Emplacement of long lava flows on planetary surfaces
Three long lava flows on Mars, Venus, and the Moon were examined in order to evaluate their possible emplacement rate and condition. On the Moon, flows of the last (phase III) effusion within the Imbrium impact basin were examined using Apollo photography. The longest phase III flow can be followed...
Saved in:
Published in: | Journal of Geophysical Research Vol. 103; no. B11; pp. 27503 - 27516 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
Blackwell Publishing Ltd
10-11-1998
American Geophysical Union |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Three long lava flows on Mars, Venus, and the Moon were examined in order to evaluate their possible emplacement rate and condition. On the Moon, flows of the last (phase III) effusion within the Imbrium impact basin were examined using Apollo photography. The longest phase III flow can be followed for 250 km, terminating ∼400 km from the probable source vent. This flow has a width of 10 to 25 km, thickness of 10 to 30 m, and a medial channel preserved in its proximal reach, and it was emplaced on a regional slope of ∼0.3°. In the Tharsis region of Mars, a well‐defined set of lava flows extends north from the topographic saddle between Ascraeus and Pavonis Montes. Viking Orbiter images show one flow that can be traced for 480 km, with a width ranging from 5 to 50 km, thickness of 30 to 100 m and a prominent medial channel in its proximal reach, and was emplaced on a regional slope of ∼0.5° to ∼0.1°. The Strenia Fluctus area on Venus consists of an array of intermixed radar‐bright and radar‐dark lobate flows, one of which can be traced for 180 km, with a width of 5 to 20 km, and an unknown thickness (but inferred to be ∼30 m), and was emplaced on the lowland plains where the regional slope is only ∼0.03°. When viewed at the full Magellan resolution, this flow contains several flow margins, indicating its compound nature. Effusion rates were calculated for the simple lunar and Martian flows using published empirical and theoretical relationships, resulting in a broad range of 500 to 108 (Moon) and 600 to 2×108 (Mars) m3/s, with most likely values of ∼5×104 to ∼105 for both flows. The compound Venus flow would have required 494 years for emplacement at the typical Kilauea rate of ∼5 m3/s, but the thermal balance of planetary tube systems could also be consistent with a rate at least an order of magnitude larger. The distinction between simple and compound flows is important to any evaluation of flow emplacement based solely on remote sensing data. |
---|---|
AbstractList | Three long lava flows on Mars, Venus, and the Moon were examined in order to evaluate their possible emplacement rate and condition. On the Moon, flows of the last (phase III) effusion within the Imbrium impact basin were examined using Apollo photography. The longest phase III flow can be followed for 250 km, terminating ∼400 km from the probable source vent. This flow has a width of 10 to 25 km, thickness of 10 to 30 m, and a medial channel preserved in its proximal reach, and it was emplaced on a regional slope of ∼0.3°. In the Tharsis region of Mars, a well‐defined set of lava flows extends north from the topographic saddle between Ascraeus and Pavonis Montes. Viking Orbiter images show one flow that can be traced for 480 km, with a width ranging from 5 to 50 km, thickness of 30 to 100 m and a prominent medial channel in its proximal reach, and was emplaced on a regional slope of ∼0.5° to ∼0.1°. The Strenia Fluctus area on Venus consists of an array of intermixed radar‐bright and radar‐dark lobate flows, one of which can be traced for 180 km, with a width of 5 to 20 km, and an unknown thickness (but inferred to be ∼30 m), and was emplaced on the lowland plains where the regional slope is only ∼0.03°. When viewed at the full Magellan resolution, this flow contains several flow margins, indicating its compound nature. Effusion rates were calculated for the simple lunar and Martian flows using published empirical and theoretical relationships, resulting in a broad range of 500 to 108 (Moon) and 600 to 2×108 (Mars) m3/s, with most likely values of ∼5×104 to ∼105 for both flows. The compound Venus flow would have required 494 years for emplacement at the typical Kilauea rate of ∼5 m3/s, but the thermal balance of planetary tube systems could also be consistent with a rate at least an order of magnitude larger. The distinction between simple and compound flows is important to any evaluation of flow emplacement based solely on remote sensing data. Three long lava flows on Mars, Venus, and the Moon were examined in order to evaluate their possible emplacement rate and condition. On the Moon, flows of the last (phase III) effusion within the Imbrium impact basin were examined using Apollo photography. The longest phase III flow can be followed for 250 km, terminating ∼400 km from the probable source vent. This flow has a width of 10 to 25 km, thickness of 10 to 30 m, and a medial channel preserved in its proximal reach, and it was emplaced on a regional slope of ∼0.3°. In the Tharsis region of Mars, a well‐defined set of lava flows extends north from the topographic saddle between Ascraeus and Pavonis Montes. Viking Orbiter images show one flow that can be traced for 480 km, with a width ranging from 5 to 50 km, thickness of 30 to 100 m and a prominent medial channel in its proximal reach, and was emplaced on a regional slope of ∼0.5° to ∼0.1°. The Strenia Fluctus area on Venus consists of an array of intermixed radar‐bright and radar‐dark lobate flows, one of which can be traced for 180 km, with a width of 5 to 20 km, and an unknown thickness (but inferred to be ∼30 m), and was emplaced on the lowland plains where the regional slope is only ∼0.03°. When viewed at the full Magellan resolution, this flow contains several flow margins, indicating its compound nature. Effusion rates were calculated for the simple lunar and Martian flows using published empirical and theoretical relationships, resulting in a broad range of 500 to 10 8 (Moon) and 600 to 2×10 8 (Mars) m 3 /s, with most likely values of ∼5×10 4 to ∼10 5 for both flows. The compound Venus flow would have required 494 years for emplacement at the typical Kilauea rate of ∼5 m 3 /s, but the thermal balance of planetary tube systems could also be consistent with a rate at least an order of magnitude larger. The distinction between simple and compound flows is important to any evaluation of flow emplacement based solely on remote sensing data. Three long lava flows on Mars, Venus, and the moon were examined in order to evaluate their possible emplacement rate and condition. On the moon, flows of the last (phase III) effusion within the Imbrium impact basin were examined using Apollo photography. The longest phase III flow can be followed for 250 km, terminating about 400 km from the probable source vent. This flow has a width of 10 to 25 km, a thickness of 10 to 30 m, and a medial channel preserved in its proximal reach, and it was emplaced on a regional slope of about 0.3 deg. In the Tharsis region of Mars, a well-defined set of lava flows extends north from the topographic saddle between Ascraeus and Pavonis Montes. Viking Orbiter images show one flow that can be traced for 480 km, with a width ranging from 5 to 50 km, a thickness of 30 to 100 m, and a prominent medial channel in its proximal reach. Effusion rates were calculated for the simple lunar and Martian flows using published empirical and theoretical relationships, resulting in a broad range of 500 to 10 exp 8 (moon) and 600 to 2 x 10 exp 8 (Mars) cu m/s, with most likely values of about 5 x 10 exp 4 to about 10 exp 5 for both flows. (Author) |
Author | Zimbelman, James R. |
Author_xml | – sequence: 1 givenname: James R. surname: Zimbelman fullname: Zimbelman, James R. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1589400$$DView record in Pascal Francis |
BookMark | eNp1kDFPwzAUhC1UJErpwD_IgJAYAs8vjh2PtGoDVQUCgYpYLDd1UMBJip1S-u9J1Qom3nLD--50umPSqerKEHJK4ZICyiuZTAZAKUYHpIs05iEiYId0gbIkBERxRPrev0N7LOYMaJewUbm0OjOlqZqgzgNbV2-B1V86yG299kFdBe2_Mo12m8CvXN6y_oQc5tp6099rjzyPR0_Dm3B6n94Or6ehZshoKCMpDJtzijEKgxxjoflcZ3xuFsxwyVFoypnJuYwSgIXgUiaYRbiATOaaRj1yvstduvpzZXyjysJnxm4L1SuvkHMmQbAWvNiBmau9dyZXS1eUbWVFQW2nUb_TtOzZPlT7TNvc6Sor_J8hTiQDaDHYYevCms3_eWqSPg4ojWFbN9xZCt-Y71-Ldh-Ki0jEanaXqsHLcPw6g1Q9RD9Qy39R |
CitedBy_id | crossref_primary_10_1007_s00445_014_0829_3 crossref_primary_10_1016_j_pss_2008_12_001 crossref_primary_10_1016_j_geomorph_2017_08_023 crossref_primary_10_1016_j_jvolgeores_2017_03_025 crossref_primary_10_1002_jgre_20052 crossref_primary_10_1029_2007JE002896 crossref_primary_10_1029_98JB00438 crossref_primary_10_1029_2021GL095202 crossref_primary_10_1016_j_epsl_2013_09_022 crossref_primary_10_1016_j_energy_2022_126047 crossref_primary_10_1029_2002JE001981 crossref_primary_10_1029_2006JE002803 crossref_primary_10_1029_2005JE002421 crossref_primary_10_1016_j_geomorph_2011_05_022 crossref_primary_10_1016_j_jvolgeores_2021_107278 crossref_primary_10_1007_s11038_011_9378_3 crossref_primary_10_1093_petrology_41_11_1545 crossref_primary_10_1029_2002JE001969 crossref_primary_10_1002_2017JE005396 crossref_primary_10_1016_j_pss_2007_01_003 crossref_primary_10_1029_2000JB900384 crossref_primary_10_1029_2009JE003398 crossref_primary_10_1017_S1755691013000509 crossref_primary_10_1029_2009JE003397 crossref_primary_10_1002_jgrf_20111 crossref_primary_10_1016_j_jvolgeores_2006_11_012 crossref_primary_10_1016_S0012_821X_01_00443_5 crossref_primary_10_1029_2004GL020626 crossref_primary_10_1016_j_jvolgeores_2009_04_015 crossref_primary_10_1029_2002JE001965 crossref_primary_10_1016_j_icarus_2019_113388 crossref_primary_10_1029_2006JE002879 crossref_primary_10_1016_j_pss_2013_05_013 crossref_primary_10_1029_98JB01820 crossref_primary_10_1029_2004JE002237 crossref_primary_10_1029_2011GL047310 crossref_primary_10_1144_SP356_12 crossref_primary_10_1144_SP401_3 crossref_primary_10_1007_s00445_017_1145_5 crossref_primary_10_1029_2006JE002793 crossref_primary_10_1029_2006JE002873 |
Cites_doi | 10.1007/BF00302000 10.1016/0377-0273(86)90059-4 10.1029/FT106 10.1007/BF00301212 10.1007/978-3-642-74379-5_6 10.1029/92JB01594 10.1029/92JE01397 10.1029/91JB01924 10.1029/92JE01245 10.1038/302663a0 10.1016/0377-0273(93)90078-6 10.1029/92JE00957 10.1016/0019-1035(76)90004-X 10.1029/JB084iB10p05407 10.1007/BF00326461 10.1029/GM100p0381 10.1029/95JB01965 10.1007/BF00301516 10.1130/0016-7606(1994)106<0351:EAIOPS>2.3.CO;2 10.1130/0091-7613(1980)8<306:LOHLF>2.0.CO;2 10.1029/92JE00340 10.1007/BF00279604 10.1029/98JB00438 10.1029/94JB00134 10.1126/science.266.5192.1839 10.1007/BF02596829 10.1007/BF00298155 10.1007/BF00624353 10.1029/94JB03263 10.1016/0019-1035(81)90036-1 10.1029/97JE00069 10.1029/92JE01273 10.1016/0019-1035(79)90012-5 10.1007/BF00304106 10.1007/BF01080447 10.1029/JS082i028p04249 10.1038/376554a0 10.1016/0377-0273(86)90066-1 10.1029/JB093iB04p02967 10.1029/92JE01558 10.1126/science.167.3924.1491 10.1029/JB084iB14p08239 10.1029/92JB01953 10.1029/JB095iB09p14383 10.1029/JS082i028p03985 10.1007/BF01050636 10.1130/0016-7606(1992)104<1650:EAEOFB>2.3.CO;2 10.1029/96JE01254 10.1007/978-94-015-7805-9 10.1029/JB091iB09p09407 10.1029/98JB00029 10.1029/96GL02450 10.1111/j.1365-246X.1974.tb05460.x 10.1038/scientificamerican1093-42 10.1098/rsta.1973.0030 10.1130/SPE239-p1 10.1029/91GL03039 10.1130/0091-7613(1995)023<0073:QOSLFM>2.3.CO;2 |
ContentType | Journal Article |
Copyright | Copyright 1998 by the American Geophysical Union. 1999 INIST-CNRS |
Copyright_xml | – notice: Copyright 1998 by the American Geophysical Union. – notice: 1999 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION 8FD H8D L7M |
DOI | 10.1029/98JB01123 |
DatabaseName | Istex Pascal-Francis CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 |
EndPage | 27516 |
ExternalDocumentID | 10_1029_98JB01123 1589400 JGRB11501 ark_67375_WNG_BXCFZW0G_Q |
Genre | article |
GroupedDBID | 12K 1OC 24P AAXRX ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS BENPR BRXPI BSCLL DCZOG DRFUL DRSTM DU5 GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O MEWTI MSFUL MSSTM MXFUL MXSTM P-X WHG WIN WXSBR XSW ~OA ~~A 08R 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ ABUWG ALUQN AMYDB ATCPS BBNVY BHPHI BKSAR BPHCQ DWQXO GNUQQ IQODW M2P Q2X RNS AAYXX CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-a4241-9397e4b612527e26257a6bac6bed4e69627a164ef693800d769982c32d0c9fa13 |
ISSN | 0148-0227 |
IngestDate | Fri Aug 16 07:49:52 EDT 2024 Thu Nov 21 21:06:43 EST 2024 Sun Oct 29 17:08:27 EDT 2023 Sat Aug 24 00:58:04 EDT 2024 Wed Oct 30 09:51:45 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | B11 |
Keywords | emplacement Venus planet basalts Moon volcanic rocks Mars planet lava flows lava tubes igneous rocks Flow field flood basalts |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a4241-9397e4b612527e26257a6bac6bed4e69627a164ef693800d769982c32d0c9fa13 |
Notes | ArticleID:98JB01123 ark:/67375/WNG-BXCFZW0G-Q istex:399BF0650A0DDAD9759FF127914E03E13420187F ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/98JB01123 |
PQID | 26649074 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_26649074 crossref_primary_10_1029_98JB01123 pascalfrancis_primary_1589400 wiley_primary_10_1029_98JB01123_JGRB11501 istex_primary_ark_67375_WNG_BXCFZW0G_Q |
PublicationCentury | 1900 |
PublicationDate | 10 November 1998 |
PublicationDateYYYYMMDD | 1998-11-10 |
PublicationDate_xml | – month: 11 year: 1998 text: 10 November 1998 day: 10 |
PublicationDecade | 1990 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC |
PublicationTitle | Journal of Geophysical Research |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 1998 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Schaber, G. G., Lava flows in Mare Imbrium: Geologic evaluation from Apollo orbital photography, Proc. Lunar Sci. Conf., 4th, 73-92, 1973b. Gregg, T. K. P., J. H. Fink, Quantification of submarine lava-flow morphology through analog experiments, Geology, 231, 73-76, 1995. Lipman, P. W., N. G. Banks, Aa flow dynamics, Mauna Loa 1984, U.S. Geol. Surv. Prof. Pap., 1350, 1527-1567, 1987. Pollack, J. B., Climate change on the terrestrial planets, Icarus, 37, 479-553, 1979. Rowland, S. K., G. P. L. Walker, Pahoehoe and aa in Hawaii: Volumetric flow rate controls the lava structure, Bull. Volcanol., 52, 615-628, 1990. Sakimoto, S. E. H., J. Crisp, S. M. Baloga, Eruption constraints on tube-fed planetary lava flows, J. Geophys. Res., 102, 6597-6613, 1997. Bruno, B. C., G. J. Taylor, S. K. Rowland, S. M. Baloga, Quantifying the effect of rheology on lava-flow margins using fractal geometry, Bull. Volcanol., 56, 193-206, 1994. Peterson, D. W., D. A. Swanson, Observed formation of lava tubes during 1970-1971 at Kilauea volcano, Hawaii, Speleology, 2, 209-222, 1974. Knudson, J. G., D. L. Katz, Fluid Dynamics and Heat Transfer, 576, Robert E. Krieger, Huntington, N.Y., 1979. Roberts, K. M., J. E. Guest, J. W. Head, M. G. Lancaster, Mylitta fluctus, Venus: Rift-related, centralized volcanism and the emplacement of large-volume flow units, J. Geophys. Res., 97, 15991-16015, 1992. Kieffer, H. H., T. Z. Martin, A. R. Peterfreund, B. M. Jakosky, E. D. Miner, F. D. Palluconi, Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res., 82, 4249-4291, 1977. Schaber, G. G., J. M. Boyce, H. J. Moore, The scarcity of mappable flow lobes on the lunar maria: Unique morphology of the Imbrium flows, Proc. Lunar Sci. Conf., 7th, 2783-2800, 1976. Ballard, R. D., R. T. Holcomb, T. H. vanAndel, The Galapagos rift at 86°W, 3, Sheet flows, collapse pits and lava lakes of the rift valley, J. Geophys. Res., 84, 5407-5422, 1979. Williams, H., A. R. McBirney, Volcanology, 397, Freeman, Cooper & Co., San Francisco, 1979. Moore, H. J., J. J. Plaut, P. M. Schenk, J. W. Head, An unusual volcano on Venus, J. Geophys. Res., 97, 13479-13493, 1992. Rowland, S. K., D. C. Munro, The 1919-1920 eruption of Mauna Iki, Kilauea: Chronology, geologic mapping, and magma transport mechanisms, Bull. Volcanol., 55, 190-203, 1993. Campbell, B. A., D. B. Campbell, Analysis of volcanic surface morphology on Venus from comparison of Arecibo, Magellan, and terrestrial airborne radar data, J. Geophys. Res., 97, 16293-16314, 1992. Peterson, D. W., R. T. Holcomb, R. I. Tilling, R. L. Christiansen, Development of lava tubes in the light of observations at Mauna Ulu, Kilauea volcano, Hawaii, Bull. Volcanol., 56, 343-360, 1994. Mouginis-Mark, P. J., L. Wilson, J. R. Zimbelman, Polygenic eruptions on Alba Patera, Mars, Bull. Volcanol., 50, 361-379, 1988. Head, J. W., L. Wilson, Volcanic processes and landforms on Venus: Theory, predictions, and observations, J. Geophys. Res., 91, 9407-9446, 1986. Keszthelyi, L., D. C. Pieri, Emplacement of the 75-km-long Carrizozo lava flow field, south-central New Mexico, J. Volcanol. Geotherm. Res., 59, 59-75, 1993. Saunders, R. S., et al., Magellan mission summary, J. Geophys. Res., 97, 13067-13090, 1992. Swanson, D. A., K. A. Cameron, R. C. Evarts, P. T. Pringle, J. A. Vance, Cenozoic Volcanism in the Cascade Range and Columbia Plateau, Southern Washington and Northernmost Oregon, Field Trip Guidebook, T106, 60, AGU, Washington, D.C., 1989. Hulme, G., The interpreation of lava flow morphology, Geophys. J. R. Astron. Soc., 39, 361-383, 1974. Wolfe, E. W., C. A. Neal, N. G. Banks, T. J. Duggan, Geologic observations and chronology of eruptive events, The Puu Oo eruption of Kilauea volcano, Hawaii: Episodes 1 through 20, January 3, 1983, through June 8, 1984, U.S. Geol. Survey Prof. Pap., 1463, 1-97, 1988. Guest, J. E., C. R. J. Kilburn, H. Pinkerton, A. M. Duncan, The evolution of lava flow fields: Observations of the 1981 and 1983 eruptions of Mount Etna, Sicily, Bull. Volcanol., 49, 527-540, 1987. Oberbeck, V. R., W. L Quaide, R. Greeley, On the origin of lunar sinuous rilles, Mod. Geol., 1, 75-80, 1969. Keszthelyi, L., A preliminary thermal budget for lava tubes on the Earth and planets, J. Geophys. Res., 100, 20411-20420, 1995. Carr, M. H., R. Greeley, K. R. Blasius, J. E. Guest, J. B. Murray, Some Martian volcanic features as viewed from the Viking orbiters, J. Geophys. Res., 82, 3985-4015, 1977. Hulme, G., The determination of the rheological properties and effusion rate of an Olympus Mons lava, Icarus, 27, 207-213, 1976. Schaber, G. G., K. C. Horstman, A. L. Dial, Lava flow materials in the Tharsis region of Mars, Proc. Lunar Planet. Sci. Conf., 9th, 3433-3458, 1978. Carr, M. H., The Surface of Mars, 232, Yale Univ. Press, New Haven, Conn., 1981. Swanson, D. A., W. A. Duffield, D. B. Jackson, D. W. Peterson, Chronological narrative of the 1969-71 Mauna Ulu eruption of Kilauea volcano, Hawaii, U.S. Geol. Surv. Prof. Pap., 1056, 1-55, 1979. Helgerud, M. B., J. R. Zimbelman, Emplacement of multiple flow units on very shallow slopes, east Kawelu Planitia flow field, Venus, Lunar Planet. Sci., XXIV, 637-638, 1993. Dragoni, M., A. Piombo, A. Tallarico, A model for the formation of lava tubes by roofing over a channel, J. Geophys. Res., 100, 8435-8447, 1995. Gregg, T. K. P., J. H. Fink, Quantification of extraterrestrial lava flow effusion rates through laboratory simulations, J. Geophys. Res., 101, 16891-16900, 1996. Hon, K., J. Pallister, Wrestling with restless calderas and fighting floods of lava, Nature, 376, 554-555, 1995. Pieri, D. C., S. M. Baloga, Eruption rate, area, and length relationships for some Hawaiian lava flows, J. Volcanol. Geotherm. Res., 30, 29-45, 1986. Tilling, R. I., R. L. Christiansen, W. A. Duffield, E. T. Endo, R. T. Holcomb, R. Y. Koyanagi, D. W. Peterson, J. D. Unger, The 1972-1974 Mauna Ulu eruption, Kilauea volcano: An example of quasi-steady state magma transfer, U.S. Geol. Surv. Prof. Pap., 1350, 405-469, 1987. Stephenson, P. J., P. W. Whitehead, Field Excursion Guide: Long lava flows in North Queensland, Econ. Geol. Res. Unit Contrib., 57, 40, Dept. of Earth Sci., James Cook Univ. of North Queensl., Townsville, Australia, 1996. Moore, H. J., Preliminary estimates of the rheological properties of 1984 Mauna Loa lava, U.S. Geol. Surv. Prof. Pap., 1350, 1569-1588, 1987. Holcomb, R. T., Eruptive history and long-term behavior of Kilauea volcano, U.S. Geol. Surv. Prof. Pap., 1350, 261-350, 1987. Griffiths, R. W., J. H. Fink, The morphology of lava flows in planetary environments: Predictions from analog experiments, J. Geophys. Res., 97, 19739-19748, 1992b. Whitehead, P. W., andP. J. Stephenson, Lava rise ridges of the Toomba basalt flow, North Queensland, Australia,J. Geophys. Res., 103B111998. Murase, T., A. R. McBirney, Viscosity of lunar lavas, Science, 167, 1491-1493, 1970. Francis, P., Volcanoes: A Planetary Perspective, 443, Oxford Univ. Press, New York, 1993. Pinkerton, H., L. Wilson, The lengths of lava flows, Lunar Planet. Sci., XIX, 937-938, 1988. Wilson, L., J. W. Head, A comparison of volcanic eruption processes on Earth, Moon, Mars, Io, and Venus, Nature, 302, 663-669, 1983. Zimbelman, J. R., H. H. Kieffer, Thermal mapping of the northern equatorial and temperate latitudes of Mars, J. Geophys. Res., 84, 8239-8251, 1979. Weill, D. F., R. A. Grieve, I. S. McCallum, Y. Bottinga, Mineralogy and petrology of lunar samples: Microprobe studies of samples 12021 and 12022, and viscosity of melts of selected lunar compositions, Proc. Second Lunar Sci. Conf., Geochim. Cosmochim. Acta, Supl. 2, I, 413-430, M. I. T. Press, Cambridge, Mass., 1971. Dragoni, M., M. Bonafede, E. Boschi, Downslope flow maodels of a Bingham liquid: Implications for lava flows, J. Volcanol. Geotherm. Res., 30, 305-325, 1986. Greeley, R., The role of lava tubes in Hawaiian volcanoes, U. S. Geol. Surv. Prof. Pap., 1350, 1584-1602, 1987. Tolan, T. L., S. R. Reidel, M. H. Beeson, J. L. Anderson, K. R. Fecht, D. A. Swanson, Revisions to the estimates of the areal extent and volume of the Columbia River basalt group, Spec. Pap., Geol. Soc. Am., 239, 1-20, 1989. Zuber, M. T., D. E. Smith, F. G. Lemoine, G. A. Neumann, The shape and internal structure of the Moon from Clementine, Science, 266, 1839-1843, 1994. Hon, K., J. Kauahikaua, R. Denlinger, K. Mackay, Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active lava flows on Kilauea volcano, Hawaii, Geol. Soc. Am. Bull., 106, 351-370, 1994. Miyamoto, H., andS. Sasaki, Numerical simulations of flood basalt lava flows: Roles of parameters on lava flow morphologies,J. Geophys. Res., 103B111998. Kilburn, C. R. J., R. M. C. Lopes, General patterns of flow field growth: Aa and blocky lavas, J. Geophys. Res., 96, 19721-19732, 1991. Bruno, B. C., G. J. Taylor, S. K. Rowland, P. G. Lucey, S. Self, Lava flows are fractals, Geophys. Res. Lett., 193, 305-308, 1992. Malin, M. C., G. E. Danielson, A. P. Ingersoll, H. Masursky, J. Veverka, M. A. Ravine, T. A. Soulanille, Mars observer camera, J. Geophys. Res., 97, 7699-7718, 1992. Walker, G. P. L., Structure, and origin by injection under surface crust, of tumuli, "lava rises", "lava rise pits", and "lava inflation clefts" in Hawaii, Bull. Volcanol., 53, 546-558, 1991. Zimbelman, J. R., 1:5,000,000-scale geologic mapping of the Kawelu Planitia quadrangle (V16) on Venus, Lunar Planet. Sci., XXV, 1553-1554, 1994. Lopes, R. M. C., C. R. J. Kilburn, Emplacement of lava flow fields: Application of terrestrial studies to Alba Patera, Mars, J. Geophys. Res., 95, 14383-14397, 1990. Malin, M. C., Lengths of Hawaiian lava flows, Geology, 8, 306-308, 1980. Continental Flood BasaltsJ. D. Macdougall, 341, Kluwer Acad., Norwell, Mass., 1988. Crisp, J., S. M. Baloga, Influence of crystallization and entrainment of cooler material on the emplacement of basaltic aa lava flows, J. Geophys. Res., 99, 11819-11831, 1994. Bonatti, E., C. G. A. Harrison, Eruption styles of basalt 1990; 95 1990; 52 1994; XXV 1970; 167 1979; 37 1989; 239 1986; 30 1991; 96 1988; XIX 1991; 53 1976 1971; I 1992; 19 1973 1972 1995; 376 1970 1992; 97 1976; 27 1996; 101 1979 1974; 2 1978 1981; 45 1997; 102 1994; 266 1983; 302 1994; 106 1990 1969; 1 1995; 23 1997; 100 1973; 274 1986 1981 1971; 2 1979; 1056 1989; T106 1996; 23 1987; 49 1988 1986; 91 1992; 104 1993; XXIV 1988; 50 1993 1991 1996; 57 1988; 93 1993; 269 1977; 82 1996; 56 1974; 39 1993; 59 1987; 1350 1993; 55 1971; 35 1994; 56 1965 1994; 99 1980; 8 1998; 103 1995; 100 1979; 84 1988; 1463 Moore H. J. (e_1_2_1_46_1) 1978 Kilburn C. R. J. (e_1_2_1_34_1) 1993 Zimbelman J. R. (e_1_2_1_93_1) 1996 Oberbeck V. R. (e_1_2_1_50_1) 1969; 1 Williams H. (e_1_2_1_89_1) 1979 e_1_2_1_60_1 e_1_2_1_81_1 Carr M. H. (e_1_2_1_8_1) 1981 Tilling R. I. (e_1_2_1_79_1) 1987; 1350 Schaber G. G. (e_1_2_1_64_1) 1973 e_1_2_1_20_1 e_1_2_1_41_1 e_1_2_1_68_1 e_1_2_1_62_1 e_1_2_1_83_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_85_1 Francis P. (e_1_2_1_14_1) 1993 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_26_1 e_1_2_1_47_1 Wolfe E. W. (e_1_2_1_91_1) 1988; 1463 e_1_2_1_71_1 e_1_2_1_90_1 Pinkerton H. (e_1_2_1_54_1) 1988 Peterson D. W. (e_1_2_1_51_1) 1974; 2 e_1_2_1_31_1 e_1_2_1_77_1 e_1_2_1_56_1 e_1_2_1_6_1 Holcomb R. T. (e_1_2_1_25_1) 1987; 1350 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_73_1 e_1_2_1_4_1 Helgerud M. B. (e_1_2_1_24_1) 1993 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_52_1 Schaber G. G. (e_1_2_1_66_1) 1978 e_1_2_1_94_1 e_1_2_1_2_1 e_1_2_1_58_1 e_1_2_1_18_1 e_1_2_1_80_1 Zimbelman J. R. (e_1_2_1_92_1) 1994 Whitaker E. A. (e_1_2_1_87_1) 1972 e_1_2_1_42_1 e_1_2_1_88_1 Lopes‐Gautier R. M. C. (e_1_2_1_39_1) 1993 e_1_2_1_40_1 e_1_2_1_67_1 Schaber G. G. (e_1_2_1_63_1) 1973 e_1_2_1_23_1 e_1_2_1_61_1 e_1_2_1_84_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_86_1 Stephenson P. J. (e_1_2_1_75_1) 1996 e_1_2_1_27_1 Greeley R. (e_1_2_1_16_1) 1987; 1350 e_1_2_1_48_1 Lipman P. W. (e_1_2_1_37_1) 1987; 1350 e_1_2_1_69_1 e_1_2_1_29_1 Vaniman D. (e_1_2_1_82_1) 1991 e_1_2_1_70_1 Greeley R. (e_1_2_1_15_1) 1971; 2 Knudson J. G. (e_1_2_1_36_1) 1979 e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_55_1 Schaber G. G. (e_1_2_1_65_1) 1976 e_1_2_1_5_1 e_1_2_1_57_1 e_1_2_1_78_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_72_1 e_1_2_1_11_1 e_1_2_1_32_1 Moore H. J. (e_1_2_1_45_1) 1987; 1350 e_1_2_1_53_1 e_1_2_1_74_1 e_1_2_1_95_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_59_1 e_1_2_1_9_1 e_1_2_1_19_1 Swanson D. A. (e_1_2_1_76_1) 1979; 1056 |
References_xml | – volume: T106 year: 1989 – start-page: 5 year: 1991 end-page: 26 – volume: 93 start-page: 2967 year: 1988 end-page: 2980 article-title: Eruption styles of basalt in oceanic spreading ridges and seamounts: Effect of magma temperature and viscosity publication-title: J. Geophys. Res. – volume: 97 start-page: 19739 year: 1992 end-page: 19748 article-title: The morphology of lava flows in planetary environments: Predictions from analog experiments publication-title: J. Geophys. Res. – volume: 55 start-page: 407 year: 1993 end-page: 413 article-title: Development of the 1990 Kalapana flow field, Kilauea volcano, Hawaii publication-title: Bull. Volcanol. – volume: 30 start-page: 29 year: 1986 end-page: 45 article-title: Eruption rate, area, and length relationships for some Hawaiian lava flows publication-title: J. Volcanol. Geotherm. Res. – volume: 45 start-page: 304 year: 1981 end-page: 319 article-title: Mars: Paleostratigraphic restoration of buried surfaces in the Tharsis Montes area, Mars publication-title: Icarus – year: 1981 – volume: 269 start-page: 42 issue: 3 year: 1993 end-page: 49 article-title: Large igneous provinces publication-title: Sci. Am. – start-page: 129 year: 1990 end-page: 156 – start-page: 73 year: 1973 end-page: 92 article-title: Lava flows in Mare Imbrium: Geologic evaluation from Apollo orbital photography publication-title: Proc. Lunar Sci. Conf., 4th – start-page: 271 year: 1970 end-page: 299 – volume: 56 start-page: 108 year: 1994 end-page: 120 article-title: Factors controlling the lengths of channel‐fed lava flows publication-title: Bull. Volcanol. – volume: 104 start-page: 1650 year: 1992 end-page: 1671 article-title: Eruption and emplacement of flood basalt: An example from the large‐volume Teepee Butte member, Columbia River basalt group publication-title: Geol. Soc. Am. Bull. – volume: 97 start-page: 7699 year: 1992 end-page: 7718 article-title: Mars observer camera publication-title: J. Geophys. Res. – volume: 266 start-page: 1839 year: 1994 end-page: 1843 article-title: The shape and internal structure of the Moon from Clementine publication-title: Science – volume: 1350 start-page: 261 year: 1987 end-page: 350 article-title: Eruptive history and long‐term behavior of Kilauea volcano publication-title: U.S. Geol. Surv. Prof. Pap. – year: 1979 – volume: 50 start-page: 361 year: 1988 end-page: 379 article-title: Polygenic eruptions on Alba Patera, Mars publication-title: Bull. Volcanol. – volume: 2 start-page: 207 year: 1971 end-page: 223 article-title: Observations of actively forming lava tubes and associated structures, Hawaii publication-title: Mod. Geol. – start-page: 30‐17 year: 1973 end-page: 30‐25 – volume: 1350 start-page: 1584 year: 1987 end-page: 1602 article-title: The role of lava tubes in Hawaiian volcanoes publication-title: U. S. Geol. Surv. Prof. Pap. – volume: 82 start-page: 4249 year: 1977 end-page: 4291 article-title: Thermal and albedo mapping of Mars during the Viking primary mission publication-title: J. Geophys. Res. – volume: 2 start-page: 209 year: 1974 end-page: 222 article-title: Observed formation of lava tubes during 1970–1971 at Kilauea volcano, Hawaii publication-title: Speleology – volume: 52 start-page: 615 year: 1990 end-page: 628 article-title: Pahoehoe and aa in Hawaii: Volumetric flow rate controls the lava structure publication-title: Bull. Volcanol. – start-page: 3351 year: 1978 end-page: 3378 article-title: Yield strengths of flows on the Earth, Mars, and Moon publication-title: Proc. Lunar Planet. Sci. Conf., 9th – year: 1986 – volume: 97 start-page: 13153 year: 1992 end-page: 13197 article-title: Venus volcanism: Classification of volcanic features and structures, associations, and global distribution from Magellan data publication-title: J. Geophys. Res. – volume: XXIV start-page: 637 year: 1993 end-page: 638 article-title: Emplacement of multiple flow units on very shallow slopes, east Kawelu Planitia flow field, Venus publication-title: Lunar Planet. Sci. – volume: 56 start-page: 86 year: 1996 end-page: 87 – volume: 302 start-page: 663 year: 1983 end-page: 669 article-title: A comparison of volcanic eruption processes on Earth, Moon, Mars, Io, and Venus publication-title: Nature – volume: 84 start-page: 8239 year: 1979 end-page: 8251 article-title: Thermal mapping of the northern equatorial and temperate latitudes of Mars publication-title: J. Geophys. Res. – year: 1965 – volume: 274 start-page: 107 year: 1973 end-page: 118 article-title: Lengths of lava flows publication-title: Philos. Trans. R. Soc. London, Ser. A – start-page: 25‐83 year: 1972 end-page: 25‐84 – volume: 59 start-page: 59 year: 1993 end-page: 75 article-title: Emplacement of the 75‐km‐long Carrizozo lava flow field, south‐central New Mexico publication-title: J. Volcanol. Geotherm. Res. – start-page: 3433 year: 1978 end-page: 3458 article-title: Lava flow materials in the Tharsis region of Mars publication-title: Proc. Lunar Planet. Sci. Conf., 9th – volume: 23 start-page: 2689 issue: 19 year: 1996 end-page: 2692 article-title: A new model for the emplacement of Columbia River basalts as large, inflated pahoehoe lava flow fields publication-title: Geophys. Res. Lett. – volume: 95 start-page: 14383 year: 1990 end-page: 14397 article-title: Emplacement of lava flow fields: Application of terrestrial studies to Alba Patera, Mars publication-title: J. Geophys. Res. – start-page: 107 year: 1993 end-page: 144 – volume: 96 start-page: 19721 year: 1991 end-page: 19732 article-title: General patterns of flow field growth: Aa and blocky lavas publication-title: J. Geophys. Res. – volume: 1350 start-page: 405 year: 1987 end-page: 469 article-title: The 1972–1974 Mauna Ulu eruption, Kilauea volcano: An example of quasi‐steady state magma transfer publication-title: U.S. Geol. Surv. Prof. Pap. – volume: 56 start-page: 193 year: 1994 end-page: 206 article-title: Quantifying the effect of rheology on lava‐flow margins using fractal geometry publication-title: Bull. Volcanol. – volume: 99 start-page: 11819 year: 1994 end-page: 11831 article-title: Influence of crystallization and entrainment of cooler material on the emplacement of basaltic aa lava flows publication-title: J. Geophys. Res. – volume: 23 start-page: 73 issue: 1 year: 1995 end-page: 76 article-title: Quantification of submarine lava‐flow morphology through analog experiments publication-title: Geology – volume: 97 start-page: 15991 year: 1992 end-page: 16015 article-title: Mylitta fluctus, Venus: Rift‐related, centralized volcanism and the emplacement of large‐volume flow units publication-title: J. Geophys. Res. – volume: 167 start-page: 1491 year: 1970 end-page: 1493 article-title: Viscosity of lunar lavas publication-title: Science – volume: XXV start-page: 1553 year: 1994 end-page: 1554 article-title: 1:5,000,000‐scale geologic mapping of the Kawelu Planitia quadrangle (V16) on Venus publication-title: Lunar Planet. Sci. – year: 1993 – volume: 39 start-page: 361 year: 1974 end-page: 383 article-title: The interpreation of lava flow morphology publication-title: Geophys. J. R. Astron. Soc. – volume: 55 start-page: 233 year: 1993 end-page: 263 article-title: The Laki (Skaftár Fires) and Grímsvötn eruptions, 1783–1785 publication-title: Bull. Volcanol. – volume: 1 start-page: 75 year: 1969 end-page: 80 article-title: On the origin of lunar sinuous rilles publication-title: Mod. Geol. – volume: 30 start-page: 305 year: 1986 end-page: 325 article-title: Downslope flow maodels of a Bingham liquid: Implications for lava flows publication-title: J. Volcanol. Geotherm. Res. – volume: 100 start-page: 381 year: 1997 end-page: 410 – volume: 103 issue: B11 year: 1998 article-title: Numerical simulations of flood basalt lava flows: Roles of parameters on lava flow morphologies publication-title: J. Geophys. Res. – volume: 91 start-page: 9407 year: 1986 end-page: 9446 article-title: Volcanic processes and landforms on Venus: Theory, predictions, and observations publication-title: J. Geophys. Res. – volume: 1463 start-page: 1 year: 1988 end-page: 97 article-title: Geologic observations and chronology of eruptive events, The Puu Oo eruption of Kilauea volcano, Hawaii: Episodes 1 through 20, January 3, 1983, through June 8, 1984 publication-title: U.S. Geol. Survey Prof. Pap. – start-page: 263 year: 1993 end-page: 280 – volume: 8 start-page: 306 year: 1980 end-page: 308 article-title: Lengths of Hawaiian lava flows publication-title: Geology – volume: 35 start-page: 579 year: 1971 end-page: 590 article-title: Compound and simple lava fields publication-title: Bull. Volcanol. – volume: 97 start-page: 16293 year: 1992 end-page: 16314 article-title: Analysis of volcanic surface morphology on Venus from comparison of Arecibo, Magellan, and terrestrial airborne radar data publication-title: J. Geophys. Res. – volume: 56 start-page: 100 year: 1996 end-page: 101 – volume: 27 start-page: 207 year: 1976 end-page: 213 article-title: The determination of the rheological properties and effusion rate of an Olympus Mons lava publication-title: Icarus – volume: 82 start-page: 3985 year: 1977 end-page: 4015 article-title: Some Martian volcanic features as viewed from the Viking orbiters publication-title: J. Geophys. Res. – volume: 106 start-page: 351 year: 1994 end-page: 370 article-title: Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active lava flows on Kilauea volcano, Hawaii publication-title: Geol. Soc. Am. Bull. – volume: 103 issue: B11 year: 1998 article-title: Lava rise ridges of the Toomba basalt flow, North Queensland, Australia publication-title: J. Geophys. Res. – volume: 53 start-page: 546 year: 1991 end-page: 558 article-title: Structure, and origin by injection under surface crust, of tumuli, “lava rises”, “lava rise pits”, and “lava inflation clefts” in Hawaii publication-title: Bull. Volcanol. – volume: 84 start-page: 5407 year: 1979 end-page: 5422 article-title: The Galapagos rift at 86°W, 3, Sheet flows, collapse pits and lava lakes of the rift valley publication-title: J. Geophys. Res. – volume: 376 start-page: 554 year: 1995 end-page: 555 article-title: Wrestling with restless calderas and fighting floods of lava publication-title: Nature – volume: 1350 start-page: 1527 year: 1987 end-page: 1567 article-title: Aa flow dynamics, Mauna Loa 1984 publication-title: U.S. Geol. Surv. Prof. Pap. – volume: 100 start-page: 8435 year: 1995 end-page: 8447 article-title: A model for the formation of lava tubes by roofing over a channel publication-title: J. Geophys. Res. – start-page: 2783 year: 1976 end-page: 2800 article-title: The scarcity of mappable flow lobes on the lunar maria: Unique morphology of the Imbrium flows publication-title: Proc. Lunar Sci. Conf., 7th – volume: 239 start-page: 1 year: 1989 end-page: 20 article-title: Revisions to the estimates of the areal extent and volume of the Columbia River basalt group publication-title: Spec. Pap., Geol. Soc. Am. – volume: 49 start-page: 527 year: 1987 end-page: 540 article-title: The evolution of lava flow fields: Observations of the 1981 and 1983 eruptions of Mount Etna, Sicily publication-title: Bull. Volcanol. – volume: 55 start-page: 190 year: 1993 end-page: 203 article-title: The 1919–1920 eruption of Mauna Iki, Kilauea: Chronology, geologic mapping, and magma transport mechanisms publication-title: Bull. Volcanol. – volume: XIX start-page: 937 year: 1988 end-page: 938 article-title: The lengths of lava flows publication-title: Lunar Planet. Sci. – volume: 19 start-page: 305 issue: 3 year: 1992 end-page: 308 article-title: Lava flows are fractals publication-title: Geophys. Res. Lett. – volume: 102 start-page: 6597 year: 1997 end-page: 6613 article-title: Eruption constraints on tube‐fed planetary lava flows publication-title: J. Geophys. Res. – year: 1988 – volume: 57 year: 1996 – volume: 101 start-page: 16891 year: 1996 end-page: 16900 article-title: Quantification of extraterrestrial lava flow effusion rates through laboratory simulations publication-title: J. Geophys. Res. – volume: 97 start-page: 19729 year: 1992 end-page: 19737 article-title: Solidification and morphology of submarine lavas: A dependence on extrusion rate publication-title: J. Geophys. Res. – volume: 1056 start-page: 1 year: 1979 end-page: 55 article-title: Chronological narrative of the 1969–71 Mauna Ulu eruption of Kilauea volcano, Hawaii publication-title: U.S. Geol. Surv. Prof. Pap. – volume: 97 start-page: 13067 year: 1992 end-page: 13090 article-title: Magellan mission summary publication-title: J. Geophys. Res. – volume: 56 start-page: 343 year: 1994 end-page: 360 article-title: Development of lava tubes in the light of observations at Mauna Ulu, Kilauea volcano, Hawaii publication-title: Bull. Volcanol. – year: 1991 – volume: 97 start-page: 13479 year: 1992 end-page: 13493 article-title: An unusual volcano on Venus publication-title: J. Geophys. Res. – volume: I start-page: 413 year: 1971 end-page: 430 – volume: 1350 start-page: 1569 year: 1987 end-page: 1588 article-title: Preliminary estimates of the rheological properties of 1984 Mauna Loa lava publication-title: U.S. Geol. Surv. Prof. Pap. – volume: 100 start-page: 20411 year: 1995 end-page: 20420 article-title: A preliminary thermal budget for lava tubes on the Earth and planets publication-title: J. Geophys. Res. – volume: 37 start-page: 479 year: 1979 end-page: 553 article-title: Climate change on the terrestrial planets publication-title: Icarus – ident: e_1_2_1_43_1 doi: 10.1007/BF00302000 – ident: e_1_2_1_74_1 – ident: e_1_2_1_12_1 doi: 10.1016/0377-0273(86)90059-4 – ident: e_1_2_1_77_1 doi: 10.1029/FT106 – ident: e_1_2_1_60_1 doi: 10.1007/BF00301212 – ident: e_1_2_1_33_1 doi: 10.1007/978-3-642-74379-5_6 – ident: e_1_2_1_19_1 doi: 10.1029/92JB01594 – volume: 1350 start-page: 405 year: 1987 ident: e_1_2_1_79_1 article-title: The 1972–1974 Mauna Ulu eruption, Kilauea volcano: An example of quasi‐steady state magma transfer publication-title: U.S. Geol. Surv. Prof. Pap. contributor: fullname: Tilling R. I. – ident: e_1_2_1_62_1 doi: 10.1029/92JE01397 – ident: e_1_2_1_35_1 doi: 10.1029/91JB01924 – ident: e_1_2_1_58_1 doi: 10.1029/92JE01245 – ident: e_1_2_1_90_1 doi: 10.1038/302663a0 – volume: 1350 start-page: 1569 year: 1987 ident: e_1_2_1_45_1 article-title: Preliminary estimates of the rheological properties of 1984 Mauna Loa lava publication-title: U.S. Geol. Surv. Prof. Pap. contributor: fullname: Moore H. J. – volume: 1350 start-page: 1584 year: 1987 ident: e_1_2_1_16_1 article-title: The role of lava tubes in Hawaiian volcanoes publication-title: U. S. Geol. Surv. Prof. Pap. contributor: fullname: Greeley R. – ident: e_1_2_1_31_1 doi: 10.1016/0377-0273(93)90078-6 – volume: 1350 start-page: 1527 year: 1987 ident: e_1_2_1_37_1 article-title: Aa flow dynamics, Mauna Loa 1984 publication-title: U.S. Geol. Surv. Prof. Pap. contributor: fullname: Lipman P. W. – ident: e_1_2_1_47_1 doi: 10.1029/92JE00957 – ident: e_1_2_1_29_1 doi: 10.1016/0019-1035(76)90004-X – ident: e_1_2_1_2_1 doi: 10.1029/JB084iB10p05407 – ident: e_1_2_1_52_1 doi: 10.1007/BF00326461 – ident: e_1_2_1_73_1 – ident: e_1_2_1_72_1 doi: 10.1029/GM100p0381 – ident: e_1_2_1_81_1 – volume-title: Fluid Dynamics and Heat Transfer year: 1979 ident: e_1_2_1_36_1 contributor: fullname: Knudson J. G. – ident: e_1_2_1_30_1 doi: 10.1029/95JB01965 – start-page: 3351 year: 1978 ident: e_1_2_1_46_1 article-title: Yield strengths of flows on the Earth, Mars, and Moon publication-title: Proc. Lunar Planet. Sci. Conf., 9th contributor: fullname: Moore H. J. – ident: e_1_2_1_59_1 doi: 10.1007/BF00301516 – ident: e_1_2_1_27_1 doi: 10.1130/0016-7606(1994)106<0351:EAIOPS>2.3.CO;2 – ident: e_1_2_1_41_1 doi: 10.1130/0091-7613(1980)8<306:LOHLF>2.0.CO;2 – volume: 1 start-page: 75 year: 1969 ident: e_1_2_1_50_1 article-title: On the origin of lunar sinuous rilles publication-title: Mod. Geol. contributor: fullname: Oberbeck V. R. – ident: e_1_2_1_42_1 doi: 10.1029/92JE00340 – start-page: 1553 year: 1994 ident: e_1_2_1_92_1 article-title: 1:5,000,000‐scale geologic mapping of the Kawelu Planitia quadrangle (V16) on Venus publication-title: Lunar Planet. Sci. contributor: fullname: Zimbelman J. R. – start-page: 73 year: 1973 ident: e_1_2_1_64_1 article-title: Lava flows in Mare Imbrium: Geologic evaluation from Apollo orbital photography publication-title: Proc. Lunar Sci. Conf., 4th contributor: fullname: Schaber G. G. – ident: e_1_2_1_5_1 doi: 10.1007/BF00279604 – volume: 1463 start-page: 1 year: 1988 ident: e_1_2_1_91_1 article-title: Geologic observations and chronology of eruptive events, The Puu Oo eruption of Kilauea volcano, Hawaii: Episodes 1 through 20, January 3, 1983, through June 8, 1984 publication-title: U.S. Geol. Survey Prof. Pap. contributor: fullname: Wolfe E. W. – ident: e_1_2_1_86_1 – start-page: 2783 year: 1976 ident: e_1_2_1_65_1 article-title: The scarcity of mappable flow lobes on the lunar maria: Unique morphology of the Imbrium flows publication-title: Proc. Lunar Sci. Conf., 7th contributor: fullname: Schaber G. G. – ident: e_1_2_1_44_1 doi: 10.1029/98JB00438 – start-page: 25‐83 volume-title: Apollo 15 Preliminary Science Report year: 1972 ident: e_1_2_1_87_1 contributor: fullname: Whitaker E. A. – ident: e_1_2_1_11_1 doi: 10.1029/94JB00134 – start-page: 263 volume-title: Active Lavas year: 1993 ident: e_1_2_1_34_1 contributor: fullname: Kilburn C. R. J. – ident: e_1_2_1_95_1 doi: 10.1126/science.266.5192.1839 – volume-title: The Surface of Mars year: 1981 ident: e_1_2_1_8_1 contributor: fullname: Carr M. H. – ident: e_1_2_1_83_1 doi: 10.1007/BF02596829 – volume-title: Volcanoes: A Planetary Perspective year: 1993 ident: e_1_2_1_14_1 contributor: fullname: Francis P. – ident: e_1_2_1_7_1 – start-page: 3433 year: 1978 ident: e_1_2_1_66_1 article-title: Lava flow materials in the Tharsis region of Mars publication-title: Proc. Lunar Planet. Sci. Conf., 9th contributor: fullname: Schaber G. G. – ident: e_1_2_1_85_1 doi: 10.1007/BF00298155 – ident: e_1_2_1_78_1 doi: 10.1007/BF00624353 – ident: e_1_2_1_13_1 doi: 10.1029/94JB03263 – volume: 1350 start-page: 261 year: 1987 ident: e_1_2_1_25_1 article-title: Eruptive history and long‐term behavior of Kilauea volcano publication-title: U.S. Geol. Surv. Prof. Pap. contributor: fullname: Holcomb R. T. – ident: e_1_2_1_69_1 – ident: e_1_2_1_67_1 doi: 10.1016/0019-1035(81)90036-1 – ident: e_1_2_1_61_1 doi: 10.1029/97JE00069 – start-page: 86 volume-title: Chapman Conference on Long Lava Flows: Conference Abstracts Long Lava Flows year: 1996 ident: e_1_2_1_75_1 contributor: fullname: Stephenson P. J. – volume-title: Volcanology year: 1979 ident: e_1_2_1_89_1 contributor: fullname: Williams H. – start-page: 937 year: 1988 ident: e_1_2_1_54_1 article-title: The lengths of lava flows publication-title: Lunar Planet. Sci. contributor: fullname: Pinkerton H. – ident: e_1_2_1_23_1 doi: 10.1029/92JE01273 – ident: e_1_2_1_56_1 doi: 10.1016/0019-1035(79)90012-5 – ident: e_1_2_1_55_1 doi: 10.1007/BF00304106 – ident: e_1_2_1_21_1 doi: 10.1007/BF01080447 – ident: e_1_2_1_32_1 doi: 10.1029/JS082i028p04249 – start-page: 5 volume-title: Lunar Sourcebook year: 1991 ident: e_1_2_1_82_1 contributor: fullname: Vaniman D. – ident: e_1_2_1_26_1 doi: 10.1038/376554a0 – ident: e_1_2_1_70_1 – start-page: 100 volume-title: Chapman Conference on Long Lava Flows: Conference Abstracts Long Lava Flows year: 1996 ident: e_1_2_1_93_1 contributor: fullname: Zimbelman J. R. – ident: e_1_2_1_53_1 doi: 10.1016/0377-0273(86)90066-1 – ident: e_1_2_1_3_1 doi: 10.1029/JB093iB04p02967 – ident: e_1_2_1_6_1 doi: 10.1029/92JE01558 – ident: e_1_2_1_49_1 doi: 10.1126/science.167.3924.1491 – ident: e_1_2_1_94_1 doi: 10.1029/JB084iB14p08239 – ident: e_1_2_1_68_1 – ident: e_1_2_1_20_1 doi: 10.1029/92JB01953 – ident: e_1_2_1_38_1 doi: 10.1029/JB095iB09p14383 – ident: e_1_2_1_9_1 doi: 10.1029/JS082i028p03985 – start-page: 107 volume-title: Active Lavas year: 1993 ident: e_1_2_1_39_1 contributor: fullname: Lopes‐Gautier R. M. C. – ident: e_1_2_1_48_1 doi: 10.1007/BF01050636 – ident: e_1_2_1_57_1 doi: 10.1130/0016-7606(1992)104<1650:EAEOFB>2.3.CO;2 – ident: e_1_2_1_18_1 doi: 10.1029/96JE01254 – start-page: 637 year: 1993 ident: e_1_2_1_24_1 article-title: Emplacement of multiple flow units on very shallow slopes, east Kawelu Planitia flow field, Venus publication-title: Lunar Planet. Sci. contributor: fullname: Helgerud M. B. – ident: e_1_2_1_40_1 doi: 10.1007/978-94-015-7805-9 – ident: e_1_2_1_22_1 doi: 10.1029/JB091iB09p09407 – ident: e_1_2_1_88_1 doi: 10.1029/98JB00029 – volume: 2 start-page: 207 year: 1971 ident: e_1_2_1_15_1 article-title: Observations of actively forming lava tubes and associated structures, Hawaii publication-title: Mod. Geol. contributor: fullname: Greeley R. – ident: e_1_2_1_71_1 doi: 10.1029/96GL02450 – ident: e_1_2_1_28_1 doi: 10.1111/j.1365-246X.1974.tb05460.x – ident: e_1_2_1_10_1 doi: 10.1038/scientificamerican1093-42 – ident: e_1_2_1_84_1 doi: 10.1098/rsta.1973.0030 – volume: 2 start-page: 209 year: 1974 ident: e_1_2_1_51_1 article-title: Observed formation of lava tubes during 1970–1971 at Kilauea volcano, Hawaii publication-title: Speleology contributor: fullname: Peterson D. W. – ident: e_1_2_1_80_1 doi: 10.1130/SPE239-p1 – ident: e_1_2_1_4_1 doi: 10.1029/91GL03039 – ident: e_1_2_1_17_1 doi: 10.1130/0091-7613(1995)023<0073:QOSLFM>2.3.CO;2 – start-page: 30‐17 volume-title: Apollo 17 Preliminary Science Report year: 1973 ident: e_1_2_1_63_1 contributor: fullname: Schaber G. G. – volume: 1056 start-page: 1 year: 1979 ident: e_1_2_1_76_1 article-title: Chronological narrative of the 1969–71 Mauna Ulu eruption of Kilauea volcano, Hawaii publication-title: U.S. Geol. Surv. Prof. Pap. contributor: fullname: Swanson D. A. |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 |
Score | 1.8122901 |
Snippet | Three long lava flows on Mars, Venus, and the Moon were examined in order to evaluate their possible emplacement rate and condition. On the Moon, flows of the... Three long lava flows on Mars, Venus, and the moon were examined in order to evaluate their possible emplacement rate and condition. On the moon, flows of the... |
SourceID | proquest crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 27503 |
SubjectTerms | Crystalline rocks Earth sciences Earth, ocean, space Exact sciences and technology Igneous and metamorphic rocks petrology, volcanic processes, magmas |
Title | Emplacement of long lava flows on planetary surfaces |
URI | https://api.istex.fr/ark:/67375/WNG-BXCFZW0G-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F98JB01123 https://search.proquest.com/docview/26649074 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgFRJCmmCAFsbAQmgSqgKJ43w9tqXLNIkB3aaNvURO4kgVWVM1K7D_njvnG1SJPfAS-VzHSfM7n-_OZx8hb5M4TjzbF2CmskjnlgFDyotN3ZTSFsJkZqz2cR-duieX3scpn7bprdq6_4o01AHWuHP2Dmg3nUIFlAFzuALqcP0n3DGFr4hlvcafYS6hTPwQwzTLf6q1gSXGt95gtFyxXqUYkrVBQw1kvqxhrCP00INwmmfzZDiFhze-5Kv5dSSzypuqIm-Hs_etR0FtsVNRbX84GfFowXKOUHWgGTg6Y0ZfchpWh0XGldSsJCEukHamVaDLTZV_yWyD4ZGnvnc8BlnDrHZiqhfjm0b2xmZqQj4OZmNUcMEYHjCQOyD2BqPp-bdZ43RTh-e0MUAmV7t6SwIEn9cjWJewugTvEnaXcGqCg-Auc2FW37I-1Yr5H5r_0NOFBjisf2FsrigA17TMq9IzfLrmk9J_zh6T7Yot6KjkuCfknlzskN1RgUsp-fUtPaCqXDJMsUMelFlOb6EUyKqkfQITLV8pCm6YZHOwl6rfHn2OpVhUB6jDTV_Kjp4S3uFomqcUOZoiR1PF0TRf0Iajac3Rz8j54fRscqRXuT50wUGJ1H3QiyWPUN9mrmRglbvCiUTsRDLh0sEUUQIse5k6vgU2TuI6wLgstlhixH4qTOs52VrkC7lLKHOkZaa-I2yDcxkZ8NTY4YkE28SXthtp5E391cNleaRLqEIxmB820GjkQOHRtBCr7xgD6drhxUkQji8nh1cXRhB-1ch-D7C2S9vzYYLUyOsawBAkNy7HwSfJ10UIqjFH15RG3ilcN79M2HD2izu03SMP29H9kmzdrNZyn9wvkvWralz8BgsjsHw |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emplacement+of+long+lava+flows+on+planetary+surfaces&rft.jtitle=Journal+of+Geophysical+Research%3A+Solid+Earth&rft.au=Zimbelman%2C+James+R.&rft.date=1998-11-10&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=103&rft.issue=B11&rft.spage=27503&rft.epage=27516&rft_id=info:doi/10.1029%2F98JB01123&rft.externalDBID=10.1029%252F98JB01123&rft.externalDocID=JGRB11501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |