt-Y71-Ldh-Ki0jEanaXqsHLcPw6g1Q9RD9Qy39R
CitedBy_id crossref_primary_10_1007_s00445_014_0829_3
crossref_primary_10_1016_j_pss_2008_12_001
crossref_primary_10_1016_j_geomorph_2017_08_023
crossref_primary_10_1016_j_jvolgeores_2017_03_025
crossref_primary_10_1002_jgre_20052
crossref_primary_10_1029_2007JE002896
crossref_primary_10_1029_98JB00438
crossref_primary_10_1029_2021GL095202
crossref_primary_10_1016_j_epsl_2013_09_022
crossref_primary_10_1016_j_energy_2022_126047
crossref_primary_10_1029_2002JE001981
crossref_primary_10_1029_2006JE002803
crossref_primary_10_1029_2005JE002421
crossref_primary_10_1016_j_geomorph_2011_05_022
crossref_primary_10_1016_j_jvolgeores_2021_107278
crossref_primary_10_1007_s11038_011_9378_3
crossref_primary_10_1093_petrology_41_11_1545
crossref_primary_10_1029_2002JE001969
crossref_primary_10_1002_2017JE005396
crossref_primary_10_1016_j_pss_2007_01_003
crossref_primary_10_1029_2000JB900384
crossref_primary_10_1029_2009JE003398
crossref_primary_10_1017_S1755691013000509
crossref_primary_10_1029_2009JE003397
crossref_primary_10_1002_jgrf_20111
crossref_primary_10_1016_j_jvolgeores_2006_11_012
crossref_primary_10_1016_S0012_821X_01_00443_5
crossref_primary_10_1029_2004GL020626
crossref_primary_10_1016_j_jvolgeores_2009_04_015
crossref_primary_10_1029_2002JE001965
crossref_primary_10_1016_j_icarus_2019_113388
crossref_primary_10_1029_2006JE002879
crossref_primary_10_1016_j_pss_2013_05_013
crossref_primary_10_1029_98JB01820
crossref_primary_10_1029_2004JE002237
crossref_primary_10_1029_2011GL047310
crossref_primary_10_1144_SP356_12
crossref_primary_10_1144_SP401_3
crossref_primary_10_1007_s00445_017_1145_5
crossref_primary_10_1029_2006JE002793
crossref_primary_10_1029_2006JE002873
Cites_doi 10.1007/BF00302000
10.1016/0377-0273(86)90059-4
10.1029/FT106
10.1007/BF00301212
10.1007/978-3-642-74379-5_6
10.1029/92JB01594
10.1029/92JE01397
10.1029/91JB01924
10.1029/92JE01245
10.1038/302663a0
10.1016/0377-0273(93)90078-6
10.1029/92JE00957
10.1016/0019-1035(76)90004-X
10.1029/JB084iB10p05407
10.1007/BF00326461
10.1029/GM100p0381
10.1029/95JB01965
10.1007/BF00301516
10.1130/0016-7606(1994)106<0351:EAIOPS>2.3.CO;2
10.1130/0091-7613(1980)8<306:LOHLF>2.0.CO;2
10.1029/92JE00340
10.1007/BF00279604
10.1029/98JB00438
10.1029/94JB00134
10.1126/science.266.5192.1839
10.1007/BF02596829
10.1007/BF00298155
10.1007/BF00624353
10.1029/94JB03263
10.1016/0019-1035(81)90036-1
10.1029/97JE00069
10.1029/92JE01273
10.1016/0019-1035(79)90012-5
10.1007/BF00304106
10.1007/BF01080447
10.1029/JS082i028p04249
10.1038/376554a0
10.1016/0377-0273(86)90066-1
10.1029/JB093iB04p02967
10.1029/92JE01558
10.1126/science.167.3924.1491
10.1029/JB084iB14p08239
10.1029/92JB01953
10.1029/JB095iB09p14383
10.1029/JS082i028p03985
10.1007/BF01050636
10.1130/0016-7606(1992)104<1650:EAEOFB>2.3.CO;2
10.1029/96JE01254
10.1007/978-94-015-7805-9
10.1029/JB091iB09p09407
10.1029/98JB00029
10.1029/96GL02450
10.1111/j.1365-246X.1974.tb05460.x
10.1038/scientificamerican1093-42
10.1098/rsta.1973.0030
10.1130/SPE239-p1
10.1029/91GL03039
10.1130/0091-7613(1995)023<0073:QOSLFM>2.3.CO;2
ContentType Journal Article
Copyright Copyright 1998 by the American Geophysical Union.
1999 INIST-CNRS
Copyright_xml – notice: Copyright 1998 by the American Geophysical Union.
– notice: 1999 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1029/98JB01123
DatabaseName Istex
Pascal-Francis
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
EndPage 27516
ExternalDocumentID 10_1029_98JB01123
1589400
JGRB11501
ark_67375_WNG_BXCFZW0G_Q
Genre article
GroupedDBID 12K
1OC
24P
AAXRX
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
BENPR
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
WHG
WIN
WXSBR
XSW
~OA
~~A
08R
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
ABUWG
ALUQN
AMYDB
ATCPS
BBNVY
BHPHI
BKSAR
BPHCQ
DWQXO
GNUQQ
IQODW
M2P
Q2X
RNS
AAYXX
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-a4241-9397e4b612527e26257a6bac6bed4e69627a164ef693800d769982c32d0c9fa13
ISSN 0148-0227
IngestDate Fri Aug 16 07:49:52 EDT 2024
Thu Nov 21 21:06:43 EST 2024
Sun Oct 29 17:08:27 EDT 2023
Sat Aug 24 00:58:04 EDT 2024
Wed Oct 30 09:51:45 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue B11
Keywords emplacement
Venus planet
basalts
Moon
volcanic rocks
Mars planet
lava flows
lava tubes
igneous rocks
Flow field
flood basalts
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4241-9397e4b612527e26257a6bac6bed4e69627a164ef693800d769982c32d0c9fa13
Notes ArticleID:98JB01123
ark:/67375/WNG-BXCFZW0G-Q
istex:399BF0650A0DDAD9759FF127914E03E13420187F
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/98JB01123
PQID 26649074
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_26649074
crossref_primary_10_1029_98JB01123
pascalfrancis_primary_1589400
wiley_primary_10_1029_98JB01123_JGRB11501
istex_primary_ark_67375_WNG_BXCFZW0G_Q
PublicationCentury 1900
PublicationDate 10 November 1998
PublicationDateYYYYMMDD 1998-11-10
PublicationDate_xml – month: 11
  year: 1998
  text: 10 November 1998
  day: 10
PublicationDecade 1990
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Journal of Geophysical Research
PublicationTitleAlternate J. Geophys. Res
PublicationYear 1998
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Schaber, G. G., Lava flows in Mare Imbrium: Geologic evaluation from Apollo orbital photography, Proc. Lunar Sci. Conf., 4th, 73-92, 1973b.
Gregg, T. K. P., J. H. Fink, Quantification of submarine lava-flow morphology through analog experiments, Geology, 231, 73-76, 1995.
Lipman, P. W., N. G. Banks, Aa flow dynamics, Mauna Loa 1984, U.S. Geol. Surv. Prof. Pap., 1350, 1527-1567, 1987.
Pollack, J. B., Climate change on the terrestrial planets, Icarus, 37, 479-553, 1979.
Rowland, S. K., G. P. L. Walker, Pahoehoe and aa in Hawaii: Volumetric flow rate controls the lava structure, Bull. Volcanol., 52, 615-628, 1990.
Sakimoto, S. E. H., J. Crisp, S. M. Baloga, Eruption constraints on tube-fed planetary lava flows, J. Geophys. Res., 102, 6597-6613, 1997.
Bruno, B. C., G. J. Taylor, S. K. Rowland, S. M. Baloga, Quantifying the effect of rheology on lava-flow margins using fractal geometry, Bull. Volcanol., 56, 193-206, 1994.
Peterson, D. W., D. A. Swanson, Observed formation of lava tubes during 1970-1971 at Kilauea volcano, Hawaii, Speleology, 2, 209-222, 1974.
Knudson, J. G., D. L. Katz, Fluid Dynamics and Heat Transfer, 576, Robert E. Krieger, Huntington, N.Y., 1979.
Roberts, K. M., J. E. Guest, J. W. Head, M. G. Lancaster, Mylitta fluctus, Venus: Rift-related, centralized volcanism and the emplacement of large-volume flow units, J. Geophys. Res., 97, 15991-16015, 1992.
Kieffer, H. H., T. Z. Martin, A. R. Peterfreund, B. M. Jakosky, E. D. Miner, F. D. Palluconi, Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res., 82, 4249-4291, 1977.
Schaber, G. G., J. M. Boyce, H. J. Moore, The scarcity of mappable flow lobes on the lunar maria: Unique morphology of the Imbrium flows, Proc. Lunar Sci. Conf., 7th, 2783-2800, 1976.
Ballard, R. D., R. T. Holcomb, T. H. vanAndel, The Galapagos rift at 86°W, 3, Sheet flows, collapse pits and lava lakes of the rift valley, J. Geophys. Res., 84, 5407-5422, 1979.
Williams, H., A. R. McBirney, Volcanology, 397, Freeman, Cooper & Co., San Francisco, 1979.
Moore, H. J., J. J. Plaut, P. M. Schenk, J. W. Head, An unusual volcano on Venus, J. Geophys. Res., 97, 13479-13493, 1992.
Rowland, S. K., D. C. Munro, The 1919-1920 eruption of Mauna Iki, Kilauea: Chronology, geologic mapping, and magma transport mechanisms, Bull. Volcanol., 55, 190-203, 1993.
Campbell, B. A., D. B. Campbell, Analysis of volcanic surface morphology on Venus from comparison of Arecibo, Magellan, and terrestrial airborne radar data, J. Geophys. Res., 97, 16293-16314, 1992.
Peterson, D. W., R. T. Holcomb, R. I. Tilling, R. L. Christiansen, Development of lava tubes in the light of observations at Mauna Ulu, Kilauea volcano, Hawaii, Bull. Volcanol., 56, 343-360, 1994.
Mouginis-Mark, P. J., L. Wilson, J. R. Zimbelman, Polygenic eruptions on Alba Patera, Mars, Bull. Volcanol., 50, 361-379, 1988.
Head, J. W., L. Wilson, Volcanic processes and landforms on Venus: Theory, predictions, and observations, J. Geophys. Res., 91, 9407-9446, 1986.
Keszthelyi, L., D. C. Pieri, Emplacement of the 75-km-long Carrizozo lava flow field, south-central New Mexico, J. Volcanol. Geotherm. Res., 59, 59-75, 1993.
Saunders, R. S., et al., Magellan mission summary, J. Geophys. Res., 97, 13067-13090, 1992.
Swanson, D. A., K. A. Cameron, R. C. Evarts, P. T. Pringle, J. A. Vance, Cenozoic Volcanism in the Cascade Range and Columbia Plateau, Southern Washington and Northernmost Oregon, Field Trip Guidebook, T106, 60, AGU, Washington, D.C., 1989.
Hulme, G., The interpreation of lava flow morphology, Geophys. J. R. Astron. Soc., 39, 361-383, 1974.
Wolfe, E. W., C. A. Neal, N. G. Banks, T. J. Duggan, Geologic observations and chronology of eruptive events, The Puu Oo eruption of Kilauea volcano, Hawaii: Episodes 1 through 20, January 3, 1983, through June 8, 1984, U.S. Geol. Survey Prof. Pap., 1463, 1-97, 1988.
Guest, J. E., C. R. J. Kilburn, H. Pinkerton, A. M. Duncan, The evolution of lava flow fields: Observations of the 1981 and 1983 eruptions of Mount Etna, Sicily, Bull. Volcanol., 49, 527-540, 1987.
Oberbeck, V. R., W. L Quaide, R. Greeley, On the origin of lunar sinuous rilles, Mod. Geol., 1, 75-80, 1969.
Keszthelyi, L., A preliminary thermal budget for lava tubes on the Earth and planets, J. Geophys. Res., 100, 20411-20420, 1995.
Carr, M. H., R. Greeley, K. R. Blasius, J. E. Guest, J. B. Murray, Some Martian volcanic features as viewed from the Viking orbiters, J. Geophys. Res., 82, 3985-4015, 1977.
Hulme, G., The determination of the rheological properties and effusion rate of an Olympus Mons lava, Icarus, 27, 207-213, 1976.
Schaber, G. G., K. C. Horstman, A. L. Dial, Lava flow materials in the Tharsis region of Mars, Proc. Lunar Planet. Sci. Conf., 9th, 3433-3458, 1978.
Carr, M. H., The Surface of Mars, 232, Yale Univ. Press, New Haven, Conn., 1981.
Swanson, D. A., W. A. Duffield, D. B. Jackson, D. W. Peterson, Chronological narrative of the 1969-71 Mauna Ulu eruption of Kilauea volcano, Hawaii, U.S. Geol. Surv. Prof. Pap., 1056, 1-55, 1979.
Helgerud, M. B., J. R. Zimbelman, Emplacement of multiple flow units on very shallow slopes, east Kawelu Planitia flow field, Venus, Lunar Planet. Sci., XXIV, 637-638, 1993.
Dragoni, M., A. Piombo, A. Tallarico, A model for the formation of lava tubes by roofing over a channel, J. Geophys. Res., 100, 8435-8447, 1995.
