Theoretical Study of Inverted Sandwich Type Complexes of 4d Transition Metal Elements: Interesting Similarities to and Differences from 3d Transition Metal Complexes
Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η6:η6-C6H6)[M(DDP)]2 (DDPH = 2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}pent-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIP...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 116; no. 9; pp. 2292 - 2299 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
08-03-2012
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η6:η6-C6H6)[M(DDP)]2 (DDPH = 2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}pent-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIPH = (Z)-1-amino-3-imino-prop-1-ene) was mainly employed. When going to Nb (group V) from Y (group III) in the periodic table, the spin multiplicity of the ground state increases in the order singlet, triplet, and quintet for M = Y, Zr, and Nb, respectively, like 3d ISTCs reported recently. This is interpreted with orbital diagram and number of d electrons. However, the spin multiplicity decreases to either singlet or triplet in ISTC of Mo (group VI) and to triplet in ISTC of Tc (group VII), where MRMP2 method is employed because the DFT method is not useful here. These spin multiplicities are much lower than the septet of ISTC of Cr and the nonet of that of Mn. When going from 3d to 4d, the position providing the maximum spin multiplicity shifts to group V from group VII. These differences arise from the size of the 4d orbital. Because of the larger size of the 4d orbital, the energy splitting between two dδ orbitals of M(AIP) and that between the dδ and dπ orbitals are larger in the 4d complex than in the 3d complex. Thus, when occupation on the dδ orbital starts, the low spin state becomes ground state, which occurs at group VI. Hence, the ISTC of Nb (group V) exhibits the maximum spin multiplicity. |
---|---|
AbstractList | Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η(6):η(6)-C(6)H(6))[M(DDP)](2) (DDPH = 2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}pent-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIPH = (Z)-1-amino-3-imino-prop-1-ene) was mainly employed. When going to Nb (group V) from Y (group III) in the periodic table, the spin multiplicity of the ground state increases in the order singlet, triplet, and quintet for M = Y, Zr, and Nb, respectively, like 3d ISTCs reported recently. This is interpreted with orbital diagram and number of d electrons. However, the spin multiplicity decreases to either singlet or triplet in ISTC of Mo (group VI) and to triplet in ISTC of Tc (group VII), where MRMP2 method is employed because the DFT method is not useful here. These spin multiplicities are much lower than the septet of ISTC of Cr and the nonet of that of Mn. When going from 3d to 4d, the position providing the maximum spin multiplicity shifts to group V from group VII. These differences arise from the size of the 4d orbital. Because of the larger size of the 4d orbital, the energy splitting between two d(δ) orbitals of M(AIP) and that between the d(δ) and d(π) orbitals are larger in the 4d complex than in the 3d complex. Thus, when occupation on the d(δ) orbital starts, the low spin state becomes ground state, which occurs at group VI. Hence, the ISTC of Nb (group V) exhibits the maximum spin multiplicity. Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η6:η6-C6H6)[M(DDP)]2 (DDPH = 2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}pent-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIPH = (Z)-1-amino-3-imino-prop-1-ene) was mainly employed. When going to Nb (group V) from Y (group III) in the periodic table, the spin multiplicity of the ground state increases in the order singlet, triplet, and quintet for M = Y, Zr, and Nb, respectively, like 3d ISTCs reported recently. This is interpreted with orbital diagram and number of d electrons. However, the spin multiplicity decreases to either singlet or triplet in ISTC of Mo (group VI) and to triplet in ISTC of Tc (group VII), where MRMP2 method is employed because the DFT method is not useful here. These spin multiplicities are much lower than the septet of ISTC of Cr and the nonet of that of Mn. When going from 3d to 4d, the position providing the maximum spin multiplicity shifts to group V from group VII. These differences arise from the size of the 4d orbital. Because of the larger size of the 4d orbital, the energy splitting between two dδ orbitals of M(AIP) and that between the dδ and dπ orbitals are larger in the 4d complex than in the 3d complex. Thus, when occupation on the dδ orbital starts, the low spin state becomes ground state, which occurs at group VI. Hence, the ISTC of Nb (group V) exhibits the maximum spin multiplicity. Inverted sandwich type complexes (ISTCs) of 4d metals, ( mu - eta super(6): eta super(6)-C sub(6)H sub(6))[M( DDP)] sub(2) (DDPH = 2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}p e nt-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIPH = (Z)-1-amino-3-imino-prop-1-ene) was mainly employed. When going to Nb (group V) from Y (group III) in the periodic table, the spin multiplicity of the ground state increases in the order singlet, triplet, and quintet for M = Y, Zr, and Nb, respectively, like 3d ISTCs reported recently. This is interpreted with orbital diagram and number of d electrons. However, the spin multiplicity decreases to either singlet or triplet in ISTC of Mo (group VI) and to triplet in ISTC of Tc (group VII), where MRMP2 method is employed because the DFT method is not useful here. These spin multiplicities are much lower than the septet of ISTC of Cr and the nonet of that of Mn. When going from 3d to 4d, the position providing the maximum spin multiplicity shifts to group V from group VII. These differences arise from the size of the 4d orbital. Because of the larger size of the 4d orbital, the energy splitting between two d sub( delta ) orbitals of M(AIP) and that between the d sub( delta ) and d sub( pi ) orbitals are larger in the 4d complex than in the 3d complex. Thus, when occupation on the d sub( delta ) orbital starts, the low spin state becomes ground state, which occurs at group VI. Hence, the ISTC of Nb (group V) exhibits the maximum spin multiplicity. |
Author | Kurokawa, Yusaku I Nakao, Yoshihide Sakaki, Shigeyoshi |
Author_xml | – sequence: 1 givenname: Yusaku I surname: Kurokawa fullname: Kurokawa, Yusaku I – sequence: 2 givenname: Yoshihide surname: Nakao fullname: Nakao, Yoshihide – sequence: 3 givenname: Shigeyoshi surname: Sakaki fullname: Sakaki, Shigeyoshi email: sakaki@moleng.kyoto-u.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22283332$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1OGzEURi1EVSDtgheovEGli2n9O550VwVokai6SLoeOZ7r4mjGHmwPJQ_Ee2IUmhXqypZ1fL6r-52gQx88IHRKyWdKGP2yGRklqqH3B-iYSkYqyag8LHfSzCtZ8_kROklpQwihnIm36Igx1nDO2TF6XN1CiJCd0T1e5qnb4mDxtb-HmKHDS-27v87c4tV2BLwIw9jDA6RnRnR4FbVPLrvg8U_IRXDZwwA-p6_FkCFCys7_wUs3uF7HApafOeDixBfO2gJ4U55sDAPmr-j2ee_QG6v7BO9fzhn6fXW5Wvyobn59v158u6m0oDxXlnSa0TWxlje1sp21QoqOAzHGaiVNI2rdEG6VXBdeC8EVX0tlNbfWMKn5DH3ceccY7qYyfju4ZKDvtYcwpXbOVN3UgpBCnv-XpEpySZUoGTP0aYeaGFKKYNsxukHHbUtJ-9xfu--vsB9etNN6gG5P_iusAGc7QJvUbsIUfdnHK6In4N2mKw |
CitedBy_id | crossref_primary_10_1016_j_ccr_2013_11_008 crossref_primary_10_1039_C5CP01350J crossref_primary_10_1021_om400544z crossref_primary_10_1002_qua_25524 crossref_primary_10_1246_bcsj_20150119 crossref_primary_10_1021_jp410410j crossref_primary_10_1039_C6CP03312A |
Cites_doi | 10.1021/jp909796h 10.1039/B711816C 10.1103/PhysRevB.37.785 10.1002/anie.200701933 10.1063/1.456153 10.1063/1.464913 10.1007/s00214-001-0300-3 10.1016/0009-2614(92)85354-D 10.1103/PhysRevB.33.8822 10.1080/00268979300103121 10.1021/jp809597m 10.1016/0009-2614(92)85710-R 10.1002/jcc.540141112 10.1021/cr980401l 10.1021/ja072003i 10.1063/1.465674 10.1002/3527600043 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1021/jp210781v |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5215 |
EndPage | 2299 |
ExternalDocumentID | 10_1021_jp210781v 22283332 d029863136 |
Genre | Journal Article |
GroupedDBID | - .K2 02 123 29L 4.4 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CJ0 CS3 D0L DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -~X .DC ABJNI ABQRX ACBEA ADHLV AHGAQ CUPRZ GGK NPM XSW YQT ~02 AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-a413t-f0da21b0ff3867fdff454d3e0ccfa75c846a803f75b413a44373b57fa3ffc25a3 |
IEDL.DBID | ACS |
ISSN | 1089-5639 |
IngestDate | Fri Aug 16 07:47:48 EDT 2024 Fri Aug 16 01:20:50 EDT 2024 Fri Aug 23 01:04:44 EDT 2024 Sat Sep 28 08:00:57 EDT 2024 Thu Aug 27 13:42:07 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a413t-f0da21b0ff3867fdff454d3e0ccfa75c846a803f75b413a44373b57fa3ffc25a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22283332 |
PQID | 1753517444 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_927686400 proquest_miscellaneous_1753517444 crossref_primary_10_1021_jp210781v pubmed_primary_22283332 acs_journals_10_1021_jp210781v |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2012-03-08 |
PublicationDateYYYYMMDD | 2012-03-08 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
PublicationTitleAlternate | J. Phys. Chem. A |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref18/cit18 Schmidt M. W. (ref19/cit19) 1993; 14 Tsai Y.-C. (ref3/cit3) 2008 Dunning T. H. (ref17/cit17) 1989; 90 Becke A. D. (ref6/cit6) 1993; 98 Bergner A. (ref16/cit16) 1993; 80 Monillas W. H. (ref2/cit2) 2007; 46 Frenking G. (ref22/cit22) 2000; 100 Hirao K. (ref13/cit13) 1992; 190 Hirao K. (ref14/cit14) 1992; 196 Lee C. (ref7/cit7) 1988; 37 Perdew J. P. (ref10/cit10) 1991 Kurokawa Y. I. (ref4/cit4) 2010; 114 Tsai Y.-C. (ref1/cit1) 2007; 129 Kurokawa Y. I. (ref5/cit5) 2009; 113 Perdew J. P. (ref9/cit9) 1986; 33 Nakano H. (ref15/cit15) 1993; 99 Koch W. (ref21/cit21) 2001 Reiher M. (ref8/cit8) 2001; 107 ref20/cit20 Roos B. O. (ref12/cit12) 1987; 69 |
References_xml | – volume: 114 start-page: 1191 year: 2010 ident: ref4/cit4 publication-title: J. Phys. Chem. A doi: 10.1021/jp909796h contributor: fullname: Kurokawa Y. I. – start-page: 205 year: 2008 ident: ref3/cit3 publication-title: Chem. Commun. doi: 10.1039/B711816C contributor: fullname: Tsai Y.-C. – volume: 69 start-page: 399 year: 1987 ident: ref12/cit12 publication-title: Adv. Chem. Phys. contributor: fullname: Roos B. O. – volume: 37 start-page: 785 year: 1988 ident: ref7/cit7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 contributor: fullname: Lee C. – ident: ref20/cit20 – volume: 46 start-page: 6692 year: 2007 ident: ref2/cit2 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701933 contributor: fullname: Monillas W. H. – volume: 90 start-page: 1007 year: 1989 ident: ref17/cit17 publication-title: J. Chem. Phys. doi: 10.1063/1.456153 contributor: fullname: Dunning T. H. – volume: 98 start-page: 5648 year: 1993 ident: ref6/cit6 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 contributor: fullname: Becke A. D. – volume: 107 start-page: 45 year: 2001 ident: ref8/cit8 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-001-0300-3 contributor: fullname: Reiher M. – volume: 190 start-page: 374 year: 1992 ident: ref13/cit13 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(92)85354-D contributor: fullname: Hirao K. – volume: 33 start-page: 8822 year: 1986 ident: ref9/cit9 publication-title: Phy. Rev. B doi: 10.1103/PhysRevB.33.8822 contributor: fullname: Perdew J. P. – volume: 80 start-page: 1431 year: 1993 ident: ref16/cit16 publication-title: Mol. Phys. doi: 10.1080/00268979300103121 contributor: fullname: Bergner A. – volume: 113 start-page: 3202 year: 2009 ident: ref5/cit5 publication-title: J. Phys. Chem. A doi: 10.1021/jp809597m contributor: fullname: Kurokawa Y. I. – volume-title: Electronic Structure of Solids year: 1991 ident: ref10/cit10 contributor: fullname: Perdew J. P. – volume: 196 start-page: 397 year: 1992 ident: ref14/cit14 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(92)85710-R contributor: fullname: Hirao K. – volume: 14 start-page: 1347 year: 1993 ident: ref19/cit19 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540141112 contributor: fullname: Schmidt M. W. – volume: 100 start-page: 717 year: 2000 ident: ref22/cit22 publication-title: Chem. Rev. doi: 10.1021/cr980401l contributor: fullname: Frenking G. – ident: ref18/cit18 – volume: 129 start-page: 8066 year: 2007 ident: ref1/cit1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja072003i contributor: fullname: Tsai Y.-C. – volume: 99 start-page: 7983 year: 1993 ident: ref15/cit15 publication-title: J. Chem. Phys. doi: 10.1063/1.465674 contributor: fullname: Nakano H. – volume-title: A Chemist’s Guide to Density Functional Theory year: 2001 ident: ref21/cit21 doi: 10.1002/3527600043 contributor: fullname: Koch W. |
SSID | ssj0001324 |
Score | 2.1275017 |
Snippet | Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η6:η6-C6H6)[M(DDP)]2 (DDPH =... Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η(6):η(6)-C(6)H(6))[M(DDP)](2) (DDPH =... Inverted sandwich type complexes (ISTCs) of 4d metals, ( mu - eta super(6): eta super(6)-C sub(6)H sub(6))[M( DDP)] sub(2) (DDPH =... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2292 |
SubjectTerms | Density functional theory Ground state Niobium Occupation Orbitals Periodic table Three dimensional Transition metals |
Title | Theoretical Study of Inverted Sandwich Type Complexes of 4d Transition Metal Elements: Interesting Similarities to and Differences from 3d Transition Metal Complexes |
URI | http://dx.doi.org/10.1021/jp210781v https://www.ncbi.nlm.nih.gov/pubmed/22283332 https://search.proquest.com/docview/1753517444 https://search.proquest.com/docview/927686400 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4VemgvUB6FQIuG0uuKje2NN9xQCOICl1Cpt8hreyCo3SA24fGD-J-Mvdm0lYjKcaXZsbXjnfnGM_4M8J1IyoKkSXzuTKK6BSXGqiKhDi-WVFNGcUP_bKAvfuYn_UCTc7Cggi_ahze3nJXovH2_BO-FZoQQ8E9vMHe3nE6puou-m2Qcbxv6oL9fDaHHVv-GngV4MsaV09U3zegTrMxgIx7Xdl6Dd75chw-95ra2DXi-_HMiEUNz4BOOCQOLxh1jShyY0j2M7DWGvBODE_jlH30VZJTDGLBi7xaee0bj2K-byqsjjDuGgYmjvMLB6PeIE-HIwYqTMbJOPJldsMLuBsNRFZSvqJuPtwk_TvuXvbNkdgVDYji6TRJKnRHtImWT5h1NjkhlykmfWktGZ5bRi8lTSTorWN6oQJRUZJqMJLIiM_IzLJfj0m8DamOMDVXT3FrlU1UI6Rgw8GPa6bpCtGCPbTSc_ULVMFbHBWcnzdduwbfGfMPbmorjNaH9xrBDtkCofpjSj6esjxOzQMutVAtwgUxXcPbVYbfWgq16UcxHCjtlUkqx879p7sJHBlUi9qnlX2B5cjf1X2GpctO9uHBfAHna6Uw |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56748,56798 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED_x8QAvA8bHyoDdJl4j0thpUt6mUlQ04KWdxFvk2D4oYiki7YA_iP-Ts9MUJoEmHiNdzlbOufud7_wzwD6REDkJFdjUqEC2cwqUlnlALV4sYUIx-Q39Xj85v0iPujOaHHcWhidRsqbSF_Ff2AWaB9e3nJwkafPvPCzG7oYMB4M6_ZnX5axKVs307SDmsFuzCL1-1UUgXf4bgd6BlT68HK98ZGKr8GkKIvFnZfU1mLPFZ1jq1He3rcPT4OV8IrpWwUccETpOjTtGmNhXhbkf6it0WSg6l3BjH2zpZKRBH758JxeeWcbm2K1azMtD9PuHjpejuMT-8M-Q02LPyIrjEbJOPJpet8LOB93BFRRvqJuNtwG_j7uDTi-YXsgQKI5144BCo6JmHrKB01ZChkjG0ggbak0qiTVjGZWGgpI4Z3klHW1SHiekBJGOYiU2YaEYFfYLYKKU0q6GmmotbSjzSBiGD_wYttomjxqwxx87m_5QZeZr5RHnKvXXbsCP2orZbUXM8ZbQ99q-GVvA1UJUYUcT1sdpmiPplrIB-I5MO-JcrMVOrgFb1dqYjeT2zYQQ0fb_pvkNlnqDs9Ps9OT811dYZrgV-Q62dAcWxncTuwvzpZns-bX8DBae8bo |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71IQEXKO8ttAyIayAbO5ssN7QPFQEV0haJW-TYHlgE2VWzC_QH8T-ZcZKFSq0qjpEmtuWxZ77xjD8DPCdSqiRlIp87E-lhSZGxuoxowIslziilcKB_NMuOP-XjidDkvOjuwvAgam6pDkl82dVLRy3DQP_l1yUHKFne_7ENu6mkDwQKjWYby8uRlW4K6odRyq63YxL691fxQrY-74UugZbBxUxv_e_g9uBmCybxdaP927DlqztwfdS94XYXfp_8vaeIUjJ4hgtC4dY4ZaSJM1O5n3P7BSUaRTEN3_wvX4uMdhjcWKjowveeMTpOmlLz-hWGc0Th56g-42z-fc7hcWBmxdUCuU0ct8-usBFCucCC6oLmNv3dg4_TycnoKGofZogM-7xVRLEzSb-MWdH5ICNHpFPtlI-tJZOlljGNyWNFWVqyvNFCn1SmGRlFZJPUqPuwUy0q_xAwM8ZYyaXm1mof6zJRjmEEf8aDoSuTHhzyhBftxqqLkDNPOGbpZrsHzzpNFsuGoOMioaedjgvWgORETOUXa26PwzUh69a6B3iJzDDhmGzAxq4HD5r1selJzs-UUsn-VcN8Atc-jKfFuzfHbx_BDUZdSShkyx_Dzup07Q9gu3brw7Cc_wDyFvQ9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Study+of+Inverted+Sandwich+Type+Complexes+of+4d+Transition+Metal+Elements%3A+Interesting+Similarities+to+and+Differences+from+3d+Transition+Metal+Complexes&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Kurokawa%2C+Yusaku+I&rft.au=Nakao%2C+Yoshihide&rft.au=Sakaki%2C+Shigeyoshi&rft.date=2012-03-08&rft.issn=1089-5639&rft.eissn=1520-5215&rft.volume=116&rft.issue=9&rft.spage=2292&rft.epage=2299-2292-2299&rft_id=info:doi/10.1021%2Fjp210781v&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon |