Raman spectroscopic studies of model human pulmonary surfactant systems: phospholipid interactions with peptide paradigms for the surfactant protein SP-B

The temperature dependence of dipalmitoylphosphatidylcholine (DPPC)/phosphatidylglycerol (PG) multilayers, reconstituted with various synthetic peptides for modeling human lung surfactant, was monitored by vibrational Raman spectroscopy. The synthetic peptides consisted, respectively, of residues 59...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) Vol. 30; no. 34; pp. 8395 - 8401
Main Authors: Vincent, James S, Revak, Susan D, Cochrane, Charles G, Levin, Ira W
Format: Journal Article
Language:English
Published: Washington, DC American Chemical Society 27-08-1991
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The temperature dependence of dipalmitoylphosphatidylcholine (DPPC)/phosphatidylglycerol (PG) multilayers, reconstituted with various synthetic peptides for modeling human lung surfactant, was monitored by vibrational Raman spectroscopy. The synthetic peptides consisted, respectively, of residues 59-81 of the human surfactant protein SP-B and 21 amino acid residue peptides containing repeating units of arginine separated by either four or eight leucines (RL4 or RL8). Each peptide demonstrated the ability to reduce significantly the surface tension of analogues of the phospholipid mixture used in the Raman studies. Raman spectroscopic integrated band intensities and relative peak height intensity ratios, two spectral parameters used to determine bilayer disorder, provided sensitive probes for characterizing multilayer perturbations in the reconstituted liposomes. Temperature profiles derived from the various Raman intensity parameters for the 3100-2800-cm-1 carbon-hydrogen (C-H) stretching mode region, a spectral interval representative of acyl chain vibrations, reflected lipid reorganizations due to the bilayer interactions of these peptides. For the three reconstituted multilamellar surfactant systems, the gel-to-liquid-crystalline phase-transition temperatures Tm, defined by acyl chain C-H stretching mode order/disorder parameters, increased from 35 degrees C in the peptide free system to 37-38 degrees C, indicating increased lipid headgroup constraints for the model liposomes. Although the values of Tm were similar for the three recombinant lipid/peptide assemblies, individual phase-transition cooperativities varied significantly between systems and between spectroscopically derived order/disorder parameters.
Bibliography:istex:57A061520501058D04CDCC62BB73544E5EBADA3B
ark:/67375/TPS-36F8NM1C-S
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00098a017