Gregg, T. K. P., J. H. Fink, Quantification of extraterrestrial lava flow effusion rates through laboratory simulations, J. Geophys. Res., 101, 16891-16900, 1996.
Hon, K., J. Pallister, Wrestling with restless calderas and fighting floods of lava, Nature, 376, 554-555, 1995.
Pieri, D. C., S. M. Baloga, Eruption rate, area, and length relationships for some Hawaiian lava flows, J. Volcanol. Geotherm. Res., 30, 29-45, 1986.
Tilling, R. I., R. L. Christiansen, W. A. Duffield, E. T. Endo, R. T. Holcomb, R. Y. Koyanagi, D. W. Peterson, J. D. Unger, The 1972-1974 Mauna Ulu eruption, Kilauea volcano: An example of quasi-steady state magma transfer, U.S. Geol. Surv. Prof. Pap., 1350, 405-469, 1987.
Stephenson, P. J., P. W. Whitehead, Field Excursion Guide: Long lava flows in North Queensland, Econ. Geol. Res. Unit Contrib., 57, 40, Dept. of Earth Sci., James Cook Univ. of North Queensl., Townsville, Australia, 1996.
Moore, H. J., Preliminary estimates of the rheological properties of 1984 Mauna Loa lava, U.S. Geol. Surv. Prof. Pap., 1350, 1569-1588, 1987.
Holcomb, R. T., Eruptive history and long-term behavior of Kilauea volcano, U.S. Geol. Surv. Prof. Pap., 1350, 261-350, 1987.
Griffiths, R. W., J. H. Fink, The morphology of lava flows in planetary environments: Predictions from analog experiments, J. Geophys. Res., 97, 19739-19748, 1992b.
Whitehead, P. W., andP. J. Stephenson, Lava rise ridges of the Toomba basalt flow, North Queensland, Australia,J. Geophys. Res., 103B111998.
Murase, T., A. R. McBirney, Viscosity of lunar lavas, Science, 167, 1491-1493, 1970.
Francis, P., Volcanoes: A Planetary Perspective, 443, Oxford Univ. Press, New York, 1993.
Pinkerton, H., L. Wilson, The lengths of lava flows, Lunar Planet. Sci., XIX, 937-938, 1988.
Wilson, L., J. W. Head, A comparison of volcanic eruption processes on Earth, Moon, Mars, Io, and Venus, Nature, 302, 663-669, 1983.
Zimbelman, J. R., H. H. Kieffer, Thermal mapping of the northern equatorial and temperate latitudes of Mars, J. Geophys. Res., 84, 8239-8251, 1979.
Weill, D. F., R. A. Grieve, I. S. McCallum, Y. Bottinga, Mineralogy and petrology of lunar samples: Microprobe studies of samples 12021 and 12022, and viscosity of melts of selected lunar compositions, Proc. Second Lunar Sci. Conf., Geochim. Cosmochim. Acta, Supl. 2, I, 413-430, M. I. T. Press, Cambridge, Mass., 1971.
Dragoni, M., M. Bonafede, E. Boschi, Downslope flow maodels of a Bingham liquid: Implications for lava flows, J. Volcanol. Geotherm. Res., 30, 305-325, 1986.
Greeley, R., The role of lava tubes in Hawaiian volcanoes, U. S. Geol. Surv. Prof. Pap., 1350, 1584-1602, 1987.
Tolan, T. L., S. R. Reidel, M. H. Beeson, J. L. Anderson, K. R. Fecht, D. A. Swanson, Revisions to the estimates of the areal extent and volume of the Columbia River basalt group, Spec. Pap., Geol. Soc. Am., 239, 1-20, 1989.
Zuber, M. T., D. E. Smith, F. G. Lemoine, G. A. Neumann, The shape and internal structure of the Moon from Clementine, Science, 266, 1839-1843, 1994.
Hon, K., J. Kauahikaua, R. Denlinger, K. Mackay, Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active lava flows on Kilauea volcano, Hawaii, Geol. Soc. Am. Bull., 106, 351-370, 1994.
Miyamoto, H., andS. Sasaki, Numerical simulations of flood basalt lava flows: Roles of parameters on lava flow morphologies,J. Geophys. Res., 103B111998.
Kilburn, C. R. J., R. M. C. Lopes, General patterns of flow field growth: Aa and blocky lavas, J. Geophys. Res., 96, 19721-19732, 1991.
Bruno, B. C., G. J. Taylor, S. K. Rowland, P. G. Lucey, S. Self, Lava flows are fractals, Geophys. Res. Lett., 193, 305-308, 1992.
Malin, M. C., G. E. Danielson, A. P. Ingersoll, H. Masursky, J. Veverka, M. A. Ravine, T. A. Soulanille, Mars observer camera, J. Geophys. Res., 97, 7699-7718, 1992.
Walker, G. P. L., Structure, and origin by injection under surface crust, of tumuli, "lava rises", "lava rise pits", and "lava inflation clefts" in Hawaii, Bull. Volcanol., 53, 546-558, 1991.
Zimbelman, J. R., 1:5,000,000-scale geologic mapping of the Kawelu Planitia quadrangle (V16) on Venus, Lunar Planet. Sci., XXV, 1553-1554, 1994.
Lopes, R. M. C., C. R. J. Kilburn, Emplacement of lava flow fields: Application of terrestrial studies to Alba Patera, Mars, J. Geophys. Res., 95, 14383-14397, 1990.
Malin, M. C., Lengths of Hawaiian lava flows, Geology, 8, 306-308, 1980.
Continental Flood BasaltsJ. D. Macdougall, 341, Kluwer Acad., Norwell, Mass., 1988.
Crisp, J., S. M. Baloga, Influence of crystallization and entrainment of cooler material on the emplacement of basaltic aa lava flows, J. Geophys. Res., 99, 11819-11831, 1994.
Bonatti, E., C. G. A. Harrison, Eruption styles of basalt
1990; 95
1990; 52
1994; XXV
1970; 167
1979; 37
1989; 239
1986; 30
1991; 96
1988; XIX
1991; 53
1976
1971; I
1992; 19
1973
1972
1995; 376
1970
1992; 97
1976; 27
1996; 101
1979
1974; 2
1978
1981; 45
1997; 102
1994; 266
1983; 302
1994; 106
1990
1969; 1
1995; 23
1997; 100
1973; 274
1986
1981
1971; 2
1979; 1056
1989; T106
1996; 23
1987; 49
1988
1986; 91
1992; 104
1993; XXIV
1988; 50
1993
1991
1996; 57
1988; 93
1993; 269
1977; 82
1996; 56
1974; 39
1993; 59
1987; 1350
1993; 55
1971; 35
1994; 56
1965
1994; 99
1980; 8
1998; 103
1995; 100
1979; 84
1988; 1463
Moore H. J. (e_1_2_1_46_1) 1978
Kilburn C. R. J. (e_1_2_1_34_1) 1993
Zimbelman J. R. (e_1_2_1_93_1) 1996
Oberbeck V. R. (e_1_2_1_50_1) 1969; 1
Williams H. (e_1_2_1_89_1) 1979
e_1_2_1_60_1
e_1_2_1_81_1
Carr M. H. (e_1_2_1_8_1) 1981
Tilling R. I. (e_1_2_1_79_1) 1987; 1350
Schaber G. G. (e_1_2_1_64_1) 1973
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_68_1
e_1_2_1_62_1
e_1_2_1_83_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_85_1
Francis P. (e_1_2_1_14_1) 1993
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
Wolfe E. W. (e_1_2_1_91_1) 1988; 1463
e_1_2_1_71_1
e_1_2_1_90_1
Pinkerton H. (e_1_2_1_54_1) 1988
Peterson D. W. (e_1_2_1_51_1) 1974; 2
e_1_2_1_31_1
e_1_2_1_77_1
e_1_2_1_56_1
e_1_2_1_6_1
Holcomb R. T. (e_1_2_1_25_1) 1987; 1350
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_73_1
e_1_2_1_4_1
Helgerud M. B. (e_1_2_1_24_1) 1993
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
Schaber G. G. (e_1_2_1_66_1) 1978
e_1_2_1_94_1
e_1_2_1_2_1
e_1_2_1_58_1
e_1_2_1_18_1
e_1_2_1_80_1
Zimbelman J. R. (e_1_2_1_92_1) 1994
Whitaker E. A. (e_1_2_1_87_1) 1972
e_1_2_1_42_1
e_1_2_1_88_1
Lopes‐Gautier R. M. C. (e_1_2_1_39_1) 1993
e_1_2_1_40_1
e_1_2_1_67_1
Schaber G. G. (e_1_2_1_63_1) 1973
e_1_2_1_23_1
e_1_2_1_61_1
e_1_2_1_84_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_86_1
Stephenson P. J. (e_1_2_1_75_1) 1996
e_1_2_1_27_1
Greeley R. (e_1_2_1_16_1) 1987; 1350
e_1_2_1_48_1
Lipman P. W. (e_1_2_1_37_1) 1987; 1350
e_1_2_1_69_1
e_1_2_1_29_1
Vaniman D. (e_1_2_1_82_1) 1991
e_1_2_1_70_1
Greeley R. (e_1_2_1_15_1) 1971; 2
Knudson J. G. (e_1_2_1_36_1) 1979
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_55_1
Schaber G. G. (e_1_2_1_65_1) 1976
e_1_2_1_5_1
e_1_2_1_57_1
e_1_2_1_78_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_72_1
e_1_2_1_11_1
e_1_2_1_32_1
Moore H. J. (e_1_2_1_45_1) 1987; 1350
e_1_2_1_53_1
e_1_2_1_74_1
e_1_2_1_95_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_59_1
e_1_2_1_9_1
e_1_2_1_19_1
Swanson D. A. (e_1_2_1_76_1) 1979; 1056
References_xml – volume: T106
  year: 1989
– start-page: 5
  year: 1991
  end-page: 26
– volume: 93
  start-page: 2967
  year: 1988
  end-page: 2980
  article-title: Eruption styles of basalt in oceanic spreading ridges and seamounts: Effect of magma temperature and viscosity
  publication-title: J. Geophys. Res.
– volume: 97
  start-page: 19739
  year: 1992
  end-page: 19748
  article-title: The morphology of lava flows in planetary environments: Predictions from analog experiments
  publication-title: J. Geophys. Res.
– volume: 55
  start-page: 407
  year: 1993
  end-page: 413
  article-title: Development of the 1990 Kalapana flow field, Kilauea volcano, Hawaii
  publication-title: Bull. Volcanol.
– volume: 30
  start-page: 29
  year: 1986
  end-page: 45
  article-title: Eruption rate, area, and length relationships for some Hawaiian lava flows
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 45
  start-page: 304
  year: 1981
  end-page: 319
  article-title: Mars: Paleostratigraphic restoration of buried surfaces in the Tharsis Montes area, Mars
  publication-title: Icarus
– year: 1981
– volume: 269
  start-page: 42
  issue: 3
  year: 1993
  end-page: 49
  article-title: Large igneous provinces
  publication-title: Sci. Am.
– start-page: 129
  year: 1990
  end-page: 156
– start-page: 73
  year: 1973
  end-page: 92
  article-title: Lava flows in Mare Imbrium: Geologic evaluation from Apollo orbital photography
  publication-title: Proc. Lunar Sci. Conf., 4th
– start-page: 271
  year: 1970
  end-page: 299
– volume: 56
  start-page: 108
  year: 1994
  end-page: 120
  article-title: Factors controlling the lengths of channel‐fed lava flows
  publication-title: Bull. Volcanol.
– volume: 104
  start-page: 1650
  year: 1992
  end-page: 1671
  article-title: Eruption and emplacement of flood basalt: An example from the large‐volume Teepee Butte member, Columbia River basalt group
  publication-title: Geol. Soc. Am. Bull.
– volume: 97
  start-page: 7699
  year: 1992
  end-page: 7718
  article-title: Mars observer camera
  publication-title: J. Geophys. Res.
– volume: 266
  start-page: 1839
  year: 1994
  end-page: 1843
  article-title: The shape and internal structure of the Moon from Clementine
  publication-title: Science
– volume: 1350
  start-page: 261
  year: 1987
  end-page: 350
  article-title: Eruptive history and long‐term behavior of Kilauea volcano
  publication-title: U.S. Geol. Surv. Prof. Pap.
– year: 1979
– volume: 50
  start-page: 361
  year: 1988
  end-page: 379
  article-title: Polygenic eruptions on Alba Patera, Mars
  publication-title: Bull. Volcanol.
– volume: 2
  start-page: 207
  year: 1971
  end-page: 223
  article-title: Observations of actively forming lava tubes and associated structures, Hawaii
  publication-title: Mod. Geol.
– start-page: 30‐17
  year: 1973
  end-page: 30‐25
– volume: 1350
  start-page: 1584
  year: 1987
  end-page: 1602
  article-title: The role of lava tubes in Hawaiian volcanoes
  publication-title: U. S. Geol. Surv. Prof. Pap.
– volume: 82
  start-page: 4249
  year: 1977
  end-page: 4291
  article-title: Thermal and albedo mapping of Mars during the Viking primary mission
  publication-title: J. Geophys. Res.
– volume: 2
  start-page: 209
  year: 1974
  end-page: 222
  article-title: Observed formation of lava tubes during 1970–1971 at Kilauea volcano, Hawaii
  publication-title: Speleology
– volume: 52
  start-page: 615
  year: 1990
  end-page: 628
  article-title: Pahoehoe and aa in Hawaii: Volumetric flow rate controls the lava structure
  publication-title: Bull. Volcanol.
– start-page: 3351
  year: 1978
  end-page: 3378
  article-title: Yield strengths of flows on the Earth, Mars, and Moon
  publication-title: Proc. Lunar Planet. Sci. Conf., 9th
– year: 1986
– volume: 97
  start-page: 13153
  year: 1992
  end-page: 13197
  article-title: Venus volcanism: Classification of volcanic features and structures, associations, and global distribution from Magellan data
  publication-title: J. Geophys. Res.
– volume: XXIV
  start-page: 637
  year: 1993
  end-page: 638
  article-title: Emplacement of multiple flow units on very shallow slopes, east Kawelu Planitia flow field, Venus
  publication-title: Lunar Planet. Sci.
– volume: 56
  start-page: 86
  year: 1996
  end-page: 87
– volume: 302
  start-page: 663
  year: 1983
  end-page: 669
  article-title: A comparison of volcanic eruption processes on Earth, Moon, Mars, Io, and Venus
  publication-title: Nature
– volume: 84
  start-page: 8239
  year: 1979
  end-page: 8251
  article-title: Thermal mapping of the northern equatorial and temperate latitudes of Mars
  publication-title: J. Geophys. Res.
– year: 1965
– volume: 274
  start-page: 107
  year: 1973
  end-page: 118
  article-title: Lengths of lava flows
  publication-title: Philos. Trans. R. Soc. London, Ser. A
– start-page: 25‐83
  year: 1972
  end-page: 25‐84
– volume: 59
  start-page: 59
  year: 1993
  end-page: 75
  article-title: Emplacement of the 75‐km‐long Carrizozo lava flow field, south‐central New Mexico
  publication-title: J. Volcanol. Geotherm. Res.
– start-page: 3433
  year: 1978
  end-page: 3458
  article-title: Lava flow materials in the Tharsis region of Mars
  publication-title: Proc. Lunar Planet. Sci. Conf., 9th
– volume: 23
  start-page: 2689
  issue: 19
  year: 1996
  end-page: 2692
  article-title: A new model for the emplacement of Columbia River basalts as large, inflated pahoehoe lava flow fields
  publication-title: Geophys. Res. Lett.
– volume: 95
  start-page: 14383
  year: 1990
  end-page: 14397
  article-title: Emplacement of lava flow fields: Application of terrestrial studies to Alba Patera, Mars
  publication-title: J. Geophys. Res.
– start-page: 107
  year: 1993
  end-page: 144
– volume: 96
  start-page: 19721
  year: 1991
  end-page: 19732
  article-title: General patterns of flow field growth: Aa and blocky lavas
  publication-title: J. Geophys. Res.
– volume: 1350
  start-page: 405
  year: 1987
  end-page: 469
  article-title: The 1972–1974 Mauna Ulu eruption, Kilauea volcano: An example of quasi‐steady state magma transfer
  publication-title: U.S. Geol. Surv. Prof. Pap.
– volume: 56
  start-page: 193
  year: 1994
  end-page: 206
  article-title: Quantifying the effect of rheology on lava‐flow margins using fractal geometry
  publication-title: Bull. Volcanol.
– volume: 99
  start-page: 11819
  year: 1994
  end-page: 11831
  article-title: Influence of crystallization and entrainment of cooler material on the emplacement of basaltic aa lava flows
  publication-title: J. Geophys. Res.
– volume: 23
  start-page: 73
  issue: 1
  year: 1995
  end-page: 76
  article-title: Quantification of submarine lava‐flow morphology through analog experiments
  publication-title: Geology
– volume: 97
  start-page: 15991
  year: 1992
  end-page: 16015
  article-title: Mylitta fluctus, Venus: Rift‐related, centralized volcanism and the emplacement of large‐volume flow units
  publication-title: J. Geophys. Res.
– volume: 167
  start-page: 1491
  year: 1970
  end-page: 1493
  article-title: Viscosity of lunar lavas
  publication-title: Science
– volume: XXV
  start-page: 1553
  year: 1994
  end-page: 1554
  article-title: 1:5,000,000‐scale geologic mapping of the Kawelu Planitia quadrangle (V16) on Venus
  publication-title: Lunar Planet. Sci.
– year: 1993
– volume: 39
  start-page: 361
  year: 1974
  end-page: 383
  article-title: The interpreation of lava flow morphology
  publication-title: Geophys. J. R. Astron. Soc.
– volume: 55
  start-page: 233
  year: 1993
  end-page: 263
  article-title: The Laki (Skaftár Fires) and Grímsvötn eruptions, 1783–1785
  publication-title: Bull. Volcanol.
– volume: 1
  start-page: 75
  year: 1969
  end-page: 80
  article-title: On the origin of lunar sinuous rilles
  publication-title: Mod. Geol.
– volume: 30
  start-page: 305
  year: 1986
  end-page: 325
  article-title: Downslope flow maodels of a Bingham liquid: Implications for lava flows
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 100
  start-page: 381
  year: 1997
  end-page: 410
– volume: 103
  issue: B11
  year: 1998
  article-title: Numerical simulations of flood basalt lava flows: Roles of parameters on lava flow morphologies
  publication-title: J. Geophys. Res.
– volume: 91
  start-page: 9407
  year: 1986
  end-page: 9446
  article-title: Volcanic processes and landforms on Venus: Theory, predictions, and observations
  publication-title: J. Geophys. Res.
– volume: 1463
  start-page: 1
  year: 1988
  end-page: 97
  article-title: Geologic observations and chronology of eruptive events, The Puu Oo eruption of Kilauea volcano, Hawaii: Episodes 1 through 20, January 3, 1983, through June 8, 1984
  publication-title: U.S. Geol. Survey Prof. Pap.
– start-page: 263
  year: 1993
  end-page: 280
– volume: 8
  start-page: 306
  year: 1980
  end-page: 308
  article-title: Lengths of Hawaiian lava flows
  publication-title: Geology
– volume: 35
  start-page: 579
  year: 1971
  end-page: 590
  article-title: Compound and simple lava fields
  publication-title: Bull. Volcanol.
– volume: 97
  start-page: 16293
  year: 1992
  end-page: 16314
  article-title: Analysis of volcanic surface morphology on Venus from comparison of Arecibo, Magellan, and terrestrial airborne radar data
  publication-title: J. Geophys. Res.
– volume: 56
  start-page: 100
  year: 1996
  end-page: 101
– volume: 27
  start-page: 207
  year: 1976
  end-page: 213
  article-title: The determination of the rheological properties and effusion rate of an Olympus Mons lava
  publication-title: Icarus
– volume: 82
  start-page: 3985
  year: 1977
  end-page: 4015
  article-title: Some Martian volcanic features as viewed from the Viking orbiters
  publication-title: J. Geophys. Res.
– volume: 106
  start-page: 351
  year: 1994
  end-page: 370
  article-title: Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active lava flows on Kilauea volcano, Hawaii
  publication-title: Geol. Soc. Am. Bull.
– volume: 103
  issue: B11
  year: 1998
  article-title: Lava rise ridges of the Toomba basalt flow, North Queensland, Australia
  publication-title: J. Geophys. Res.
– volume: 53
  start-page: 546
  year: 1991
  end-page: 558
  article-title: Structure, and origin by injection under surface crust, of tumuli, “lava rises”, “lava rise pits”, and “lava inflation clefts” in Hawaii
  publication-title: Bull. Volcanol.
– volume: 84
  start-page: 5407
  year: 1979
  end-page: 5422
  article-title: The Galapagos rift at 86°W, 3, Sheet flows, collapse pits and lava lakes of the rift valley
  publication-title: J. Geophys. Res.
– volume: 376
  start-page: 554
  year: 1995
  end-page: 555
  article-title: Wrestling with restless calderas and fighting floods of lava
  publication-title: Nature
– volume: 1350
  start-page: 1527
  year: 1987
  end-page: 1567
  article-title: Aa flow dynamics, Mauna Loa 1984
  publication-title: U.S. Geol. Surv. Prof. Pap.
– volume: 100
  start-page: 8435
  year: 1995
  end-page: 8447
  article-title: A model for the formation of lava tubes by roofing over a channel
  publication-title: J. Geophys. Res.
– start-page: 2783
  year: 1976
  end-page: 2800
  article-title: The scarcity of mappable flow lobes on the lunar maria: Unique morphology of the Imbrium flows
  publication-title: Proc. Lunar Sci. Conf., 7th
– volume: 239
  start-page: 1
  year: 1989
  end-page: 20
  article-title: Revisions to the estimates of the areal extent and volume of the Columbia River basalt group
  publication-title: Spec. Pap., Geol. Soc. Am.
– volume: 49
  start-page: 527
  year: 1987
  end-page: 540
  article-title: The evolution of lava flow fields: Observations of the 1981 and 1983 eruptions of Mount Etna, Sicily
  publication-title: Bull. Volcanol.
– volume: 55
  start-page: 190
  year: 1993
  end-page: 203
  article-title: The 1919–1920 eruption of Mauna Iki, Kilauea: Chronology, geologic mapping, and magma transport mechanisms
  publication-title: Bull. Volcanol.
– volume: XIX
  start-page: 937
  year: 1988
  end-page: 938
  article-title: The lengths of lava flows
  publication-title: Lunar Planet. Sci.
– volume: 19
  start-page: 305
  issue: 3
  year: 1992
  end-page: 308
  article-title: Lava flows are fractals
  publication-title: Geophys. Res. Lett.
– volume: 102
  start-page: 6597
  year: 1997
  end-page: 6613
  article-title: Eruption constraints on tube‐fed planetary lava flows
  publication-title: J. Geophys. Res.
– year: 1988
– volume: 57
  year: 1996
– volume: 101
  start-page: 16891
  year: 1996
  end-page: 16900
  article-title: Quantification of extraterrestrial lava flow effusion rates through laboratory simulations
  publication-title: J. Geophys. Res.
– volume: 97
  start-page: 19729
  year: 1992
  end-page: 19737
  article-title: Solidification and morphology of submarine lavas: A dependence on extrusion rate
  publication-title: J. Geophys. Res.
– volume: 1056
  start-page: 1
  year: 1979
  end-page: 55
  article-title: Chronological narrative of the 1969–71 Mauna Ulu eruption of Kilauea volcano, Hawaii
  publication-title: U.S. Geol. Surv. Prof. Pap.
– volume: 97
  start-page: 13067
  year: 1992
  end-page: 13090
  article-title: Magellan mission summary
  publication-title: J. Geophys. Res.
– volume: 56
  start-page: 343
  year: 1994
  end-page: 360
  article-title: Development of lava tubes in the light of observations at Mauna Ulu, Kilauea volcano, Hawaii
  publication-title: Bull. Volcanol.
– year: 1991
– volume: 97
  start-page: 13479
  year: 1992
  end-page: 13493
  article-title: An unusual volcano on Venus
  publication-title: J. Geophys. Res.
– volume: I
  start-page: 413
  year: 1971
  end-page: 430
– volume: 1350
  start-page: 1569
  year: 1987
  end-page: 1588
  article-title: Preliminary estimates of the rheological properties of 1984 Mauna Loa lava
  publication-title: U.S. Geol. Surv. Prof. Pap.
– volume: 100
  start-page: 20411
  year: 1995
  end-page: 20420
  article-title: A preliminary thermal budget for lava tubes on the Earth and planets
  publication-title: J. Geophys. Res.
– volume: 37
  start-page: 479
  year: 1979
  end-page: 553
  article-title: Climate change on the terrestrial planets
  publication-title: Icarus
– ident: e_1_2_1_43_1
  doi: 10.1007/BF00302000
– ident: e_1_2_1_74_1
– ident: e_1_2_1_12_1
  doi: 10.1016/0377-0273(86)90059-4
– ident: e_1_2_1_77_1
  doi: 10.1029/FT106
– ident: e_1_2_1_60_1
  doi: 10.1007/BF00301212
– ident: e_1_2_1_33_1
  doi: 10.1007/978-3-642-74379-5_6
– ident: e_1_2_1_19_1
  doi: 10.1029/92JB01594
– volume: 1350
  start-page: 405
  year: 1987
  ident: e_1_2_1_79_1
  article-title: The 1972–1974 Mauna Ulu eruption, Kilauea volcano: An example of quasi‐steady state magma transfer
  publication-title: U.S. Geol. Surv. Prof. Pap.
  contributor:
    fullname: Tilling R. I.
– ident: e_1_2_1_62_1
  doi: 10.1029/92JE01397
– ident: e_1_2_1_35_1
  doi: 10.1029/91JB01924
– ident: e_1_2_1_58_1
  doi: 10.1029/92JE01245
– ident: e_1_2_1_90_1
  doi: 10.1038/302663a0
– volume: 1350
  start-page: 1569
  year: 1987
  ident: e_1_2_1_45_1
  article-title: Preliminary estimates of the rheological properties of 1984 Mauna Loa lava
  publication-title: U.S. Geol. Surv. Prof. Pap.
  contributor:
    fullname: Moore H. J.
– volume: 1350
  start-page: 1584
  year: 1987
  ident: e_1_2_1_16_1
  article-title: The role of lava tubes in Hawaiian volcanoes
  publication-title: U. S. Geol. Surv. Prof. Pap.
  contributor:
    fullname: Greeley R.
– ident: e_1_2_1_31_1
  doi: 10.1016/0377-0273(93)90078-6
– volume: 1350
  start-page: 1527
  year: 1987
  ident: e_1_2_1_37_1
  article-title: Aa flow dynamics, Mauna Loa 1984
  publication-title: U.S. Geol. Surv. Prof. Pap.
  contributor:
    fullname: Lipman P. W.
– ident: e_1_2_1_47_1
  doi: 10.1029/92JE00957
– ident: e_1_2_1_29_1
  doi: 10.1016/0019-1035(76)90004-X
– ident: e_1_2_1_2_1
  doi: 10.1029/JB084iB10p05407
– ident: e_1_2_1_52_1
  doi: 10.1007/BF00326461
– ident: e_1_2_1_73_1
– ident: e_1_2_1_72_1
  doi: 10.1029/GM100p0381
– ident: e_1_2_1_81_1
– volume-title: Fluid Dynamics and Heat Transfer
  year: 1979
  ident: e_1_2_1_36_1
  contributor:
    fullname: Knudson J. G.
– ident: e_1_2_1_30_1
  doi: 10.1029/95JB01965
– start-page: 3351
  year: 1978
  ident: e_1_2_1_46_1
  article-title: Yield strengths of flows on the Earth, Mars, and Moon
  publication-title: Proc. Lunar Planet. Sci. Conf., 9th
  contributor:
    fullname: Moore H. J.
– ident: e_1_2_1_59_1
  doi: 10.1007/BF00301516
– ident: e_1_2_1_27_1
  doi: 10.1130/0016-7606(1994)106<0351:EAIOPS>2.3.CO;2
– ident: e_1_2_1_41_1
  doi: 10.1130/0091-7613(1980)8<306:LOHLF>2.0.CO;2
– volume: 1
  start-page: 75
  year: 1969
  ident: e_1_2_1_50_1
  article-title: On the origin of lunar sinuous rilles
  publication-title: Mod. Geol.
  contributor:
    fullname: Oberbeck V. R.
– ident: e_1_2_1_42_1
  doi: 10.1029/92JE00340
– start-page: 1553
  year: 1994
  ident: e_1_2_1_92_1
  article-title: 1:5,000,000‐scale geologic mapping of the Kawelu Planitia quadrangle (V16) on Venus
  publication-title: Lunar Planet. Sci.
  contributor:
    fullname: Zimbelman J. R.
– start-page: 73
  year: 1973
  ident: e_1_2_1_64_1
  article-title: Lava flows in Mare Imbrium: Geologic evaluation from Apollo orbital photography
  publication-title: Proc. Lunar Sci. Conf., 4th
  contributor:
    fullname: Schaber G. G.
– ident: e_1_2_1_5_1
  doi: 10.1007/BF00279604
– volume: 1463
  start-page: 1
  year: 1988
  ident: e_1_2_1_91_1
  article-title: Geologic observations and chronology of eruptive events, The Puu Oo eruption of Kilauea volcano, Hawaii: Episodes 1 through 20, January 3, 1983, through June 8, 1984
  publication-title: U.S. Geol. Survey Prof. Pap.
  contributor:
    fullname: Wolfe E. W.
– ident: e_1_2_1_86_1
– start-page: 2783
  year: 1976
  ident: e_1_2_1_65_1
  article-title: The scarcity of mappable flow lobes on the lunar maria: Unique morphology of the Imbrium flows
  publication-title: Proc. Lunar Sci. Conf., 7th
  contributor:
    fullname: Schaber G. G.
– ident: e_1_2_1_44_1
  doi: 10.1029/98JB00438
– start-page: 25‐83
  volume-title: Apollo 15 Preliminary Science Report
  year: 1972
  ident: e_1_2_1_87_1
  contributor:
    fullname: Whitaker E. A.
– ident: e_1_2_1_11_1
  doi: 10.1029/94JB00134
– start-page: 263
  volume-title: Active Lavas
  year: 1993
  ident: e_1_2_1_34_1
  contributor:
    fullname: Kilburn C. R. J.
– ident: e_1_2_1_95_1
  doi: 10.1126/science.266.5192.1839
– volume-title: The Surface of Mars
  year: 1981
  ident: e_1_2_1_8_1
  contributor:
    fullname: Carr M. H.
– ident: e_1_2_1_83_1
  doi: 10.1007/BF02596829
– volume-title: Volcanoes: A Planetary Perspective
  year: 1993
  ident: e_1_2_1_14_1
  contributor:
    fullname: Francis P.
– ident: e_1_2_1_7_1
– start-page: 3433
  year: 1978
  ident: e_1_2_1_66_1
  article-title: Lava flow materials in the Tharsis region of Mars
  publication-title: Proc. Lunar Planet. Sci. Conf., 9th
  contributor:
    fullname: Schaber G. G.
– ident: e_1_2_1_85_1
  doi: 10.1007/BF00298155
– ident: e_1_2_1_78_1
  doi: 10.1007/BF00624353
– ident: e_1_2_1_13_1
  doi: 10.1029/94JB03263
– volume: 1350
  start-page: 261
  year: 1987
  ident: e_1_2_1_25_1
  article-title: Eruptive history and long‐term behavior of Kilauea volcano
  publication-title: U.S. Geol. Surv. Prof. Pap.
  contributor:
    fullname: Holcomb R. T.
– ident: e_1_2_1_69_1
– ident: e_1_2_1_67_1
  doi: 10.1016/0019-1035(81)90036-1
– ident: e_1_2_1_61_1
  doi: 10.1029/97JE00069
– start-page: 86
  volume-title: Chapman Conference on Long Lava Flows: Conference Abstracts Long Lava Flows
  year: 1996
  ident: e_1_2_1_75_1
  contributor:
    fullname: Stephenson P. J.
– volume-title: Volcanology
  year: 1979
  ident: e_1_2_1_89_1
  contributor:
    fullname: Williams H.
– start-page: 937
  year: 1988
  ident: e_1_2_1_54_1
  article-title: The lengths of lava flows
  publication-title: Lunar Planet. Sci.
  contributor:
    fullname: Pinkerton H.
– ident: e_1_2_1_23_1
  doi: 10.1029/92JE01273
– ident: e_1_2_1_56_1
  doi: 10.1016/0019-1035(79)90012-5
– ident: e_1_2_1_55_1
  doi: 10.1007/BF00304106
– ident: e_1_2_1_21_1
  doi: 10.1007/BF01080447
– ident: e_1_2_1_32_1
  doi: 10.1029/JS082i028p04249
– start-page: 5
  volume-title: Lunar Sourcebook
  year: 1991
  ident: e_1_2_1_82_1
  contributor:
    fullname: Vaniman D.
– ident: e_1_2_1_26_1
  doi: 10.1038/376554a0
– ident: e_1_2_1_70_1
– start-page: 100
  volume-title: Chapman Conference on Long Lava Flows: Conference Abstracts Long Lava Flows
  year: 1996
  ident: e_1_2_1_93_1
  contributor:
    fullname: Zimbelman J. R.
– ident: e_1_2_1_53_1
  doi: 10.1016/0377-0273(86)90066-1
– ident: e_1_2_1_3_1
  doi: 10.1029/JB093iB04p02967
– ident: e_1_2_1_6_1
  doi: 10.1029/92JE01558
– ident: e_1_2_1_49_1
  doi: 10.1126/science.167.3924.1491
– ident: e_1_2_1_94_1
  doi: 10.1029/JB084iB14p08239
– ident: e_1_2_1_68_1
– ident: e_1_2_1_20_1
  doi: 10.1029/92JB01953
– ident: e_1_2_1_38_1
  doi: 10.1029/JB095iB09p14383
– ident: e_1_2_1_9_1
  doi: 10.1029/JS082i028p03985
– start-page: 107
  volume-title: Active Lavas
  year: 1993
  ident: e_1_2_1_39_1
  contributor:
    fullname: Lopes‐Gautier R. M. C.
– ident: e_1_2_1_48_1
  doi: 10.1007/BF01050636
– ident: e_1_2_1_57_1
  doi: 10.1130/0016-7606(1992)104<1650:EAEOFB>2.3.CO;2
– ident: e_1_2_1_18_1
  doi: 10.1029/96JE01254
– start-page: 637
  year: 1993
  ident: e_1_2_1_24_1
  article-title: Emplacement of multiple flow units on very shallow slopes, east Kawelu Planitia flow field, Venus
  publication-title: Lunar Planet. Sci.
  contributor:
    fullname: Helgerud M. B.
– ident: e_1_2_1_40_1
  doi: 10.1007/978-94-015-7805-9
– ident: e_1_2_1_22_1
  doi: 10.1029/JB091iB09p09407
– ident: e_1_2_1_88_1
  doi: 10.1029/98JB00029
– volume: 2
  start-page: 207
  year: 1971
  ident: e_1_2_1_15_1
  article-title: Observations of actively forming lava tubes and associated structures, Hawaii
  publication-title: Mod. Geol.
  contributor:
    fullname: Greeley R.
– ident: e_1_2_1_71_1
  doi: 10.1029/96GL02450
– ident: e_1_2_1_28_1
  doi: 10.1111/j.1365-246X.1974.tb05460.x
– ident: e_1_2_1_10_1
  doi: 10.1038/scientificamerican1093-42
– ident: e_1_2_1_84_1
  doi: 10.1098/rsta.1973.0030
– volume: 2
  start-page: 209
  year: 1974
  ident: e_1_2_1_51_1
  article-title: Observed formation of lava tubes during 1970–1971 at Kilauea volcano, Hawaii
  publication-title: Speleology
  contributor:
    fullname: Peterson D. W.
– ident: e_1_2_1_80_1
  doi: 10.1130/SPE239-p1
– ident: e_1_2_1_4_1
  doi: 10.1029/91GL03039
– ident: e_1_2_1_17_1
  doi: 10.1130/0091-7613(1995)023<0073:QOSLFM>2.3.CO;2
– start-page: 30‐17
  volume-title: Apollo 17 Preliminary Science Report
  year: 1973
  ident: e_1_2_1_63_1
  contributor:
    fullname: Schaber G. G.
– volume: 1056
  start-page: 1
  year: 1979
  ident: e_1_2_1_76_1
  article-title: Chronological narrative of the 1969–71 Mauna Ulu eruption of Kilauea volcano, Hawaii
  publication-title: U.S. Geol. Surv. Prof. Pap.
  contributor:
    fullname: Swanson D. A.
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
Score 1.8122901
Snippet Three long lava flows on Mars, Venus, and the Moon were examined in order to evaluate their possible emplacement rate and condition. On the Moon, flows of the...
Three long lava flows on Mars, Venus, and the moon were examined in order to evaluate their possible emplacement rate and condition. On the moon, flows of the...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 27503
SubjectTerms Crystalline rocks
Earth sciences
Earth, ocean, space
Exact sciences and technology
Igneous and metamorphic rocks petrology, volcanic processes, magmas
Title Emplacement of long lava flows on planetary surfaces
URI https://api.istex.fr/ark:/67375/WNG-BXCFZW0G-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F98JB01123
https://search.proquest.com/docview/26649074
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgFRJCmmCAFsbAQmgSqgKJ43w9tqXLNIkB3aaNvURO4kgVWVM1K7D_njvnG1SJPfAS-VzHSfM7n-_OZx8hb5M4TjzbF2CmskjnlgFDyotN3ZTSFsJkZqz2cR-duieX3scpn7bprdq6_4o01AHWuHP2Dmg3nUIFlAFzuALqcP0n3DGFr4hlvcafYS6hTPwQwzTLf6q1gSXGt95gtFyxXqUYkrVBQw1kvqxhrCP00INwmmfzZDiFhze-5Kv5dSSzypuqIm-Hs_etR0FtsVNRbX84GfFowXKOUHWgGTg6Y0ZfchpWh0XGldSsJCEukHamVaDLTZV_yWyD4ZGnvnc8BlnDrHZiqhfjm0b2xmZqQj4OZmNUcMEYHjCQOyD2BqPp-bdZ43RTh-e0MUAmV7t6SwIEn9cjWJewugTvEnaXcGqCg-Auc2FW37I-1Yr5H5r_0NOFBjisf2FsrigA17TMq9IzfLrmk9J_zh6T7Yot6KjkuCfknlzskN1RgUsp-fUtPaCqXDJMsUMelFlOb6EUyKqkfQITLV8pCm6YZHOwl6rfHn2OpVhUB6jDTV_Kjp4S3uFomqcUOZoiR1PF0TRf0Iajac3Rz8j54fRscqRXuT50wUGJ1H3QiyWPUN9mrmRglbvCiUTsRDLh0sEUUQIse5k6vgU2TuI6wLgstlhixH4qTOs52VrkC7lLKHOkZaa-I2yDcxkZ8NTY4YkE28SXthtp5E391cNleaRLqEIxmB820GjkQOHRtBCr7xgD6drhxUkQji8nh1cXRhB-1ch-D7C2S9vzYYLUyOsawBAkNy7HwSfJ10UIqjFH15RG3ilcN79M2HD2izu03SMP29H9kmzdrNZyn9wvkvWralz8BgsjsHw
link.rule.ids 315,782,786,27933,27934
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emplacement+of+long+lava+flows+on+planetary+surfaces&rft.jtitle=Journal+of+Geophysical+Research%3A+Solid+Earth&rft.au=Zimbelman%2C+James+R.&rft.date=1998-11-10&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=103&rft.issue=B11&rft.spage=27503&rft.epage=27516&rft_id=info:doi/10.1029%2F98JB01123&rft.externalDBID=10.1029%252F98JB01123&rft.externalDocID=JGRB11501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon