Theoretical Study of Inverted Sandwich Type Complexes of 4d Transition Metal Elements: Interesting Similarities to and Differences from 3d Transition Metal Complexes

Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η6:η6-C6H6)­[M­(DDP)]2 (DDPH = 2-{(2,6-diisopropylphenyl)­amino}-4-{(2,6-diisopropylphenyl)­imino}­pent-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIP...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 116; no. 9; pp. 2292 - 2299
Main Authors: Kurokawa, Yusaku I, Nakao, Yoshihide, Sakaki, Shigeyoshi
Format: Journal Article
Language:English
Published: United States American Chemical Society 08-03-2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η6:η6-C6H6)­[M­(DDP)]2 (DDPH = 2-{(2,6-diisopropylphenyl)­amino}-4-{(2,6-diisopropylphenyl)­imino}­pent-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIPH = (Z)-1-amino-3-imino-prop-1-ene) was mainly employed. When going to Nb (group V) from Y (group III) in the periodic table, the spin multiplicity of the ground state increases in the order singlet, triplet, and quintet for M = Y, Zr, and Nb, respectively, like 3d ISTCs reported recently. This is interpreted with orbital diagram and number of d electrons. However, the spin multiplicity decreases to either singlet or triplet in ISTC of Mo (group VI) and to triplet in ISTC of Tc (group VII), where MRMP2 method is employed because the DFT method is not useful here. These spin multiplicities are much lower than the septet of ISTC of Cr and the nonet of that of Mn. When going from 3d to 4d, the position providing the maximum spin multiplicity shifts to group V from group VII. These differences arise from the size of the 4d orbital. Because of the larger size of the 4d orbital, the energy splitting between two dδ orbitals of M­(AIP) and that between the dδ and dπ orbitals are larger in the 4d complex than in the 3d complex. Thus, when occupation on the dδ orbital starts, the low spin state becomes ground state, which occurs at group VI. Hence, the ISTC of Nb (group V) exhibits the maximum spin multiplicity.
AbstractList Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η(6):η(6)-C(6)H(6))[M(DDP)](2) (DDPH = 2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}pent-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIPH = (Z)-1-amino-3-imino-prop-1-ene) was mainly employed. When going to Nb (group V) from Y (group III) in the periodic table, the spin multiplicity of the ground state increases in the order singlet, triplet, and quintet for M = Y, Zr, and Nb, respectively, like 3d ISTCs reported recently. This is interpreted with orbital diagram and number of d electrons. However, the spin multiplicity decreases to either singlet or triplet in ISTC of Mo (group VI) and to triplet in ISTC of Tc (group VII), where MRMP2 method is employed because the DFT method is not useful here. These spin multiplicities are much lower than the septet of ISTC of Cr and the nonet of that of Mn. When going from 3d to 4d, the position providing the maximum spin multiplicity shifts to group V from group VII. These differences arise from the size of the 4d orbital. Because of the larger size of the 4d orbital, the energy splitting between two d(δ) orbitals of M(AIP) and that between the d(δ) and d(π) orbitals are larger in the 4d complex than in the 3d complex. Thus, when occupation on the d(δ) orbital starts, the low spin state becomes ground state, which occurs at group VI. Hence, the ISTC of Nb (group V) exhibits the maximum spin multiplicity.
Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η6:η6-C6H6)­[M­(DDP)]2 (DDPH = 2-{(2,6-diisopropylphenyl)­amino}-4-{(2,6-diisopropylphenyl)­imino}­pent-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIPH = (Z)-1-amino-3-imino-prop-1-ene) was mainly employed. When going to Nb (group V) from Y (group III) in the periodic table, the spin multiplicity of the ground state increases in the order singlet, triplet, and quintet for M = Y, Zr, and Nb, respectively, like 3d ISTCs reported recently. This is interpreted with orbital diagram and number of d electrons. However, the spin multiplicity decreases to either singlet or triplet in ISTC of Mo (group VI) and to triplet in ISTC of Tc (group VII), where MRMP2 method is employed because the DFT method is not useful here. These spin multiplicities are much lower than the septet of ISTC of Cr and the nonet of that of Mn. When going from 3d to 4d, the position providing the maximum spin multiplicity shifts to group V from group VII. These differences arise from the size of the 4d orbital. Because of the larger size of the 4d orbital, the energy splitting between two dδ orbitals of M­(AIP) and that between the dδ and dπ orbitals are larger in the 4d complex than in the 3d complex. Thus, when occupation on the dδ orbital starts, the low spin state becomes ground state, which occurs at group VI. Hence, the ISTC of Nb (group V) exhibits the maximum spin multiplicity.
Inverted sandwich type complexes (ISTCs) of 4d metals, ( mu - eta super(6): eta super(6)-C sub(6)H sub(6))[M( DDP)] sub(2) (DDPH = 2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}p e nt-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIPH = (Z)-1-amino-3-imino-prop-1-ene) was mainly employed. When going to Nb (group V) from Y (group III) in the periodic table, the spin multiplicity of the ground state increases in the order singlet, triplet, and quintet for M = Y, Zr, and Nb, respectively, like 3d ISTCs reported recently. This is interpreted with orbital diagram and number of d electrons. However, the spin multiplicity decreases to either singlet or triplet in ISTC of Mo (group VI) and to triplet in ISTC of Tc (group VII), where MRMP2 method is employed because the DFT method is not useful here. These spin multiplicities are much lower than the septet of ISTC of Cr and the nonet of that of Mn. When going from 3d to 4d, the position providing the maximum spin multiplicity shifts to group V from group VII. These differences arise from the size of the 4d orbital. Because of the larger size of the 4d orbital, the energy splitting between two d sub( delta ) orbitals of M(AIP) and that between the d sub( delta ) and d sub( pi ) orbitals are larger in the 4d complex than in the 3d complex. Thus, when occupation on the d sub( delta ) orbital starts, the low spin state becomes ground state, which occurs at group VI. Hence, the ISTC of Nb (group V) exhibits the maximum spin multiplicity.
Author Kurokawa, Yusaku I
Nakao, Yoshihide
Sakaki, Shigeyoshi
Author_xml – sequence: 1
  givenname: Yusaku I
  surname: Kurokawa
  fullname: Kurokawa, Yusaku I
– sequence: 2
  givenname: Yoshihide
  surname: Nakao
  fullname: Nakao, Yoshihide
– sequence: 3
  givenname: Shigeyoshi
  surname: Sakaki
  fullname: Sakaki, Shigeyoshi
  email: sakaki@moleng.kyoto-u.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22283332$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1OGzEURi1EVSDtgheovEGli2n9O550VwVokai6SLoeOZ7r4mjGHmwPJQ_Ee2IUmhXqypZ1fL6r-52gQx88IHRKyWdKGP2yGRklqqH3B-iYSkYqyag8LHfSzCtZ8_kROklpQwihnIm36Igx1nDO2TF6XN1CiJCd0T1e5qnb4mDxtb-HmKHDS-27v87c4tV2BLwIw9jDA6RnRnR4FbVPLrvg8U_IRXDZwwA-p6_FkCFCys7_wUs3uF7HApafOeDixBfO2gJ4U55sDAPmr-j2ee_QG6v7BO9fzhn6fXW5Wvyobn59v158u6m0oDxXlnSa0TWxlje1sp21QoqOAzHGaiVNI2rdEG6VXBdeC8EVX0tlNbfWMKn5DH3ceccY7qYyfju4ZKDvtYcwpXbOVN3UgpBCnv-XpEpySZUoGTP0aYeaGFKKYNsxukHHbUtJ-9xfu--vsB9etNN6gG5P_iusAGc7QJvUbsIUfdnHK6In4N2mKw
CitedBy_id crossref_primary_10_1016_j_ccr_2013_11_008
crossref_primary_10_1039_C5CP01350J
crossref_primary_10_1021_om400544z
crossref_primary_10_1002_qua_25524
crossref_primary_10_1246_bcsj_20150119
crossref_primary_10_1021_jp410410j
crossref_primary_10_1039_C6CP03312A
Cites_doi 10.1021/jp909796h
10.1039/B711816C
10.1103/PhysRevB.37.785
10.1002/anie.200701933
10.1063/1.456153
10.1063/1.464913
10.1007/s00214-001-0300-3
10.1016/0009-2614(92)85354-D
10.1103/PhysRevB.33.8822
10.1080/00268979300103121
10.1021/jp809597m
10.1016/0009-2614(92)85710-R
10.1002/jcc.540141112
10.1021/cr980401l
10.1021/ja072003i
10.1063/1.465674
10.1002/3527600043
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1021/jp210781v
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
EndPage 2299
ExternalDocumentID 10_1021_jp210781v
22283332
d029863136
Genre Journal Article
GroupedDBID -
.K2
02
123
29L
4.4
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CJ0
CS3
D0L
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-~X
.DC
ABJNI
ABQRX
ACBEA
ADHLV
AHGAQ
CUPRZ
GGK
NPM
XSW
YQT
~02
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-a413t-f0da21b0ff3867fdff454d3e0ccfa75c846a803f75b413a44373b57fa3ffc25a3
IEDL.DBID ACS
ISSN 1089-5639
IngestDate Fri Aug 16 07:47:48 EDT 2024
Fri Aug 16 01:20:50 EDT 2024
Fri Aug 23 01:04:44 EDT 2024
Sat Sep 28 08:00:57 EDT 2024
Thu Aug 27 13:42:07 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a413t-f0da21b0ff3867fdff454d3e0ccfa75c846a803f75b413a44373b57fa3ffc25a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22283332
PQID 1753517444
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_927686400
proquest_miscellaneous_1753517444
crossref_primary_10_1021_jp210781v
pubmed_primary_22283332
acs_journals_10_1021_jp210781v
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2012-03-08
PublicationDateYYYYMMDD 2012-03-08
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J. Phys. Chem. A
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref18/cit18
Schmidt M. W. (ref19/cit19) 1993; 14
Tsai Y.-C. (ref3/cit3) 2008
Dunning T. H. (ref17/cit17) 1989; 90
Becke A. D. (ref6/cit6) 1993; 98
Bergner A. (ref16/cit16) 1993; 80
Monillas W. H. (ref2/cit2) 2007; 46
Frenking G. (ref22/cit22) 2000; 100
Hirao K. (ref13/cit13) 1992; 190
Hirao K. (ref14/cit14) 1992; 196
Lee C. (ref7/cit7) 1988; 37
Perdew J. P. (ref10/cit10) 1991
Kurokawa Y. I. (ref4/cit4) 2010; 114
Tsai Y.-C. (ref1/cit1) 2007; 129
Kurokawa Y. I. (ref5/cit5) 2009; 113
Perdew J. P. (ref9/cit9) 1986; 33
Nakano H. (ref15/cit15) 1993; 99
Koch W. (ref21/cit21) 2001
Reiher M. (ref8/cit8) 2001; 107
ref20/cit20
Roos B. O. (ref12/cit12) 1987; 69
References_xml – volume: 114
  start-page: 1191
  year: 2010
  ident: ref4/cit4
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp909796h
  contributor:
    fullname: Kurokawa Y. I.
– start-page: 205
  year: 2008
  ident: ref3/cit3
  publication-title: Chem. Commun.
  doi: 10.1039/B711816C
  contributor:
    fullname: Tsai Y.-C.
– volume: 69
  start-page: 399
  year: 1987
  ident: ref12/cit12
  publication-title: Adv. Chem. Phys.
  contributor:
    fullname: Roos B. O.
– volume: 37
  start-page: 785
  year: 1988
  ident: ref7/cit7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.785
  contributor:
    fullname: Lee C.
– ident: ref20/cit20
– volume: 46
  start-page: 6692
  year: 2007
  ident: ref2/cit2
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701933
  contributor:
    fullname: Monillas W. H.
– volume: 90
  start-page: 1007
  year: 1989
  ident: ref17/cit17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456153
  contributor:
    fullname: Dunning T. H.
– volume: 98
  start-page: 5648
  year: 1993
  ident: ref6/cit6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
  contributor:
    fullname: Becke A. D.
– volume: 107
  start-page: 45
  year: 2001
  ident: ref8/cit8
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-001-0300-3
  contributor:
    fullname: Reiher M.
– volume: 190
  start-page: 374
  year: 1992
  ident: ref13/cit13
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(92)85354-D
  contributor:
    fullname: Hirao K.
– volume: 33
  start-page: 8822
  year: 1986
  ident: ref9/cit9
  publication-title: Phy. Rev. B
  doi: 10.1103/PhysRevB.33.8822
  contributor:
    fullname: Perdew J. P.
– volume: 80
  start-page: 1431
  year: 1993
  ident: ref16/cit16
  publication-title: Mol. Phys.
  doi: 10.1080/00268979300103121
  contributor:
    fullname: Bergner A.
– volume: 113
  start-page: 3202
  year: 2009
  ident: ref5/cit5
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp809597m
  contributor:
    fullname: Kurokawa Y. I.
– volume-title: Electronic Structure of Solids
  year: 1991
  ident: ref10/cit10
  contributor:
    fullname: Perdew J. P.
– volume: 196
  start-page: 397
  year: 1992
  ident: ref14/cit14
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(92)85710-R
  contributor:
    fullname: Hirao K.
– volume: 14
  start-page: 1347
  year: 1993
  ident: ref19/cit19
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540141112
  contributor:
    fullname: Schmidt M. W.
– volume: 100
  start-page: 717
  year: 2000
  ident: ref22/cit22
  publication-title: Chem. Rev.
  doi: 10.1021/cr980401l
  contributor:
    fullname: Frenking G.
– ident: ref18/cit18
– volume: 129
  start-page: 8066
  year: 2007
  ident: ref1/cit1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja072003i
  contributor:
    fullname: Tsai Y.-C.
– volume: 99
  start-page: 7983
  year: 1993
  ident: ref15/cit15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465674
  contributor:
    fullname: Nakano H.
– volume-title: A Chemist’s Guide to Density Functional Theory
  year: 2001
  ident: ref21/cit21
  doi: 10.1002/3527600043
  contributor:
    fullname: Koch W.
SSID ssj0001324
Score 2.1275017
Snippet Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η6:η6-C6H6)­[M­(DDP)]2 (DDPH =...
Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η(6):η(6)-C(6)H(6))[M(DDP)](2) (DDPH =...
Inverted sandwich type complexes (ISTCs) of 4d metals, ( mu - eta super(6): eta super(6)-C sub(6)H sub(6))[M( DDP)] sub(2) (DDPH =...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 2292
SubjectTerms Density functional theory
Ground state
Niobium
Occupation
Orbitals
Periodic table
Three dimensional
Transition metals
Title Theoretical Study of Inverted Sandwich Type Complexes of 4d Transition Metal Elements: Interesting Similarities to and Differences from 3d Transition Metal Complexes
URI http://dx.doi.org/10.1021/jp210781v
https://www.ncbi.nlm.nih.gov/pubmed/22283332
https://search.proquest.com/docview/1753517444
https://search.proquest.com/docview/927686400
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4VemgvUB6FQIuG0uuKje2NN9xQCOICl1Cpt8hreyCo3SA24fGD-J-Mvdm0lYjKcaXZsbXjnfnGM_4M8J1IyoKkSXzuTKK6BSXGqiKhDi-WVFNGcUP_bKAvfuYn_UCTc7Cggi_ahze3nJXovH2_BO-FZoQQ8E9vMHe3nE6puou-m2Qcbxv6oL9fDaHHVv-GngV4MsaV09U3zegTrMxgIx7Xdl6Dd75chw-95ra2DXi-_HMiEUNz4BOOCQOLxh1jShyY0j2M7DWGvBODE_jlH30VZJTDGLBi7xaee0bj2K-byqsjjDuGgYmjvMLB6PeIE-HIwYqTMbJOPJldsMLuBsNRFZSvqJuPtwk_TvuXvbNkdgVDYji6TRJKnRHtImWT5h1NjkhlykmfWktGZ5bRi8lTSTorWN6oQJRUZJqMJLIiM_IzLJfj0m8DamOMDVXT3FrlU1UI6Rgw8GPa6bpCtGCPbTSc_ULVMFbHBWcnzdduwbfGfMPbmorjNaH9xrBDtkCofpjSj6esjxOzQMutVAtwgUxXcPbVYbfWgq16UcxHCjtlUkqx879p7sJHBlUi9qnlX2B5cjf1X2GpctO9uHBfAHna6Uw
link.rule.ids 315,782,786,2769,27085,27933,27934,56748,56798
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED_x8QAvA8bHyoDdJl4j0thpUt6mUlQ04KWdxFvk2D4oYiki7YA_iP-Ts9MUJoEmHiNdzlbOufud7_wzwD6REDkJFdjUqEC2cwqUlnlALV4sYUIx-Q39Xj85v0iPujOaHHcWhidRsqbSF_Ff2AWaB9e3nJwkafPvPCzG7oYMB4M6_ZnX5axKVs307SDmsFuzCL1-1UUgXf4bgd6BlT68HK98ZGKr8GkKIvFnZfU1mLPFZ1jq1He3rcPT4OV8IrpWwUccETpOjTtGmNhXhbkf6it0WSg6l3BjH2zpZKRBH758JxeeWcbm2K1azMtD9PuHjpejuMT-8M-Q02LPyIrjEbJOPJpet8LOB93BFRRvqJuNtwG_j7uDTi-YXsgQKI5144BCo6JmHrKB01ZChkjG0ggbak0qiTVjGZWGgpI4Z3klHW1SHiekBJGOYiU2YaEYFfYLYKKU0q6GmmotbSjzSBiGD_wYttomjxqwxx87m_5QZeZr5RHnKvXXbsCP2orZbUXM8ZbQ99q-GVvA1UJUYUcT1sdpmiPplrIB-I5MO-JcrMVOrgFb1dqYjeT2zYQQ0fb_pvkNlnqDs9Ps9OT811dYZrgV-Q62dAcWxncTuwvzpZns-bX8DBae8bo
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71IQEXKO8ttAyIayAbO5ssN7QPFQEV0haJW-TYHlgE2VWzC_QH8T-ZcZKFSq0qjpEmtuWxZ77xjD8DPCdSqiRlIp87E-lhSZGxuoxowIslziilcKB_NMuOP-XjidDkvOjuwvAgam6pDkl82dVLRy3DQP_l1yUHKFne_7ENu6mkDwQKjWYby8uRlW4K6odRyq63YxL691fxQrY-74UugZbBxUxv_e_g9uBmCybxdaP927DlqztwfdS94XYXfp_8vaeIUjJ4hgtC4dY4ZaSJM1O5n3P7BSUaRTEN3_wvX4uMdhjcWKjowveeMTpOmlLz-hWGc0Th56g-42z-fc7hcWBmxdUCuU0ct8-usBFCucCC6oLmNv3dg4_TycnoKGofZogM-7xVRLEzSb-MWdH5ICNHpFPtlI-tJZOlljGNyWNFWVqyvNFCn1SmGRlFZJPUqPuwUy0q_xAwM8ZYyaXm1mof6zJRjmEEf8aDoSuTHhzyhBftxqqLkDNPOGbpZrsHzzpNFsuGoOMioaedjgvWgORETOUXa26PwzUh69a6B3iJzDDhmGzAxq4HD5r1selJzs-UUsn-VcN8Atc-jKfFuzfHbx_BDUZdSShkyx_Dzup07Q9gu3brw7Cc_wDyFvQ9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Study+of+Inverted+Sandwich+Type+Complexes+of+4d+Transition+Metal+Elements%3A+Interesting+Similarities+to+and+Differences+from+3d+Transition+Metal+Complexes&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Kurokawa%2C+Yusaku+I&rft.au=Nakao%2C+Yoshihide&rft.au=Sakaki%2C+Shigeyoshi&rft.date=2012-03-08&rft.issn=1089-5639&rft.eissn=1520-5215&rft.volume=116&rft.issue=9&rft.spage=2292&rft.epage=2299-2292-2299&rft_id=info:doi/10.1021%2Fjp210781v&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon