Equivariant Neural Networks Utilizing Molecular Clusters for Accurate Molecular Crystal Lattice Energy Predictions

Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the utility of these networks to the prediction of crystal struct...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega Vol. 9; no. 38; pp. 40269 - 40282
Main Authors: Gupta, Ankur K., Stulajter, Miko M., Shaidu, Yusuf, Neaton, Jeffrey B., de Jong, Wibe A.
Format: Journal Article
Language:English
Published: United States American Chemical Society 11-09-2024
American Chemical Society (ACS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the utility of these networks to the prediction of crystal structures consisting of organic molecules. Traditional methods for computing crystal structure properties, such as plane-wave quantum chemical methods based on density functional theory (DFT), are prohibitively resource-intensive, often necessitating compromises in accuracy and the choice of exchange–correlation functional. We present an approach that leverages the efficiency, and transferability of equivariant neural networks, specifically Allegro, to predict molecular crystal structure energies at a reduced computational cost. Our neural network is trained on molecular clusters using a highly accurate Gaussian-type orbital (GTO)-based method as the target level of theory, eliminating the need for costly periodic DFT calculations, while providing access to all families of exchange–corelation functionals and post-Hartree–Fock methods. The trained model exhibits remarkable accuracy in predicting lattice energies, aligning closely with those computed by plane-wave based DFT methods, thus representing significant cost reductions. Furthermore, the Allegro network was seamlessly integrated with the USPEX framework, accelerating the discovery of low-energy crystal structures during crystal structure prediction.
AbstractList Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the utility of these networks to the prediction of crystal structures consisting of organic molecules. Traditional methods for computing crystal structure properties, such as plane-wave quantum chemical methods based on density functional theory (DFT), are prohibitively resource-intensive, often necessitating compromises in accuracy and the choice of exchange–correlation functional. We present an approach that leverages the efficiency, and transferability of equivariant neural networks, specifically Allegro, to predict molecular crystal structure energies at a reduced computational cost. Our neural network is trained on molecular clusters using a highly accurate Gaussian-type orbital (GTO)-based method as the target level of theory, eliminating the need for costly periodic DFT calculations, while providing access to all families of exchange–corelation functionals and post-Hartree–Fock methods. The trained model exhibits remarkable accuracy in predicting lattice energies, aligning closely with those computed by plane-wave based DFT methods, thus representing significant cost reductions. Furthermore, the Allegro network was seamlessly integrated with the USPEX framework, accelerating the discovery of low-energy crystal structures during crystal structure prediction.
Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the utility of these networks to the prediction of crystal structures consisting of organic molecules. Traditional methods for computing crystal structure properties, such as plane-wave quantum chemical methods based on density functional theory (DFT), are prohibitively resource-intensive, often necessitating compromises in accuracy and the choice of exchange–correlation functional. We present an approach that leverages the efficiency, and transferability of equivariant neural networks, specifically Allegro, to predict molecular crystal structure energies at a reduced computational cost. Our neural network is trained on molecular clusters using a highly accurate Gaussian-type orbital (GTO)-based method as the target level of theory, eliminating the need for costly periodic DFT calculations, while providing access to all families of exchange–corelation functionals and post-Hartree–Fock methods. The trained model exhibits remarkable accuracy in predicting lattice energies, aligning closely with those computed by plane-wave based DFT methods, thus representing significant cost reductions. Furthermore, the Allegro network was seamlessly integrated with the USPEX framework, accelerating the discovery of low-energy crystal structures during crystal structure prediction.
Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the utility of these networks to the prediction of crystal structures consisting of organic molecules. Traditional methods for computing crystal structure properties, such as plane-wave quantum chemical methods based on density functional theory (DFT), are prohibitively resource-intensive, often necessitating compromises in accuracy and the choice of exchange-correlation functional. We present an approach that leverages the efficiency, and transferability of equivariant neural networks, specifically Allegro, to predict molecular crystal structure energies at a reduced computational cost. Our neural network is trained on molecular clusters using a highly accurate Gaussian-type orbital (GTO)-based method as the target level of theory, eliminating the need for costly periodic DFT calculations, while providing access to all families of exchange-corelation functionals and post-Hartree-Fock methods. The trained model exhibits remarkable accuracy in predicting lattice energies, aligning closely with those computed by plane-wave based DFT methods, thus representing significant cost reductions. Furthermore, the Allegro network was seamlessly integrated with the USPEX framework, accelerating the discovery of low-energy crystal structures during crystal structure prediction.Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the utility of these networks to the prediction of crystal structures consisting of organic molecules. Traditional methods for computing crystal structure properties, such as plane-wave quantum chemical methods based on density functional theory (DFT), are prohibitively resource-intensive, often necessitating compromises in accuracy and the choice of exchange-correlation functional. We present an approach that leverages the efficiency, and transferability of equivariant neural networks, specifically Allegro, to predict molecular crystal structure energies at a reduced computational cost. Our neural network is trained on molecular clusters using a highly accurate Gaussian-type orbital (GTO)-based method as the target level of theory, eliminating the need for costly periodic DFT calculations, while providing access to all families of exchange-corelation functionals and post-Hartree-Fock methods. The trained model exhibits remarkable accuracy in predicting lattice energies, aligning closely with those computed by plane-wave based DFT methods, thus representing significant cost reductions. Furthermore, the Allegro network was seamlessly integrated with the USPEX framework, accelerating the discovery of low-energy crystal structures during crystal structure prediction.
Author Gupta, Ankur K.
Stulajter, Miko M.
Shaidu, Yusuf
de Jong, Wibe A.
Neaton, Jeffrey B.
AuthorAffiliation Kavli Energy NanoSciences Institute at Berkeley
Lawrence Berkeley National Laboratory
Applied Mathematics and Computational Research Division
Materials Sciences Division
Department of Physics
AuthorAffiliation_xml – name: Applied Mathematics and Computational Research Division
– name: Department of Physics
– name: Lawrence Berkeley National Laboratory
– name: Kavli Energy NanoSciences Institute at Berkeley
– name: Materials Sciences Division
Author_xml – sequence: 1
  givenname: Ankur K.
  orcidid: 0000-0002-3128-9535
  surname: Gupta
  fullname: Gupta, Ankur K.
  email: ankur@lbl.gov
  organization: Applied Mathematics and Computational Research Division
– sequence: 2
  givenname: Miko M.
  orcidid: 0000-0003-0939-1055
  surname: Stulajter
  fullname: Stulajter, Miko M.
  organization: Applied Mathematics and Computational Research Division
– sequence: 3
  givenname: Yusuf
  orcidid: 0000-0001-9378-3910
  surname: Shaidu
  fullname: Shaidu, Yusuf
  organization: Lawrence Berkeley National Laboratory
– sequence: 4
  givenname: Jeffrey B.
  surname: Neaton
  fullname: Neaton, Jeffrey B.
  organization: Kavli Energy NanoSciences Institute at Berkeley
– sequence: 5
  givenname: Wibe A.
  orcidid: 0000-0002-7114-8315
  surname: de Jong
  fullname: de Jong, Wibe A.
  email: wadejong@lbl.gov
  organization: Applied Mathematics and Computational Research Division
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39346862$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2440755$$D View this record in Osti.gov
BookMark eNp1kktv1DAUhSNURB90zwpFrFh0il9JnBWqRgNUGh4Luracm-uph4zd2k7R8OvxkGk1XbCy5XvOd6_tc1ocOe-wKN5QckkJox80RL_Blb4UQBrBxYvihImGzCgX_Ohgf1ycx7gmhNBaMsnqV8Uxb7moZc1OirC4H-2DDla7VH7DMeghL-m3D79ieZPsYP9Ytyq_-gFhHHQo58MYE4ZYGh_KK4DsSHhYD9uYMmSpU7KA5cJhWG3LHwF7C8l6F18XL40eIp7v17Pi5tPi5_zLbPn98_X8ajnTgpI0M0aQSoLpRdPWzECelxDsoOkaI9oOZCcrUiP2ghmJbW2o7jnTgLQzrGacnxXXE7f3eq3ugt3osFVeW_XvwIeV0iHPOKDqwZCeaMl1m7vqXhpmWjSEVayDnteZ9XFi3Y3dBntAl_JLPYM-rzh7q1b-QVEqWCVplQnvJoKPyaoINiHcgncOISkmBGmqnej9vk3w9yPGpDY2Ag6DdujHqDillBFRyZ2UTFIIPsaA5mkYStQuH-oxH2qfj2x5e3iJJ8NjGrLgYhJkq1r7Mbj8P__n_QXAccw3
Cites_doi 10.1039/c2cp23949c
10.1021/acs.jctc.7b00118
10.1146/annurev-chembioeng-060718-030256
10.1021/ct800237n
10.48550/arXiv.2401.00096
10.1063/1.4939030
10.1002/wcms.1493
10.1021/acs.chemrev.6b00173
10.1038/186031a0
10.1107/S0108768100004584
10.1103/PhysRevLett.98.146401
10.1016/j.jcp.2014.12.018
10.1021/acs.jctc.9b00038
10.1021/acsmaterialslett.1c00013
10.1063/5.0088027
10.1137/15M1054183
10.48550/arXiv.1606.08415
10.1007/978-3-031-32041-5_12
10.1073/pnas.2111769119
10.1021/acs.cgd.8b00704
10.1073/pnas.2205221119
10.1039/D1MA00360G
10.1103/PhysRevA.38.3098
10.1103/PhysRevB.34.4405
10.1063/1.5090222
10.1063/1.5143190
10.1088/1361-648X/aa8f79
10.1016/j.chempr.2019.08.019
10.1021/acs.jctc.3c00407
10.1126/sciadv.abo6849
10.1039/C9CP06869D
10.1023/A:1011052932607
10.1016/j.cpc.2018.09.016
10.1016/j.micromeso.2023.112495
10.1021/acs.chemrev.5b00648
10.1145/3581784.3627041
10.1039/C8FD90033G
10.1016/j.cpc.2021.108171
10.1103/PhysRevB.76.115203
10.1107/S0108270104017706
10.1088/0953-8984/21/39/395502
10.1039/b515623h
10.1107/S0108768112017466
10.1021/acs.chemrestox.3c00032
10.1021/acs.accounts.0c00060
10.1038/s41467-023-36329-y
10.1002/ange.201703028
10.1063/1.3382344
10.1063/1.462066
10.1103/PhysRevB.80.085201
10.1016/j.cpc.2006.07.020
10.1146/annurev-chembioeng-092120-023936
10.1016/j.commatsci.2014.07.043
10.1039/D3SC03903J
10.1021/jacs.7b05858
10.1016/j.xinn.2023.100562
10.1021/acs.jctc.6b00913
10.1126/science.1176731
10.1016/j.addr.2003.10.011
10.1021/acs.jctc.8b01176
10.1002/wcms.1606
10.1002/jcc.10318
10.1021/acsomega.2c03385
10.1039/D0SC05765G
10.1103/PhysRevB.13.5188
10.1103/PhysRevB.99.014104
10.1103/PhysRevLett.104.136403
10.1063/5.0155322
10.1039/b508541a
10.1021/acs.jctc.9b00181
10.1103/PhysRevLett.120.143001
10.1016/j.chemphys.2008.10.036
10.1002/jcc.21759
10.1039/C5CS00227C
10.1021/ja303676q
10.1063/1.4945444
10.1038/s41467-022-30692-y
10.1016/j.advmem.2022.100028
10.1063/1.476307
10.1021/op000023y
10.1021/acscentsci.2c01196
10.1038/s41467-019-10575-5
10.1063/1.4926879
10.1063/1.5019779
10.1021/jacs.5b05644
10.1103/PhysRevB.37.785
10.1021/acs.jctc.5b00509
10.1063/1.4979993
10.1021/acs.jctc.9b01241
10.1039/C9SC05689K
10.1021/jz101383z
10.1038/s41467-022-29939-5
10.1039/C8CS00155C
10.48550/arXiv.1412.6980
10.1103/PhysRevB.50.17953
10.1107/s2052520616007447
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society.
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society.
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID N~.
NPM
AAYXX
CITATION
7X8
OTOTI
5PM
DOA
DOI 10.1021/acsomega.4c07434
DatabaseName American Chemical Society (ACS) Open Access
PubMed
CrossRef
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 40282
ExternalDocumentID oai_doaj_org_article_dcf0d0a83a9f40ad8f2f9ef0252bcd36
2440755
10_1021_acsomega_4c07434
39346862
c697671770
Genre Journal Article
GroupedDBID 53G
AAFWJ
AAHBH
ABUCX
ACS
ADBBV
AFEFF
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
GROUPED_DOAJ
HYE
M~E
N~.
OK1
RPM
VF5
NPM
AAYXX
CITATION
7X8
OTOTI
5PM
ID FETCH-LOGICAL-a410t-ff4058cfd47962fc68600ebc7b7f49bc8b8506eed42f8e96f1ad32ace1bf26233
IEDL.DBID RPM
ISSN 2470-1343
IngestDate Tue Oct 22 15:09:44 EDT 2024
Sat Sep 28 05:38:36 EDT 2024
Mon Nov 18 02:22:34 EST 2024
Sat Oct 26 02:25:04 EDT 2024
Wed Sep 25 14:11:28 EDT 2024
Sat Nov 02 12:15:16 EDT 2024
Wed Sep 25 08:57:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
License 2024 The Authors. Published by American Chemical Society.
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a410t-ff4058cfd47962fc68600ebc7b7f49bc8b8506eed42f8e96f1ad32ace1bf26233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE)
USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC02-05CH11231; SC0019992
ORCID 0000-0001-9378-3910
0000-0002-7114-8315
0000-0003-0939-1055
0000-0002-3128-9535
0000000271148315
0000000309391055
0000000193783910
0000000231289535
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425815/
PMID 39346862
PQID 3111204585
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_dcf0d0a83a9f40ad8f2f9ef0252bcd36
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11425815
osti_scitechconnect_2440755
proquest_miscellaneous_3111204585
crossref_primary_10_1021_acsomega_4c07434
pubmed_primary_39346862
acs_journals_10_1021_acsomega_4c07434
PublicationCentury 2000
PublicationDate 2024-09-11
PublicationDateYYYYMMDD 2024-09-11
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2024
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref13/cit13
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref44/cit44
ref70/cit70
ref9/cit9
Hilfiker R. (ref4/cit4) 2019
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref51/cit51
ref40/cit40
Batatia I. (ref57/cit57) 2022; 35
ref68/cit68
ref94/cit94
Paszke A. (ref98/cit98) 2019; 32
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref38/cit38
  doi: 10.1039/c2cp23949c
– ident: ref74/cit74
  doi: 10.1021/acs.jctc.7b00118
– ident: ref25/cit25
  doi: 10.1146/annurev-chembioeng-060718-030256
– ident: ref99/cit99
  doi: 10.1021/ct800237n
– ident: ref103/cit103
  doi: 10.48550/arXiv.2401.00096
– ident: ref34/cit34
  doi: 10.1063/1.4939030
– ident: ref62/cit62
  doi: 10.1002/wcms.1493
– ident: ref47/cit47
  doi: 10.1021/acs.chemrev.6b00173
– ident: ref7/cit7
  doi: 10.1038/186031a0
– ident: ref53/cit53
  doi: 10.1107/S0108768100004584
– ident: ref87/cit87
  doi: 10.1103/PhysRevLett.98.146401
– ident: ref90/cit90
  doi: 10.1016/j.jcp.2014.12.018
– ident: ref40/cit40
  doi: 10.1021/acs.jctc.9b00038
– ident: ref17/cit17
  doi: 10.1021/acsmaterialslett.1c00013
– ident: ref37/cit37
  doi: 10.1063/5.0088027
– ident: ref92/cit92
  doi: 10.1137/15M1054183
– ident: ref96/cit96
  doi: 10.48550/arXiv.1606.08415
– ident: ref93/cit93
  doi: 10.1007/978-3-031-32041-5_12
– ident: ref24/cit24
  doi: 10.1073/pnas.2111769119
– ident: ref6/cit6
  doi: 10.1021/acs.cgd.8b00704
– ident: ref83/cit83
  doi: 10.1073/pnas.2205221119
– ident: ref45/cit45
  doi: 10.1039/D1MA00360G
– ident: ref67/cit67
  doi: 10.1103/PhysRevA.38.3098
– ident: ref26/cit26
  doi: 10.1103/PhysRevB.34.4405
– ident: ref70/cit70
  doi: 10.1063/1.5090222
– ident: ref73/cit73
  doi: 10.1063/1.5143190
– ident: ref79/cit79
  doi: 10.1088/1361-648X/aa8f79
– ident: ref10/cit10
  doi: 10.1016/j.chempr.2019.08.019
– ident: ref28/cit28
  doi: 10.1021/acs.jctc.3c00407
– ident: ref82/cit82
– ident: ref51/cit51
  doi: 10.1126/sciadv.abo6849
– ident: ref60/cit60
  doi: 10.1039/C9CP06869D
– ident: ref2/cit2
  doi: 10.1023/A:1011052932607
– ident: ref75/cit75
  doi: 10.1016/j.cpc.2018.09.016
– volume: 32
  volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: ref98/cit98
  contributor:
    fullname: Paszke A.
– ident: ref15/cit15
  doi: 10.1016/j.micromeso.2023.112495
– ident: ref39/cit39
  doi: 10.1021/acs.chemrev.5b00648
– ident: ref95/cit95
  doi: 10.1145/3581784.3627041
– ident: ref23/cit23
  doi: 10.1039/C8FD90033G
– ident: ref102/cit102
  doi: 10.1016/j.cpc.2021.108171
– ident: ref8/cit8
  doi: 10.1103/PhysRevB.76.115203
– ident: ref54/cit54
  doi: 10.1107/S0108270104017706
– ident: ref78/cit78
  doi: 10.1088/0953-8984/21/39/395502
– ident: ref66/cit66
  doi: 10.1039/b515623h
– ident: ref76/cit76
  doi: 10.1107/S0108768112017466
– volume: 35
  start-page: 11423
  volume-title: Advances in Neural Information Processing Systems
  year: 2022
  ident: ref57/cit57
  contributor:
    fullname: Batatia I.
– ident: ref59/cit59
  doi: 10.1021/acs.chemrestox.3c00032
– ident: ref9/cit9
  doi: 10.1021/acs.accounts.0c00060
– ident: ref56/cit56
  doi: 10.1038/s41467-023-36329-y
– ident: ref5/cit5
  doi: 10.1002/ange.201703028
– ident: ref64/cit64
  doi: 10.1063/1.3382344
– ident: ref68/cit68
  doi: 10.1063/1.462066
– ident: ref11/cit11
  doi: 10.1103/PhysRevB.80.085201
– ident: ref72/cit72
  doi: 10.1016/j.cpc.2006.07.020
– ident: ref48/cit48
  doi: 10.1146/annurev-chembioeng-092120-023936
– ident: ref81/cit81
  doi: 10.1016/j.commatsci.2014.07.043
– ident: ref19/cit19
  doi: 10.1039/D3SC03903J
– ident: ref50/cit50
  doi: 10.1021/jacs.7b05858
– ident: ref21/cit21
  doi: 10.1016/j.xinn.2023.100562
– ident: ref42/cit42
  doi: 10.1021/acs.jctc.6b00913
– ident: ref49/cit49
  doi: 10.1126/science.1176731
– ident: ref3/cit3
  doi: 10.1016/j.addr.2003.10.011
– ident: ref61/cit61
  doi: 10.1021/acs.jctc.8b01176
– ident: ref71/cit71
  doi: 10.1002/wcms.1606
– ident: ref29/cit29
  doi: 10.1002/jcc.10318
– ident: ref46/cit46
  doi: 10.1021/acsomega.2c03385
– volume-title: Polymorphism in the Pharmaceutical Industry: Solid Form and Drug Development
  year: 2019
  ident: ref4/cit4
  contributor:
    fullname: Hilfiker R.
– ident: ref41/cit41
  doi: 10.1039/D0SC05765G
– ident: ref80/cit80
  doi: 10.1103/PhysRevB.13.5188
– ident: ref88/cit88
  doi: 10.1103/PhysRevB.99.014104
– ident: ref89/cit89
  doi: 10.1103/PhysRevLett.104.136403
– ident: ref58/cit58
  doi: 10.1063/5.0155322
– ident: ref94/cit94
  doi: 10.1145/3581784.3627041
– ident: ref65/cit65
  doi: 10.1039/b508541a
– ident: ref85/cit85
  doi: 10.1021/acs.jctc.9b00181
– ident: ref91/cit91
  doi: 10.1103/PhysRevLett.120.143001
– ident: ref30/cit30
  doi: 10.1016/j.chemphys.2008.10.036
– ident: ref63/cit63
  doi: 10.1002/jcc.21759
– ident: ref22/cit22
  doi: 10.1039/C5CS00227C
– ident: ref101/cit101
  doi: 10.1021/ja303676q
– ident: ref31/cit31
  doi: 10.1063/1.4945444
– ident: ref44/cit44
  doi: 10.1038/s41467-022-30692-y
– ident: ref12/cit12
  doi: 10.1016/j.advmem.2022.100028
– ident: ref27/cit27
  doi: 10.1063/1.476307
– ident: ref1/cit1
  doi: 10.1021/op000023y
– ident: ref13/cit13
  doi: 10.1021/acscentsci.2c01196
– ident: ref16/cit16
  doi: 10.1038/s41467-019-10575-5
– ident: ref33/cit33
  doi: 10.1063/1.4926879
– ident: ref86/cit86
  doi: 10.1063/1.5019779
– ident: ref18/cit18
  doi: 10.1021/jacs.5b05644
– ident: ref69/cit69
  doi: 10.1103/PhysRevB.37.785
– ident: ref84/cit84
– ident: ref100/cit100
  doi: 10.1021/acs.jctc.5b00509
– ident: ref32/cit32
  doi: 10.1063/1.4979993
– ident: ref43/cit43
  doi: 10.1021/acs.jctc.9b01241
– ident: ref35/cit35
  doi: 10.1039/C9SC05689K
– ident: ref36/cit36
  doi: 10.1021/jz101383z
– ident: ref55/cit55
  doi: 10.1038/s41467-022-29939-5
– ident: ref14/cit14
  doi: 10.1039/C8CS00155C
– ident: ref97/cit97
  doi: 10.48550/arXiv.1412.6980
– ident: ref52/cit52
– ident: ref77/cit77
  doi: 10.1103/PhysRevB.50.17953
– ident: ref20/cit20
  doi: 10.1107/s2052520616007447
SSID ssj0001682826
Score 2.3188627
Snippet Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency...
Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency...
SourceID doaj
pubmedcentral
osti
proquest
crossref
pubmed
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 40269
SubjectTerms crystal structure
crystals
energy
lattices
molecular structure
SummonAdditionalLinks – databaseName: American Chemical Society
  dbid: ACS
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoOcCF9yMUkJHgwCEQP5I4x7Js1QNUSKUSN8sZ27DSkoVNggS_nplsUnarCsEpkj2KnPFM5rNn_Jmx5xJ0rEKo08x7n2ohAH1OurTEZjIaxMy04XZ8Wp58Mm_n2zQ5FzP4Urx20K6-hs_ulQYKd3qPXZUlAgWCQbPTP_spBa4dhtvVpC6zVCitxqzkZS-hWATtTiwaKPvxsULXugxuXqya3ApDRzf_5wNusRsj2OSHG-u4za6E5g67NpvueLvL1vPv_eIHLpdRv5x4OlD6ZFMY3vKzbrFc_MLQxt9Pd-jy2bInZoWWI9blhwA9MU1s969_Itxc8neuo6o6Ph-OFvIPa8oHDSZ-j50dzT_OjtPxFobUaZF1aYyI6QxEr8uqkBEKgxgp1FDWZdRVDaYm0jsMtVpGE6oiCueVdBBEHSWCK3Wf7TerJjxkvAAocOFbakCYVkptiihxPQP4o5M6z1XCXqCy7OhFrR0S5FLYSYN21GDCXk7zZr9tSDn-IvuGJvZcjui0hwacIjt6p_UQM585o1yFX-u8iRItOCIelDV4VSTsgMzCIiohal2gGiToLEIjRFx5wp5N1mJx_ijj4pqw6lurMJIQ379BmQcb6zkfiKqUpuM5CTM7drUz0t2eZvFlIACn88-5Efmjf9TXAbsuEYtRmYsQj9l-t-7DE7bX-v7p4ES_AWZNGn0
  priority: 102
  providerName: American Chemical Society
– databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgl3JBQAuEAjISPXAIjR0ncY5l2aoHqJDaStwsZ2zDSksWNgkS_Hpm8rHaRYheeopkW5HjGee9scfPjL2WoELpfRUnzrlYCQE456SNCywmp0HOTAtu55fFxWf9fk4yOZurvignbJAHHgbuxEFIXGJ1asugEut0kPjygFAtK3DpILad5FvBVL-6kmMkIad9ScSxEwvN6pv_Yt8qINRUhEbQ7KBRL9qPjxVOrn8Rzr_zJreA6OwBuz8ySH469Pwhu-PrR2x_Nl3cdsDW8x_d4ifGwDhonMQ3sPXFkO3d8Ot2sVz8RrziH6eLcfls2ZFcQsORwPJTgI7kI7br17-QQy75B9tSqhyf9-cF-ac1bfL0fnvIrs_mV7PzeLxaIbZKJG0ccCwzDcGposxlgFwj8fEVFFURVFmBrkjJDvFTyaB9mQdhXSoteFEFiYwpfcz26lXtnzKeA-QYzRYKkHsVUuk8SAxSAP9eUmVZGrFjHGgzTo3G9LveUpjJIGY0SMTeTKYw3weljf-0fUe22rQjjey-AD3HjJ5jbvKciB2RpQ1SDdLLBUosgtYg30EalUXs1eQABu1H2yi29quuMSnCA4n4a2zzZHCITUfSMlV05iZiesdVdnq6W1Mvvvaq3nSoOdMie3Yb33bE7klkX5TYIsRztteuO_-C3W1c97KfKH8AB9AcNw
  priority: 102
  providerName: Directory of Open Access Journals
Title Equivariant Neural Networks Utilizing Molecular Clusters for Accurate Molecular Crystal Lattice Energy Predictions
URI http://dx.doi.org/10.1021/acsomega.4c07434
https://www.ncbi.nlm.nih.gov/pubmed/39346862
https://www.proquest.com/docview/3111204585
https://www.osti.gov/biblio/2440755
https://pubmed.ncbi.nlm.nih.gov/PMC11425815
https://doaj.org/article/dcf0d0a83a9f40ad8f2f9ef0252bcd36
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXYXuCC-CYUVkaCA4fsbhwncY4lbNUDrSqVStwsZxKXSLtJyQcS_HpmvEm1ixAHTpFsR3I8z5k39viZsXcCpE3LMvdXRVH4MggA55wwfoLFBBrkzLTgdnaVXHxVn9YkkxNPZ2Fc0j7k1aLebBd19c3lVt5uYTnliS0vzzM6_xmpIFrO2AzJ4V6M7lZWYowixLQniT5saaBrtuWNWUggjynJE0F34ImcYD8-GpxYfyObf-ZM7jmh00fs4cge-cmul4_ZvbJ-wu5n06VtT1m7_j5UPzD-xQHjJLyBrS92md4dv-6rTfULfRU_ny7F5dlmIKmEjiN55ScAA0lH7Ne3P5E_bvhn01OaHF-7s4L8sqUNHofZZ-z6dP0lO_PHaxV8I4NV71uLJE2BLWSSxsJCrJD0lDkkeWJlmoPKScUOfacUVpVpbANThMJAGeRWIFsKn7OjuqnLl4zHADFGsokE5F2JkCq2AgMUwD-XkFEUeuw9DrQep0Wn3Y63CPRkED0axGMfJlPo253Kxj_afiRb3bUjfWxX0LQ3ekSJLsCuipVRoUnxa02hrEBIWiR4IocijD12TJbWSDNIKxcoqQh6jVwHKVTksbcTADTaj7ZQTF02Q6dDdA0k4K-wzYsdIO46EqahpPM2HlMHUDno6WENAtwpek-AfvX_rx6zBwL5FqWyBMFrdtS3Q_mGzbpimGO8kF3N3WrD3E2V3zkNG7w
link.rule.ids 230,315,729,782,786,866,887,2106,2769,27085,27933,27934,53800,53802,56747,56797
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj5swELW628P20u9u6fbDldpDDyRgDJjjNs0qVZNope5KvVlmwFukBLYBKrW_vjMEVklV9bAnJGwkm3nDvMHjZ8beCZA2yfPU9bIsc6XvA_qcMG6Mtwk0yJnph9vsa7z8pj5NSSYnGvbCdEX7kBajcrUelcX3rrbyeg3joU5sfL6Y0P7PUPnh-IDdRYf1vJ0svfu3EmEeIYZVSYxiYwN1tc6vzEgCxUxJsQjqvVjUSfbjpULX-hfd_LtqcicMnT247QQesvs98eSn2_ZH7E5ePmZHk-G8tydsM_3RFj8xdcZ3zUmzA3svt0XiNb9silXxG8McXwzn6fLJqiWVhZoj7-WnAC2pTuy2b34h9VzxuWmowo5Pu22G_HxDa0Md3J-yy7PpxWTm9icyuEb6XuNai_xOgc1knETCQqSQL-UpxGlsZZKCSkkAD8OuFFblSWR9kwXCQO6nViDRCp6xw7Iq8-eMRwARJsGxBKRssZAqsgJzG8CPnpBhGDjsPVpI9x5V626xXPh6sKTuLemwD4MN9fVWoOM_fT-SkW_6kbR2d6PaXOnePjoD62WeUYFJcLYmU1Ygmi1yQ5FCFkQOOyGIaGQoJLMLVI8EjUaahOwrdNjbATka7UerL6bMq7bWAUYV0v5X2Od4i6SbgQRJIGmrjsPUHsb2RrrfgtDqxMAHKL24_aNv2NHsYjHX88_LLyfsnkDaRhUxvv-SHTabNn_FDuqsfd352B-PCy-D
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYRQIuvB9heRgJDhzSJI6bONyWbqtF7FaVYCVuljOOl0htUpoGCX49M2mzahHiAKdIyURKMt9kvrHHnxl7LUC6rChyP7TW-jKKAGNOGD_F0wQa5Mw04Hb6KZ1-USdjksl516-F6Zr2IS8H1XwxqMqvXW_lcgFB3ycWzM5HtP5zqKJhsLQuOGDXMWhDsVOpd-MrCdYSop-ZxEwWGGjqRXFpBhIob0rKR9Ds5aNOth8PNYbXnyjn752TO6locud_XuIuu70loPx4Y3OPXSuq--zmqN_37QFbjb-15XcsofGbc9LuQOvpplm84Rfrcl7-xHTHz_t9dflo3pLaQsOR__JjgJbUJ3avr34gBZ3zM7OmTjs-7pYb8tmK5og62D9kF5Px59Gpv92ZwTcyCte-c8jzFDgr0ywRDhKFvKnIIc1TJ7McVE5CeJh-pXCqyBIXGRsLA0WUO4GEK37EDqu6Kp4wngAkWAynEpC6pUKqxAmscQB_fkIOh7HH3qCX9DayGt1NmotI997UW2967G3vR73cCHX8xfY9OfrKjiS2uxP16lJvfaQtuNCGRsUmw7c1VjmBqHbIEUUONk48dkQw0chUSG4XqC8J1hrpErKwocde9ejR6D-ahTFVUbeNjjG70B4ACm0eb9B09SBxFktasuMxtYezvSfdv4Lw6kTBezg9_fdbX7Ibs5OJPvsw_XjEbglkb9QYE0XP2OF61RbP2UFj2xddmP0C7mkyAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equivariant+Neural+Networks+Utilizing+Molecular+Clusters+for+Accurate+Molecular+Crystal+Lattice+Energy+Predictions&rft.jtitle=ACS+omega&rft.au=Gupta%2C+Ankur+K&rft.au=Stulajter%2C+Miko+M&rft.au=Shaidu%2C+Yusuf&rft.au=Neaton%2C+Jeffrey+B&rft.date=2024-09-11&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=9&rft.issue=38&rft.spage=40269&rft_id=info:doi/10.1021%2Facsomega.4c07434&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon