Equivariant Neural Networks Utilizing Molecular Clusters for Accurate Molecular Crystal Lattice Energy Predictions
Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the utility of these networks to the prediction of crystal struct...
Saved in:
Published in: | ACS omega Vol. 9; no. 38; pp. 40269 - 40282 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
11-09-2024
American Chemical Society (ACS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the utility of these networks to the prediction of crystal structures consisting of organic molecules. Traditional methods for computing crystal structure properties, such as plane-wave quantum chemical methods based on density functional theory (DFT), are prohibitively resource-intensive, often necessitating compromises in accuracy and the choice of exchange–correlation functional. We present an approach that leverages the efficiency, and transferability of equivariant neural networks, specifically Allegro, to predict molecular crystal structure energies at a reduced computational cost. Our neural network is trained on molecular clusters using a highly accurate Gaussian-type orbital (GTO)-based method as the target level of theory, eliminating the need for costly periodic DFT calculations, while providing access to all families of exchange–corelation functionals and post-Hartree–Fock methods. The trained model exhibits remarkable accuracy in predicting lattice energies, aligning closely with those computed by plane-wave based DFT methods, thus representing significant cost reductions. Furthermore, the Allegro network was seamlessly integrated with the USPEX framework, accelerating the discovery of low-energy crystal structures during crystal structure prediction. |
---|---|
AbstractList | Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the utility of these networks to the prediction of crystal structures consisting of organic molecules. Traditional methods for computing crystal structure properties, such as plane-wave quantum chemical methods based on density functional theory (DFT), are prohibitively resource-intensive, often necessitating compromises in accuracy and the choice of exchange–correlation functional. We present an approach that leverages the efficiency, and transferability of equivariant neural networks, specifically Allegro, to predict molecular crystal structure energies at a reduced computational cost. Our neural network is trained on molecular clusters using a highly accurate Gaussian-type orbital (GTO)-based method as the target level of theory, eliminating the need for costly periodic DFT calculations, while providing access to all families of exchange–corelation functionals and post-Hartree–Fock methods. The trained model exhibits remarkable accuracy in predicting lattice energies, aligning closely with those computed by plane-wave based DFT methods, thus representing significant cost reductions. Furthermore, the Allegro network was seamlessly integrated with the USPEX framework, accelerating the discovery of low-energy crystal structures during crystal structure prediction. Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the utility of these networks to the prediction of crystal structures consisting of organic molecules. Traditional methods for computing crystal structure properties, such as plane-wave quantum chemical methods based on density functional theory (DFT), are prohibitively resource-intensive, often necessitating compromises in accuracy and the choice of exchange–correlation functional. We present an approach that leverages the efficiency, and transferability of equivariant neural networks, specifically Allegro, to predict molecular crystal structure energies at a reduced computational cost. Our neural network is trained on molecular clusters using a highly accurate Gaussian-type orbital (GTO)-based method as the target level of theory, eliminating the need for costly periodic DFT calculations, while providing access to all families of exchange–corelation functionals and post-Hartree–Fock methods. The trained model exhibits remarkable accuracy in predicting lattice energies, aligning closely with those computed by plane-wave based DFT methods, thus representing significant cost reductions. Furthermore, the Allegro network was seamlessly integrated with the USPEX framework, accelerating the discovery of low-energy crystal structures during crystal structure prediction. Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the utility of these networks to the prediction of crystal structures consisting of organic molecules. Traditional methods for computing crystal structure properties, such as plane-wave quantum chemical methods based on density functional theory (DFT), are prohibitively resource-intensive, often necessitating compromises in accuracy and the choice of exchange-correlation functional. We present an approach that leverages the efficiency, and transferability of equivariant neural networks, specifically Allegro, to predict molecular crystal structure energies at a reduced computational cost. Our neural network is trained on molecular clusters using a highly accurate Gaussian-type orbital (GTO)-based method as the target level of theory, eliminating the need for costly periodic DFT calculations, while providing access to all families of exchange-corelation functionals and post-Hartree-Fock methods. The trained model exhibits remarkable accuracy in predicting lattice energies, aligning closely with those computed by plane-wave based DFT methods, thus representing significant cost reductions. Furthermore, the Allegro network was seamlessly integrated with the USPEX framework, accelerating the discovery of low-energy crystal structures during crystal structure prediction.Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the utility of these networks to the prediction of crystal structures consisting of organic molecules. Traditional methods for computing crystal structure properties, such as plane-wave quantum chemical methods based on density functional theory (DFT), are prohibitively resource-intensive, often necessitating compromises in accuracy and the choice of exchange-correlation functional. We present an approach that leverages the efficiency, and transferability of equivariant neural networks, specifically Allegro, to predict molecular crystal structure energies at a reduced computational cost. Our neural network is trained on molecular clusters using a highly accurate Gaussian-type orbital (GTO)-based method as the target level of theory, eliminating the need for costly periodic DFT calculations, while providing access to all families of exchange-corelation functionals and post-Hartree-Fock methods. The trained model exhibits remarkable accuracy in predicting lattice energies, aligning closely with those computed by plane-wave based DFT methods, thus representing significant cost reductions. Furthermore, the Allegro network was seamlessly integrated with the USPEX framework, accelerating the discovery of low-energy crystal structures during crystal structure prediction. |
Author | Gupta, Ankur K. Stulajter, Miko M. Shaidu, Yusuf de Jong, Wibe A. Neaton, Jeffrey B. |
AuthorAffiliation | Kavli Energy NanoSciences Institute at Berkeley Lawrence Berkeley National Laboratory Applied Mathematics and Computational Research Division Materials Sciences Division Department of Physics |
AuthorAffiliation_xml | – name: Applied Mathematics and Computational Research Division – name: Department of Physics – name: Lawrence Berkeley National Laboratory – name: Kavli Energy NanoSciences Institute at Berkeley – name: Materials Sciences Division |
Author_xml | – sequence: 1 givenname: Ankur K. orcidid: 0000-0002-3128-9535 surname: Gupta fullname: Gupta, Ankur K. email: ankur@lbl.gov organization: Applied Mathematics and Computational Research Division – sequence: 2 givenname: Miko M. orcidid: 0000-0003-0939-1055 surname: Stulajter fullname: Stulajter, Miko M. organization: Applied Mathematics and Computational Research Division – sequence: 3 givenname: Yusuf orcidid: 0000-0001-9378-3910 surname: Shaidu fullname: Shaidu, Yusuf organization: Lawrence Berkeley National Laboratory – sequence: 4 givenname: Jeffrey B. surname: Neaton fullname: Neaton, Jeffrey B. organization: Kavli Energy NanoSciences Institute at Berkeley – sequence: 5 givenname: Wibe A. orcidid: 0000-0002-7114-8315 surname: de Jong fullname: de Jong, Wibe A. email: wadejong@lbl.gov organization: Applied Mathematics and Computational Research Division |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39346862$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2440755$$D View this record in Osti.gov |
BookMark | eNp1kktv1DAUhSNURB90zwpFrFh0il9JnBWqRgNUGh4Luracm-uph4zd2k7R8OvxkGk1XbCy5XvOd6_tc1ocOe-wKN5QckkJox80RL_Blb4UQBrBxYvihImGzCgX_Ohgf1ycx7gmhNBaMsnqV8Uxb7moZc1OirC4H-2DDla7VH7DMeghL-m3D79ieZPsYP9Ytyq_-gFhHHQo58MYE4ZYGh_KK4DsSHhYD9uYMmSpU7KA5cJhWG3LHwF7C8l6F18XL40eIp7v17Pi5tPi5_zLbPn98_X8ajnTgpI0M0aQSoLpRdPWzECelxDsoOkaI9oOZCcrUiP2ghmJbW2o7jnTgLQzrGacnxXXE7f3eq3ugt3osFVeW_XvwIeV0iHPOKDqwZCeaMl1m7vqXhpmWjSEVayDnteZ9XFi3Y3dBntAl_JLPYM-rzh7q1b-QVEqWCVplQnvJoKPyaoINiHcgncOISkmBGmqnej9vk3w9yPGpDY2Ag6DdujHqDillBFRyZ2UTFIIPsaA5mkYStQuH-oxH2qfj2x5e3iJJ8NjGrLgYhJkq1r7Mbj8P__n_QXAccw3 |
Cites_doi | 10.1039/c2cp23949c 10.1021/acs.jctc.7b00118 10.1146/annurev-chembioeng-060718-030256 10.1021/ct800237n 10.48550/arXiv.2401.00096 10.1063/1.4939030 10.1002/wcms.1493 10.1021/acs.chemrev.6b00173 10.1038/186031a0 10.1107/S0108768100004584 10.1103/PhysRevLett.98.146401 10.1016/j.jcp.2014.12.018 10.1021/acs.jctc.9b00038 10.1021/acsmaterialslett.1c00013 10.1063/5.0088027 10.1137/15M1054183 10.48550/arXiv.1606.08415 10.1007/978-3-031-32041-5_12 10.1073/pnas.2111769119 10.1021/acs.cgd.8b00704 10.1073/pnas.2205221119 10.1039/D1MA00360G 10.1103/PhysRevA.38.3098 10.1103/PhysRevB.34.4405 10.1063/1.5090222 10.1063/1.5143190 10.1088/1361-648X/aa8f79 10.1016/j.chempr.2019.08.019 10.1021/acs.jctc.3c00407 10.1126/sciadv.abo6849 10.1039/C9CP06869D 10.1023/A:1011052932607 10.1016/j.cpc.2018.09.016 10.1016/j.micromeso.2023.112495 10.1021/acs.chemrev.5b00648 10.1145/3581784.3627041 10.1039/C8FD90033G 10.1016/j.cpc.2021.108171 10.1103/PhysRevB.76.115203 10.1107/S0108270104017706 10.1088/0953-8984/21/39/395502 10.1039/b515623h 10.1107/S0108768112017466 10.1021/acs.chemrestox.3c00032 10.1021/acs.accounts.0c00060 10.1038/s41467-023-36329-y 10.1002/ange.201703028 10.1063/1.3382344 10.1063/1.462066 10.1103/PhysRevB.80.085201 10.1016/j.cpc.2006.07.020 10.1146/annurev-chembioeng-092120-023936 10.1016/j.commatsci.2014.07.043 10.1039/D3SC03903J 10.1021/jacs.7b05858 10.1016/j.xinn.2023.100562 10.1021/acs.jctc.6b00913 10.1126/science.1176731 10.1016/j.addr.2003.10.011 10.1021/acs.jctc.8b01176 10.1002/wcms.1606 10.1002/jcc.10318 10.1021/acsomega.2c03385 10.1039/D0SC05765G 10.1103/PhysRevB.13.5188 10.1103/PhysRevB.99.014104 10.1103/PhysRevLett.104.136403 10.1063/5.0155322 10.1039/b508541a 10.1021/acs.jctc.9b00181 10.1103/PhysRevLett.120.143001 10.1016/j.chemphys.2008.10.036 10.1002/jcc.21759 10.1039/C5CS00227C 10.1021/ja303676q 10.1063/1.4945444 10.1038/s41467-022-30692-y 10.1016/j.advmem.2022.100028 10.1063/1.476307 10.1021/op000023y 10.1021/acscentsci.2c01196 10.1038/s41467-019-10575-5 10.1063/1.4926879 10.1063/1.5019779 10.1021/jacs.5b05644 10.1103/PhysRevB.37.785 10.1021/acs.jctc.5b00509 10.1063/1.4979993 10.1021/acs.jctc.9b01241 10.1039/C9SC05689K 10.1021/jz101383z 10.1038/s41467-022-29939-5 10.1039/C8CS00155C 10.48550/arXiv.1412.6980 10.1103/PhysRevB.50.17953 10.1107/s2052520616007447 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Published by American Chemical Society 2024 The Authors. Published by American Chemical Society. 2024 The Authors. Published by American Chemical Society 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society – notice: 2024 The Authors. Published by American Chemical Society. – notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | N~. NPM AAYXX CITATION 7X8 OTOTI 5PM DOA |
DOI | 10.1021/acsomega.4c07434 |
DatabaseName | American Chemical Society (ACS) Open Access PubMed CrossRef MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2470-1343 |
EndPage | 40282 |
ExternalDocumentID | oai_doaj_org_article_dcf0d0a83a9f40ad8f2f9ef0252bcd36 2440755 10_1021_acsomega_4c07434 39346862 c697671770 |
Genre | Journal Article |
GroupedDBID | 53G AAFWJ AAHBH ABUCX ACS ADBBV AFEFF AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBS GROUPED_DOAJ HYE M~E N~. OK1 RPM VF5 NPM AAYXX CITATION 7X8 OTOTI 5PM |
ID | FETCH-LOGICAL-a410t-ff4058cfd47962fc68600ebc7b7f49bc8b8506eed42f8e96f1ad32ace1bf26233 |
IEDL.DBID | RPM |
ISSN | 2470-1343 |
IngestDate | Tue Oct 22 15:09:44 EDT 2024 Sat Sep 28 05:38:36 EDT 2024 Mon Nov 18 02:22:34 EST 2024 Sat Oct 26 02:25:04 EDT 2024 Wed Sep 25 14:11:28 EDT 2024 Sat Nov 02 12:15:16 EDT 2024 Wed Sep 25 08:57:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
License | 2024 The Authors. Published by American Chemical Society. Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a410t-ff4058cfd47962fc68600ebc7b7f49bc8b8506eed42f8e96f1ad32ace1bf26233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE) USDOE Office of Science (SC), Basic Energy Sciences (BES) AC02-05CH11231; SC0019992 |
ORCID | 0000-0001-9378-3910 0000-0002-7114-8315 0000-0003-0939-1055 0000-0002-3128-9535 0000000271148315 0000000309391055 0000000193783910 0000000231289535 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425815/ |
PMID | 39346862 |
PQID | 3111204585 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dcf0d0a83a9f40ad8f2f9ef0252bcd36 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11425815 osti_scitechconnect_2440755 proquest_miscellaneous_3111204585 crossref_primary_10_1021_acsomega_4c07434 pubmed_primary_39346862 acs_journals_10_1021_acsomega_4c07434 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-11 |
PublicationDateYYYYMMDD | 2024-09-11 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS omega |
PublicationTitleAlternate | ACS Omega |
PublicationYear | 2024 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref13/cit13 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref44/cit44 ref70/cit70 ref9/cit9 Hilfiker R. (ref4/cit4) 2019 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref51/cit51 ref40/cit40 Batatia I. (ref57/cit57) 2022; 35 ref68/cit68 ref94/cit94 Paszke A. (ref98/cit98) 2019; 32 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref38/cit38 doi: 10.1039/c2cp23949c – ident: ref74/cit74 doi: 10.1021/acs.jctc.7b00118 – ident: ref25/cit25 doi: 10.1146/annurev-chembioeng-060718-030256 – ident: ref99/cit99 doi: 10.1021/ct800237n – ident: ref103/cit103 doi: 10.48550/arXiv.2401.00096 – ident: ref34/cit34 doi: 10.1063/1.4939030 – ident: ref62/cit62 doi: 10.1002/wcms.1493 – ident: ref47/cit47 doi: 10.1021/acs.chemrev.6b00173 – ident: ref7/cit7 doi: 10.1038/186031a0 – ident: ref53/cit53 doi: 10.1107/S0108768100004584 – ident: ref87/cit87 doi: 10.1103/PhysRevLett.98.146401 – ident: ref90/cit90 doi: 10.1016/j.jcp.2014.12.018 – ident: ref40/cit40 doi: 10.1021/acs.jctc.9b00038 – ident: ref17/cit17 doi: 10.1021/acsmaterialslett.1c00013 – ident: ref37/cit37 doi: 10.1063/5.0088027 – ident: ref92/cit92 doi: 10.1137/15M1054183 – ident: ref96/cit96 doi: 10.48550/arXiv.1606.08415 – ident: ref93/cit93 doi: 10.1007/978-3-031-32041-5_12 – ident: ref24/cit24 doi: 10.1073/pnas.2111769119 – ident: ref6/cit6 doi: 10.1021/acs.cgd.8b00704 – ident: ref83/cit83 doi: 10.1073/pnas.2205221119 – ident: ref45/cit45 doi: 10.1039/D1MA00360G – ident: ref67/cit67 doi: 10.1103/PhysRevA.38.3098 – ident: ref26/cit26 doi: 10.1103/PhysRevB.34.4405 – ident: ref70/cit70 doi: 10.1063/1.5090222 – ident: ref73/cit73 doi: 10.1063/1.5143190 – ident: ref79/cit79 doi: 10.1088/1361-648X/aa8f79 – ident: ref10/cit10 doi: 10.1016/j.chempr.2019.08.019 – ident: ref28/cit28 doi: 10.1021/acs.jctc.3c00407 – ident: ref82/cit82 – ident: ref51/cit51 doi: 10.1126/sciadv.abo6849 – ident: ref60/cit60 doi: 10.1039/C9CP06869D – ident: ref2/cit2 doi: 10.1023/A:1011052932607 – ident: ref75/cit75 doi: 10.1016/j.cpc.2018.09.016 – volume: 32 volume-title: Advances in Neural Information Processing Systems year: 2019 ident: ref98/cit98 contributor: fullname: Paszke A. – ident: ref15/cit15 doi: 10.1016/j.micromeso.2023.112495 – ident: ref39/cit39 doi: 10.1021/acs.chemrev.5b00648 – ident: ref95/cit95 doi: 10.1145/3581784.3627041 – ident: ref23/cit23 doi: 10.1039/C8FD90033G – ident: ref102/cit102 doi: 10.1016/j.cpc.2021.108171 – ident: ref8/cit8 doi: 10.1103/PhysRevB.76.115203 – ident: ref54/cit54 doi: 10.1107/S0108270104017706 – ident: ref78/cit78 doi: 10.1088/0953-8984/21/39/395502 – ident: ref66/cit66 doi: 10.1039/b515623h – ident: ref76/cit76 doi: 10.1107/S0108768112017466 – volume: 35 start-page: 11423 volume-title: Advances in Neural Information Processing Systems year: 2022 ident: ref57/cit57 contributor: fullname: Batatia I. – ident: ref59/cit59 doi: 10.1021/acs.chemrestox.3c00032 – ident: ref9/cit9 doi: 10.1021/acs.accounts.0c00060 – ident: ref56/cit56 doi: 10.1038/s41467-023-36329-y – ident: ref5/cit5 doi: 10.1002/ange.201703028 – ident: ref64/cit64 doi: 10.1063/1.3382344 – ident: ref68/cit68 doi: 10.1063/1.462066 – ident: ref11/cit11 doi: 10.1103/PhysRevB.80.085201 – ident: ref72/cit72 doi: 10.1016/j.cpc.2006.07.020 – ident: ref48/cit48 doi: 10.1146/annurev-chembioeng-092120-023936 – ident: ref81/cit81 doi: 10.1016/j.commatsci.2014.07.043 – ident: ref19/cit19 doi: 10.1039/D3SC03903J – ident: ref50/cit50 doi: 10.1021/jacs.7b05858 – ident: ref21/cit21 doi: 10.1016/j.xinn.2023.100562 – ident: ref42/cit42 doi: 10.1021/acs.jctc.6b00913 – ident: ref49/cit49 doi: 10.1126/science.1176731 – ident: ref3/cit3 doi: 10.1016/j.addr.2003.10.011 – ident: ref61/cit61 doi: 10.1021/acs.jctc.8b01176 – ident: ref71/cit71 doi: 10.1002/wcms.1606 – ident: ref29/cit29 doi: 10.1002/jcc.10318 – ident: ref46/cit46 doi: 10.1021/acsomega.2c03385 – volume-title: Polymorphism in the Pharmaceutical Industry: Solid Form and Drug Development year: 2019 ident: ref4/cit4 contributor: fullname: Hilfiker R. – ident: ref41/cit41 doi: 10.1039/D0SC05765G – ident: ref80/cit80 doi: 10.1103/PhysRevB.13.5188 – ident: ref88/cit88 doi: 10.1103/PhysRevB.99.014104 – ident: ref89/cit89 doi: 10.1103/PhysRevLett.104.136403 – ident: ref58/cit58 doi: 10.1063/5.0155322 – ident: ref94/cit94 doi: 10.1145/3581784.3627041 – ident: ref65/cit65 doi: 10.1039/b508541a – ident: ref85/cit85 doi: 10.1021/acs.jctc.9b00181 – ident: ref91/cit91 doi: 10.1103/PhysRevLett.120.143001 – ident: ref30/cit30 doi: 10.1016/j.chemphys.2008.10.036 – ident: ref63/cit63 doi: 10.1002/jcc.21759 – ident: ref22/cit22 doi: 10.1039/C5CS00227C – ident: ref101/cit101 doi: 10.1021/ja303676q – ident: ref31/cit31 doi: 10.1063/1.4945444 – ident: ref44/cit44 doi: 10.1038/s41467-022-30692-y – ident: ref12/cit12 doi: 10.1016/j.advmem.2022.100028 – ident: ref27/cit27 doi: 10.1063/1.476307 – ident: ref1/cit1 doi: 10.1021/op000023y – ident: ref13/cit13 doi: 10.1021/acscentsci.2c01196 – ident: ref16/cit16 doi: 10.1038/s41467-019-10575-5 – ident: ref33/cit33 doi: 10.1063/1.4926879 – ident: ref86/cit86 doi: 10.1063/1.5019779 – ident: ref18/cit18 doi: 10.1021/jacs.5b05644 – ident: ref69/cit69 doi: 10.1103/PhysRevB.37.785 – ident: ref84/cit84 – ident: ref100/cit100 doi: 10.1021/acs.jctc.5b00509 – ident: ref32/cit32 doi: 10.1063/1.4979993 – ident: ref43/cit43 doi: 10.1021/acs.jctc.9b01241 – ident: ref35/cit35 doi: 10.1039/C9SC05689K – ident: ref36/cit36 doi: 10.1021/jz101383z – ident: ref55/cit55 doi: 10.1038/s41467-022-29939-5 – ident: ref14/cit14 doi: 10.1039/C8CS00155C – ident: ref97/cit97 doi: 10.48550/arXiv.1412.6980 – ident: ref52/cit52 – ident: ref77/cit77 doi: 10.1103/PhysRevB.50.17953 – ident: ref20/cit20 doi: 10.1107/s2052520616007447 |
SSID | ssj0001682826 |
Score | 2.3188627 |
Snippet | Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency... Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency... |
SourceID | doaj pubmedcentral osti proquest crossref pubmed acs |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 40269 |
SubjectTerms | crystal structure crystals energy lattices molecular structure |
SummonAdditionalLinks | – databaseName: American Chemical Society dbid: ACS link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoOcCF9yMUkJHgwCEQP5I4x7Js1QNUSKUSN8sZ27DSkoVNggS_nplsUnarCsEpkj2KnPFM5rNn_Jmx5xJ0rEKo08x7n2ohAH1OurTEZjIaxMy04XZ8Wp58Mm_n2zQ5FzP4Urx20K6-hs_ulQYKd3qPXZUlAgWCQbPTP_spBa4dhtvVpC6zVCitxqzkZS-hWATtTiwaKPvxsULXugxuXqya3ApDRzf_5wNusRsj2OSHG-u4za6E5g67NpvueLvL1vPv_eIHLpdRv5x4OlD6ZFMY3vKzbrFc_MLQxt9Pd-jy2bInZoWWI9blhwA9MU1s969_Itxc8neuo6o6Ph-OFvIPa8oHDSZ-j50dzT_OjtPxFobUaZF1aYyI6QxEr8uqkBEKgxgp1FDWZdRVDaYm0jsMtVpGE6oiCueVdBBEHSWCK3Wf7TerJjxkvAAocOFbakCYVkptiihxPQP4o5M6z1XCXqCy7OhFrR0S5FLYSYN21GDCXk7zZr9tSDn-IvuGJvZcjui0hwacIjt6p_UQM585o1yFX-u8iRItOCIelDV4VSTsgMzCIiohal2gGiToLEIjRFx5wp5N1mJx_ijj4pqw6lurMJIQ379BmQcb6zkfiKqUpuM5CTM7drUz0t2eZvFlIACn88-5Efmjf9TXAbsuEYtRmYsQj9l-t-7DE7bX-v7p4ES_AWZNGn0 priority: 102 providerName: American Chemical Society – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgl3JBQAuEAjISPXAIjR0ncY5l2aoHqJDaStwsZ2zDSksWNgkS_Hpm8rHaRYheeopkW5HjGee9scfPjL2WoELpfRUnzrlYCQE456SNCywmp0HOTAtu55fFxWf9fk4yOZurvignbJAHHgbuxEFIXGJ1asugEut0kPjygFAtK3DpILad5FvBVL-6kmMkIad9ScSxEwvN6pv_Yt8qINRUhEbQ7KBRL9qPjxVOrn8Rzr_zJreA6OwBuz8ySH469Pwhu-PrR2x_Nl3cdsDW8x_d4ifGwDhonMQ3sPXFkO3d8Ot2sVz8RrziH6eLcfls2ZFcQsORwPJTgI7kI7br17-QQy75B9tSqhyf9-cF-ac1bfL0fnvIrs_mV7PzeLxaIbZKJG0ccCwzDcGposxlgFwj8fEVFFURVFmBrkjJDvFTyaB9mQdhXSoteFEFiYwpfcz26lXtnzKeA-QYzRYKkHsVUuk8SAxSAP9eUmVZGrFjHGgzTo3G9LveUpjJIGY0SMTeTKYw3weljf-0fUe22rQjjey-AD3HjJ5jbvKciB2RpQ1SDdLLBUosgtYg30EalUXs1eQABu1H2yi29quuMSnCA4n4a2zzZHCITUfSMlV05iZiesdVdnq6W1Mvvvaq3nSoOdMie3Yb33bE7klkX5TYIsRztteuO_-C3W1c97KfKH8AB9AcNw priority: 102 providerName: Directory of Open Access Journals |
Title | Equivariant Neural Networks Utilizing Molecular Clusters for Accurate Molecular Crystal Lattice Energy Predictions |
URI | http://dx.doi.org/10.1021/acsomega.4c07434 https://www.ncbi.nlm.nih.gov/pubmed/39346862 https://www.proquest.com/docview/3111204585 https://www.osti.gov/biblio/2440755 https://pubmed.ncbi.nlm.nih.gov/PMC11425815 https://doaj.org/article/dcf0d0a83a9f40ad8f2f9ef0252bcd36 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXYXuCC-CYUVkaCA4fsbhwncY4lbNUDrSqVStwsZxKXSLtJyQcS_HpmvEm1ixAHTpFsR3I8z5k39viZsXcCpE3LMvdXRVH4MggA55wwfoLFBBrkzLTgdnaVXHxVn9YkkxNPZ2Fc0j7k1aLebBd19c3lVt5uYTnliS0vzzM6_xmpIFrO2AzJ4V6M7lZWYowixLQniT5saaBrtuWNWUggjynJE0F34ImcYD8-GpxYfyObf-ZM7jmh00fs4cge-cmul4_ZvbJ-wu5n06VtT1m7_j5UPzD-xQHjJLyBrS92md4dv-6rTfULfRU_ny7F5dlmIKmEjiN55ScAA0lH7Ne3P5E_bvhn01OaHF-7s4L8sqUNHofZZ-z6dP0lO_PHaxV8I4NV71uLJE2BLWSSxsJCrJD0lDkkeWJlmoPKScUOfacUVpVpbANThMJAGeRWIFsKn7OjuqnLl4zHADFGsokE5F2JkCq2AgMUwD-XkFEUeuw9DrQep0Wn3Y63CPRkED0axGMfJlPo253Kxj_afiRb3bUjfWxX0LQ3ekSJLsCuipVRoUnxa02hrEBIWiR4IocijD12TJbWSDNIKxcoqQh6jVwHKVTksbcTADTaj7ZQTF02Q6dDdA0k4K-wzYsdIO46EqahpPM2HlMHUDno6WENAtwpek-AfvX_rx6zBwL5FqWyBMFrdtS3Q_mGzbpimGO8kF3N3WrD3E2V3zkNG7w |
link.rule.ids | 230,315,729,782,786,866,887,2106,2769,27085,27933,27934,53800,53802,56747,56797 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj5swELW628P20u9u6fbDldpDDyRgDJjjNs0qVZNope5KvVlmwFukBLYBKrW_vjMEVklV9bAnJGwkm3nDvMHjZ8beCZA2yfPU9bIsc6XvA_qcMG6Mtwk0yJnph9vsa7z8pj5NSSYnGvbCdEX7kBajcrUelcX3rrbyeg3joU5sfL6Y0P7PUPnh-IDdRYf1vJ0svfu3EmEeIYZVSYxiYwN1tc6vzEgCxUxJsQjqvVjUSfbjpULX-hfd_LtqcicMnT247QQesvs98eSn2_ZH7E5ePmZHk-G8tydsM_3RFj8xdcZ3zUmzA3svt0XiNb9silXxG8McXwzn6fLJqiWVhZoj7-WnAC2pTuy2b34h9VzxuWmowo5Pu22G_HxDa0Md3J-yy7PpxWTm9icyuEb6XuNai_xOgc1knETCQqSQL-UpxGlsZZKCSkkAD8OuFFblSWR9kwXCQO6nViDRCp6xw7Iq8-eMRwARJsGxBKRssZAqsgJzG8CPnpBhGDjsPVpI9x5V626xXPh6sKTuLemwD4MN9fVWoOM_fT-SkW_6kbR2d6PaXOnePjoD62WeUYFJcLYmU1Ygmi1yQ5FCFkQOOyGIaGQoJLMLVI8EjUaahOwrdNjbATka7UerL6bMq7bWAUYV0v5X2Od4i6SbgQRJIGmrjsPUHsb2RrrfgtDqxMAHKL24_aNv2NHsYjHX88_LLyfsnkDaRhUxvv-SHTabNn_FDuqsfd352B-PCy-D |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYRQIuvB9heRgJDhzSJI6bONyWbqtF7FaVYCVuljOOl0htUpoGCX49M2mzahHiAKdIyURKMt9kvrHHnxl7LUC6rChyP7TW-jKKAGNOGD_F0wQa5Mw04Hb6KZ1-USdjksl516-F6Zr2IS8H1XwxqMqvXW_lcgFB3ycWzM5HtP5zqKJhsLQuOGDXMWhDsVOpd-MrCdYSop-ZxEwWGGjqRXFpBhIob0rKR9Ds5aNOth8PNYbXnyjn752TO6locud_XuIuu70loPx4Y3OPXSuq--zmqN_37QFbjb-15XcsofGbc9LuQOvpplm84Rfrcl7-xHTHz_t9dflo3pLaQsOR__JjgJbUJ3avr34gBZ3zM7OmTjs-7pYb8tmK5og62D9kF5Px59Gpv92ZwTcyCte-c8jzFDgr0ywRDhKFvKnIIc1TJ7McVE5CeJh-pXCqyBIXGRsLA0WUO4GEK37EDqu6Kp4wngAkWAynEpC6pUKqxAmscQB_fkIOh7HH3qCX9DayGt1NmotI997UW2967G3vR73cCHX8xfY9OfrKjiS2uxP16lJvfaQtuNCGRsUmw7c1VjmBqHbIEUUONk48dkQw0chUSG4XqC8J1hrpErKwocde9ejR6D-ahTFVUbeNjjG70B4ACm0eb9B09SBxFktasuMxtYezvSfdv4Lw6kTBezg9_fdbX7Ibs5OJPvsw_XjEbglkb9QYE0XP2OF61RbP2UFj2xddmP0C7mkyAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equivariant+Neural+Networks+Utilizing+Molecular+Clusters+for+Accurate+Molecular+Crystal+Lattice+Energy+Predictions&rft.jtitle=ACS+omega&rft.au=Gupta%2C+Ankur+K&rft.au=Stulajter%2C+Miko+M&rft.au=Shaidu%2C+Yusuf&rft.au=Neaton%2C+Jeffrey+B&rft.date=2024-09-11&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=9&rft.issue=38&rft.spage=40269&rft_id=info:doi/10.1021%2Facsomega.4c07434&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon |