Two-Step Micellization Model: The Case of Long-Chain Carboxylates in Water

The micellization behavior of the long-chain carboxylatessodium and potassium octanoate (NaC8 and KC8), sodium decanoate (NaC10), potassium decanoate (KC10), cesium decanoate (CsC10), choline decanoate (ChC10), and sodium dodecanoate (NaC12)in aqueous solutions were studied using isothermal titrat...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir Vol. 33; no. 31; pp. 7722 - 7731
Main Authors: Medoš, Žiga, Bešter-Rogač, Marija
Format: Journal Article
Language:English
Published: United States American Chemical Society 08-08-2017
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The micellization behavior of the long-chain carboxylatessodium and potassium octanoate (NaC8 and KC8), sodium decanoate (NaC10), potassium decanoate (KC10), cesium decanoate (CsC10), choline decanoate (ChC10), and sodium dodecanoate (NaC12)in aqueous solutions were studied using isothermal titration calorimetry (ITC) in the temperature range between 288.15 and 328.15 K. Experimental data were analyzed by help of an improved model treating the micellization process as a two-step process. Furthermore, consideration of the state of the stock and titrated solutions during the experiment allowed for the elimination of all usually used empirical parameters. The proposed approach represents thus an essential improvement of the thermodynamic analysis of the micellization process and turned out to be (only) effective for the description of the micellization at carboxylates with moderate alkyl chain length (C8 and C10). By fitting the model equation to the experimental data, all the thermodynamic parameters of micellization for both steps were estimated. It was found that the first step is endothermic and thus a solely entropy driven processes in the studied temperature range for all investigated systems. The same goes also for the second step, except for KC10, Cs10, and NaC12 where at temperatures above ∼320 K the micellization was detected as an exothermic process. The delicate balance between entropy and enthalpy results in weak temperature dependence of (negative) Gibbs free energy which turned out as almost counterion independent quantity. The carboxylic groups are namely able to form H-bonds with water molecules, and it is quite likely that they remain strongly hydrated even upon micellization. Thus, the interactions with counterions are less expressed in comparison to those observed by other ionic surfactants (alkyl sulfates and cationic surfactants), where the micellization process was found to be an exothermic process even below ∼300 K.
AbstractList The micellization behavior of the long-chain carboxylatessodium and potassium octanoate (NaC8 and KC8), sodium decanoate (NaC10), potassium decanoate (KC10), cesium decanoate (CsC10), choline decanoate (ChC10), and sodium dodecanoate (NaC12)in aqueous solutions were studied using isothermal titration calorimetry (ITC) in the temperature range between 288.15 and 328.15 K. Experimental data were analyzed by help of an improved model treating the micellization process as a two-step process. Furthermore, consideration of the state of the stock and titrated solutions during the experiment allowed for the elimination of all usually used empirical parameters. The proposed approach represents thus an essential improvement of the thermodynamic analysis of the micellization process and turned out to be (only) effective for the description of the micellization at carboxylates with moderate alkyl chain length (C8 and C10). By fitting the model equation to the experimental data, all the thermodynamic parameters of micellization for both steps were estimated. It was found that the first step is endothermic and thus a solely entropy driven processes in the studied temperature range for all investigated systems. The same goes also for the second step, except for KC10, Cs10, and NaC12 where at temperatures above ∼320 K the micellization was detected as an exothermic process. The delicate balance between entropy and enthalpy results in weak temperature dependence of (negative) Gibbs free energy which turned out as almost counterion independent quantity. The carboxylic groups are namely able to form H-bonds with water molecules, and it is quite likely that they remain strongly hydrated even upon micellization. Thus, the interactions with counterions are less expressed in comparison to those observed by other ionic surfactants (alkyl sulfates and cationic surfactants), where the micellization process was found to be an exothermic process even below ∼300 K.
The micellization behavior of the long-chain carboxylates-sodium and potassium octanoate (NaC8 and KC8), sodium decanoate (NaC10), potassium decanoate (KC10), cesium decanoate (CsC10), choline decanoate (ChC10), and sodium dodecanoate (NaC12)-in aqueous solutions were studied using isothermal titration calorimetry (ITC) in the temperature range between 288.15 and 328.15 K. Experimental data were analyzed by help of an improved model treating the micellization process as a two-step process. Furthermore, consideration of the state of the stock and titrated solutions during the experiment allowed for the elimination of all usually used empirical parameters. The proposed approach represents thus an essential improvement of the thermodynamic analysis of the micellization process and turned out to be (only) effective for the description of the micellization at carboxylates with moderate alkyl chain length (C8 and C10). By fitting the model equation to the experimental data, all the thermodynamic parameters of micellization for both steps were estimated. It was found that the first step is endothermic and thus a solely entropy driven processes in the studied temperature range for all investigated systems. The same goes also for the second step, except for KC10, Cs10, and NaC12 where at temperatures above ∼320 K the micellization was detected as an exothermic process. The delicate balance between entropy and enthalpy results in weak temperature dependence of (negative) Gibbs free energy which turned out as almost counterion independent quantity. The carboxylic groups are namely able to form H-bonds with water molecules, and it is quite likely that they remain strongly hydrated even upon micellization. Thus, the interactions with counterions are less expressed in comparison to those observed by other ionic surfactants (alkyl sulfates and cationic surfactants), where the micellization process was found to be an exothermic process even below ∼300 K.
Author Bešter-Rogač, Marija
Medoš, Žiga
AuthorAffiliation University of Ljubljana
Faculty of Chemistry and Chemical Technology
AuthorAffiliation_xml – name: University of Ljubljana
– name: Faculty of Chemistry and Chemical Technology
Author_xml – sequence: 1
  givenname: Žiga
  surname: Medoš
  fullname: Medoš, Žiga
– sequence: 2
  givenname: Marija
  orcidid: 0000-0003-4284-5987
  surname: Bešter-Rogač
  fullname: Bešter-Rogač, Marija
  email: marija.bester@fkkt.uni-lj.si
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28708402$$D View this record in MEDLINE/PubMed
BookMark eNp9kMlOwzAURS1URAf4A4SyZJPyPMUJOxQxqhULilhaTmK3qZK42ImgfD2p2rJk9Qbd-4YzRoPGNhqhSwxTDATfqNxPK9Us6650U5EBFgAnaIQ5gZDHRAzQCASjoWARHaKx92sASChLztCQxAJiBmSEXhZfNnxr9SaYl7muqvJHtaVtgrktdHUbLFY6SJXXgTXBzDbLMF2psulbLrPf20q12gd9_dEn7hydGlV5fXGIE_T-cL9In8LZ6-NzejcLFcOsDRkHTagiQuiCCCMSwmhEojxODI6oyAynREcxJYwXhTG4iBPIqeFRFFGT5BmdoOv93I2zn532raxLv7tdNdp2XuKEAE44J7iXsr00d9Z7p43cuLJWbisxyB1F2VOUR4ryQLG3XR02dFmtiz_TEVsvgL1gZ1_bzjX9w__P_AUncoGY
CitedBy_id crossref_primary_10_1021_acs_langmuir_1c01727
crossref_primary_10_1021_acs_langmuir_8b03462
crossref_primary_10_1021_acs_jpcc_2c00107
crossref_primary_10_1039_D3CP02126B
crossref_primary_10_1021_acs_langmuir_8b03993
crossref_primary_10_1016_j_cocis_2019_12_008
crossref_primary_10_1016_j_molliq_2020_112968
crossref_primary_10_1016_j_jcis_2023_06_013
crossref_primary_10_1016_j_molliq_2018_08_152
crossref_primary_10_1039_D0CP00877J
crossref_primary_10_1007_s10973_020_09663_2
crossref_primary_10_1016_j_cis_2018_03_003
crossref_primary_10_3390_molecules28196971
crossref_primary_10_1002_adts_201700002
crossref_primary_10_1016_j_molliq_2019_112419
crossref_primary_10_1016_j_molliq_2022_118898
crossref_primary_10_1016_j_molliq_2021_116353
crossref_primary_10_1007_s10874_020_09411_8
crossref_primary_10_1039_C8NJ03440K
crossref_primary_10_5650_jos_ess23086
crossref_primary_10_1016_j_jcis_2020_07_141
Cites_doi 10.1142/9789814299428_0005
10.1021/j100486a015
10.1016/j.jct.2011.05.015
10.1021/la302133q
10.1021/jp045486a
10.1016/j.jcis.2009.05.064
10.1146/annurev.bb.06.060177.001055
10.1021/jacs.5b06655
10.1016/0022-2836(74)90570-1
10.1016/j.colsurfa.2017.01.062
10.1021/jp0264329
10.1016/j.cis.2016.07.002
10.1021/jp811048d
10.1016/j.cplett.2005.05.039
10.1016/j.jcis.2009.03.017
10.1006/jcis.2001.7777
10.1021/jp002884e
10.1016/j.jcis.2005.12.003
10.1021/la00029a008
10.1021/la400161n
10.1007/BF01979745
10.1021/la100373r
10.1002/cphc.200300725
10.1016/j.cis.2013.02.001
10.1021/bi00131a009
10.1016/S0304-4157(00)00012-5
10.1016/0021-9797(74)90193-3
10.1016/0009-2614(82)85062-8
10.1016/j.jcis.2009.06.027
10.1021/jp312840y
10.1021/la00002a015
10.1016/0076-6879(85)15032-9
10.1016/j.jct.2014.12.011
10.1021/acs.jpcb.5b09276
10.1039/C4SM01461H
10.1021/la020672y
10.1021/jp057442n
10.1021/j150614a037
10.1021/la990719o
10.1021/j150654a043
10.1023/B:JOSL.0000043637.43444.3b
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acs.langmuir.7b01700
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 7731
ExternalDocumentID 10_1021_acs_langmuir_7b01700
28708402
c178663538
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
4.4
AAHBH
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
CUPRZ
GGK
NPM
YQT
~02
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a414t-450e23a277ed27f79243626c89f1637bf532e683245ddff1d890c3f56663f9cb3
IEDL.DBID ACS
ISSN 0743-7463
IngestDate Sat Aug 17 03:33:06 EDT 2024
Fri Aug 23 01:17:08 EDT 2024
Sat Sep 28 08:47:32 EDT 2024
Thu Aug 27 13:43:00 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-450e23a277ed27f79243626c89f1637bf532e683245ddff1d890c3f56663f9cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4284-5987
PMID 28708402
PQID 1920195521
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1920195521
crossref_primary_10_1021_acs_langmuir_7b01700
pubmed_primary_28708402
acs_journals_10_1021_acs_langmuir_7b01700
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2017-08-08
PublicationDateYYYYMMDD 2017-08-08
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
Kroflič A. (ref1/cit1) 2014
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
Tanford C. (ref27/cit27) 1980
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref22/cit22
  doi: 10.1142/9789814299428_0005
– ident: ref5/cit5
  doi: 10.1021/j100486a015
– ident: ref12/cit12
  doi: 10.1016/j.jct.2011.05.015
– volume-title: The Hydrophobic Effect: Formation of Micelles and Biological Membranes
  year: 1980
  ident: ref27/cit27
  contributor:
    fullname: Tanford C.
– ident: ref14/cit14
  doi: 10.1021/la302133q
– ident: ref39/cit39
  doi: 10.1021/jp045486a
– ident: ref21/cit21
  doi: 10.1016/j.jcis.2009.05.064
– ident: ref42/cit42
  doi: 10.1146/annurev.bb.06.060177.001055
– ident: ref7/cit7
  doi: 10.1021/jacs.5b06655
– ident: ref41/cit41
  doi: 10.1016/0022-2836(74)90570-1
– ident: ref13/cit13
  doi: 10.1016/j.colsurfa.2017.01.062
– ident: ref2/cit2
  doi: 10.1021/jp0264329
– ident: ref32/cit32
– ident: ref4/cit4
  doi: 10.1016/j.cis.2016.07.002
– ident: ref40/cit40
  doi: 10.1021/jp811048d
– ident: ref6/cit6
  doi: 10.1016/j.cplett.2005.05.039
– ident: ref29/cit29
  doi: 10.1016/j.jcis.2009.03.017
– ident: ref31/cit31
  doi: 10.1006/jcis.2001.7777
– ident: ref8/cit8
  doi: 10.1021/jp002884e
– ident: ref37/cit37
  doi: 10.1016/j.jcis.2005.12.003
– ident: ref24/cit24
  doi: 10.1021/la00029a008
– ident: ref15/cit15
  doi: 10.1021/la400161n
– ident: ref10/cit10
  doi: 10.1007/BF01979745
– ident: ref23/cit23
  doi: 10.1021/la100373r
– ident: ref33/cit33
  doi: 10.1002/cphc.200300725
– ident: ref25/cit25
  doi: 10.1016/j.cis.2013.02.001
– ident: ref38/cit38
  doi: 10.1021/bi00131a009
– ident: ref16/cit16
  doi: 10.1016/S0304-4157(00)00012-5
– ident: ref36/cit36
  doi: 10.1016/0021-9797(74)90193-3
– ident: ref26/cit26
  doi: 10.1016/0009-2614(82)85062-8
– ident: ref11/cit11
  doi: 10.1016/j.jcis.2009.06.027
– ident: ref9/cit9
  doi: 10.1021/jp312840y
– ident: ref30/cit30
  doi: 10.1021/la00002a015
– ident: ref43/cit43
  doi: 10.1016/0076-6879(85)15032-9
– ident: ref3/cit3
  doi: 10.1016/j.jct.2014.12.011
– ident: ref35/cit35
  doi: 10.1021/acs.jpcb.5b09276
– start-page: 475
  volume-title: Colloid and Interface Chemistry for Nanotechnology
  year: 2014
  ident: ref1/cit1
  contributor:
    fullname: Kroflič A.
– ident: ref18/cit18
  doi: 10.1039/C4SM01461H
– ident: ref19/cit19
  doi: 10.1021/la020672y
– ident: ref28/cit28
  doi: 10.1021/jp057442n
– ident: ref34/cit34
  doi: 10.1021/j150614a037
– ident: ref20/cit20
  doi: 10.1021/la990719o
– ident: ref17/cit17
  doi: 10.1021/j150654a043
– ident: ref44/cit44
  doi: 10.1023/B:JOSL.0000043637.43444.3b
SSID ssj0009349
Score 2.4068403
Snippet The micellization behavior of the long-chain carboxylatessodium and potassium octanoate (NaC8 and KC8), sodium decanoate (NaC10), potassium decanoate (KC10),...
The micellization behavior of the long-chain carboxylates-sodium and potassium octanoate (NaC8 and KC8), sodium decanoate (NaC10), potassium decanoate (KC10),...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 7722
Title Two-Step Micellization Model: The Case of Long-Chain Carboxylates in Water
URI http://dx.doi.org/10.1021/acs.langmuir.7b01700
https://www.ncbi.nlm.nih.gov/pubmed/28708402
https://search.proquest.com/docview/1920195521
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54HODC-zFeChIXDhlr0iwtN1SGEAIuDMGtStIEJkGLNirg32OvLYjDhHZroyqNbEf-bMdfCDlyVhjlJGexFRkLpVbMyCBjseZGSenBZ2Ee8vJO3T5G5z2kyWlPqODz4ETbURtzd6_lYNhWBvleIESf5wrAAkKh5O6XZFdUcBdpN1XYFU2r3IRZ0CHZ0V-HNAFljr3NxfK061whSzWupGeVIaySGZevkYWkuc5tnVz1PwqGZ7rozQCz9XX_JcXL0F5OKZgLTcCj0cLT6yJ_YsmzHuQwNDTF59cLIlIK7w_wMNwg9xe9fnLJ6osUmA6D8B1U0HFcaK6Uy7jyCmIuZKGxUewBjinjpeCuC3s7lFnmfZBFcccKD0ivK3xsjdgkc3mRu21ChQ1DKaXWXQWxFYAFo00cGxs56zlXpkWOQRBpvRFG6bjGzYMUBxvppLV0WoQ1kk_fKm6Nf74_bNSTgvBQVjp3RQl_iTk2PgIUaZGtSm8_M2IlF6JYvjPFynbJIkf3jUdDoj0y9z4s3T6ZHWXlwdjivgEr1NJP
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELZG9wAvjG3Ayo_Nk_bCg6Gx4zjhDYWiDlpeKIK3yHZsqNQlqGkF---5axMQD9XE3hIrulh3Z913Pt9nQn45K4xykrPEipyFUitmZJCzRHOjpPQQs3AfsnelLm_j0y7S5MimFwYmUYGkal7Ef2UXCI5wDLfw_sxGk0NlkPYFMvWPMgI8jIgovXrl2hUL1IvsmyqMRNMxt0QKxiVbvY1LS8DmPOicffrP6W6Q9Rpl0pOFW3wmH1zxhaymzeVuX8n58LFkeMKLDka4d193Y1K8Gm18TMF5aArxjZae9svijqX3elTA0MSUT3_HiE8pvN_Aw2STXJ91h2mP1dcqMB0G4RQM0nFcaK6Uy7nyCjIw5KSxceIBnCnjpeAugpUeyjz3PsjjpGOFB9wXCZ9YI7ZIqygL941QYcNQSql1pCDTAuhgtEkSY2NnPefKtMkBKCKrl0WVzSvePMhwsNFOVmunTVhjgOxhwbTxj-9_NlbKQHmoK124cgZ_STi2QQIwaZPthfleJGJdF3JavvOOmf0gq73hoJ_1f19e7JI1joEdD43Ee6Q1nczcPlmp8tn3uRM-A1ij2rw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4SMCFVyksTyP10oPbjR3HMTcUWNHyEBJU7S2yHRtWggRtWAH_npndhIoDQohbYkUTa8aj-cZjf0PIN--EVV5ypp0oWCyNYlZGBdOGWyVlgJiF-5BHF-rsX3pwiDQ5L62-YBI1SKpHRXz06rsiNAwD0U8cx22822F_8ENZpH6BbH1aJkpj3rWfXfzn2xVj5IsMnCpORHtr7g0pGJtc_To2vQE4R4Gnt_CJKS-S-QZt0v3x8lgiE75cJrNZ2-TtC_l9-VAxPOlFT_u4h9_cyqTYIu1mj8IiohnEOVoFelKVVyy7Nv0Shga2eny6QZxK4f0vPAxWyJ_e4WV2xJr2CszEUXwPhul6LgxXyhdcBQWZGHLTuFQHAGnKBim4T8DjY1kUIURFqrtOBMB_iQjaWfGVTJVV6dcIFS6OpZTGJAoyLoAQ1litrUu9C5wr2yHfQRF54x51Pqp88yjHwVY7eaOdDmGtEfK7MePGO9_vtpbKQXmoK1P6agh_0RyvQwJA6ZDVsQlfJGJ9F3Jbvv6Bme2QmfODXn7y6-x4g8xxjO94diTdJFP3g6HfIpN1MdwercNnmfbdPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Step+Micellization+Model%3A+The+Case+of+Long-Chain+Carboxylates+in+Water&rft.jtitle=Langmuir&rft.au=Medo%C5%A1%2C+%C5%BDiga&rft.au=Be%C5%A1ter-Roga%C4%8D%2C+Marija&rft.date=2017-08-08&rft.eissn=1520-5827&rft.volume=33&rft.issue=31&rft.spage=7722&rft.epage=7731&rft_id=info:doi/10.1021%2Facs.langmuir.7b01700&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon