Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites
Perovskite solar cells, with efficiencies of 22.1%, are the only solution-processable technology to outperform multicrystalline silicon and thin-film solar cells. Whereas substantial progress has been made in scalability and stability, toxicity concerns drive the need for lead replacement, intensify...
Saved in:
Published in: | ACS energy letters Vol. 2; no. 4; pp. 837 - 845 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
14-04-2017
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Perovskite solar cells, with efficiencies of 22.1%, are the only solution-processable technology to outperform multicrystalline silicon and thin-film solar cells. Whereas substantial progress has been made in scalability and stability, toxicity concerns drive the need for lead replacement, intensifying research into the broad palette of elemental substitutions, solid solutions, and multidimensional structures. Perovskites have gone from comprising three to more than eight (CH3NH3, HC(NH2)2, Cs, Rb, Pb, Sn, I, Br) organic and inorganic constituents, and a variety of new embodiments including layered, double perovskites, and metal-deficient perovskites are being explored. Although most experimentation is guided by intuition and trial-and-error-based Edisonian approaches, rational strategies underpinned by computational screening and targeted experimental validation are emerging. In addressing emergent perovskites, this perspective discusses the rational design methodology leveraging density functional theory-based high-throughput computational screening coupled to downselection strategies to accelerate the discovery of materials and industrialization of perovskite solar cells. |
---|---|
AbstractList | Perovskite solar cells, with efficiencies of 22.1%, are the only solution-processable technology to outperform multicrystalline silicon and thin-film solar cells. Whereas substantial progress has been made in scalability and stability, toxicity concerns drive the need for lead replacement, intensifying research into the broad palette of elemental substitutions, solid solutions, and multidimensional structures. Perovskites have gone from comprising three to more than eight (CH3NH3, HC(NH2)2, Cs, Rb, Pb, Sn, I, Br) organic and inorganic constituents, and a variety of new embodiments including layered, double perovskites, and metal-deficient perovskites are being explored. Although most experimentation is guided by intuition and trial-and-error-based Edisonian approaches, rational strategies underpinned by computational screening and targeted experimental validation are emerging. In addressing emergent perovskites, this perspective discusses the rational design methodology leveraging density functional theory-based high-throughput computational screening coupled to downselection strategies to accelerate the discovery of materials and industrialization of perovskite solar cells. |
Author | Chakraborty, Sudip Mhaisalkar, Subodh G Sherburne, Matthew Asta, Mark Xie, Wei Ahuja, Rajeev Mathews, Nripan |
AuthorAffiliation | School of Materials Science and Engineering Department of Materials Science and Engineering Energy Research Institute @NTU (ERI@N) Uppsala University Materials Theory Division, Department of Physics and Astronomy Nanyang Technological University |
AuthorAffiliation_xml | – name: Uppsala University – name: Materials Theory Division, Department of Physics and Astronomy – name: School of Materials Science and Engineering – name: Energy Research Institute @NTU (ERI@N) – name: Department of Materials Science and Engineering – name: Nanyang Technological University |
Author_xml | – sequence: 1 givenname: Sudip orcidid: 0000-0002-6765-2084 surname: Chakraborty fullname: Chakraborty, Sudip email: sudiphys@gmail.com, sudip.chakraborty@physics.uu.se organization: Uppsala University – sequence: 2 givenname: Wei orcidid: 0000-0003-1501-896X surname: Xie fullname: Xie, Wei organization: Department of Materials Science and Engineering – sequence: 3 givenname: Nripan orcidid: 0000-0001-5234-0822 surname: Mathews fullname: Mathews, Nripan organization: Energy Research Institute @NTU (ERI@N) – sequence: 4 givenname: Matthew surname: Sherburne fullname: Sherburne, Matthew organization: Department of Materials Science and Engineering – sequence: 5 givenname: Rajeev surname: Ahuja fullname: Ahuja, Rajeev organization: Uppsala University – sequence: 6 givenname: Mark surname: Asta fullname: Asta, Mark email: mdasta@berkeley.edu organization: Department of Materials Science and Engineering – sequence: 7 givenname: Subodh G surname: Mhaisalkar fullname: Mhaisalkar, Subodh G organization: Energy Research Institute @NTU (ERI@N) |
BookMark | eNqFkNFKwzAUhoMoOOceQcgLdCZp07Xejbk5YaLo9LakyWmX2SUj6cS-hY9sdBP0Ss7Ff-D83-Gc_wwdG2sAoQtKhpQweimkBwOu7hpo2-GoJITE_Aj1WJyRKKM5P_7Vn6KB9-tgoWnGQ_XQx6NotTWiwdfgdW2u8BjPdb2Klitnd_Vqu2vxxG6C_PiepAMw2tRYGIWn71twegOmDaMX0Wj17cN30K6sso2tO1xZhxcgVDQL5J7ahIsDg-dd6bTCD-Dsm3_VLfhzdFKJxsPgoH30PJsuJ_NocX9zOxkvIpGQrI3SVJV5LjiLlaTAVJVIpqikpBI8jzmTlchYLEAmJfCKpjwblSNCcsLSPEtKEvcR3--VznrvoCq24Q_huoKS4ivZ4k-yxSHZwNE9F8bF2u5cyMT_w3wCrkqGlA |
CitedBy_id | crossref_primary_10_1016_j_joule_2018_05_008 crossref_primary_10_1021_acs_chemmater_7b02013 crossref_primary_10_1021_acs_chemmater_7b04036 crossref_primary_10_1002_cssc_201701653 crossref_primary_10_1016_j_mattod_2018_04_007 crossref_primary_10_1088_1361_6463_aaa727 crossref_primary_10_1002_wcms_1663 crossref_primary_10_1088_1402_4896_ad38e9 crossref_primary_10_1063_1_5127929 crossref_primary_10_1039_D1CP02198B crossref_primary_10_1140_epjb_s10051_022_00381_2 crossref_primary_10_1088_1402_4896_acb6c5 crossref_primary_10_3390_en13143516 crossref_primary_10_1016_j_jechem_2021_01_035 crossref_primary_10_1016_j_nanoen_2024_109802 crossref_primary_10_1016_j_ejmech_2021_113705 crossref_primary_10_1039_C9TA01456J crossref_primary_10_1063_5_0087381 crossref_primary_10_1002_advs_202103648 crossref_primary_10_1016_j_mtelec_2024_100095 crossref_primary_10_1002_adom_202202153 crossref_primary_10_1002_cmtd_202200008 crossref_primary_10_1088_1361_6463_abd0ad crossref_primary_10_1021_acs_jpclett_7b01440 crossref_primary_10_1002_adfm_201804354 crossref_primary_10_1021_acsenergylett_8b01226 crossref_primary_10_1016_j_jssc_2021_121988 crossref_primary_10_1103_PhysRevB_103_165110 crossref_primary_10_1016_j_nanoen_2018_02_055 crossref_primary_10_2139_ssrn_3915002 crossref_primary_10_1016_j_actamat_2019_01_051 crossref_primary_10_1007_s10904_019_01187_z crossref_primary_10_1039_C9NA00330D crossref_primary_10_1016_j_jallcom_2018_08_322 crossref_primary_10_1021_acs_nanolett_7b04659 crossref_primary_10_1002_hlca_201700090 crossref_primary_10_1016_j_mtcomm_2021_102462 crossref_primary_10_1364_JOSAB_439672 crossref_primary_10_1039_C9CC03038G crossref_primary_10_1039_D0TA07607D crossref_primary_10_1002_chem_202000788 crossref_primary_10_1021_acsami_7b06001 crossref_primary_10_1021_acsenergylett_3c02666 crossref_primary_10_1016_j_joule_2018_11_010 crossref_primary_10_1038_s41597_022_01438_8 crossref_primary_10_1063_5_0053128 crossref_primary_10_1002_solr_202000606 crossref_primary_10_1016_j_jmrt_2022_05_082 crossref_primary_10_1088_1361_6463_ac1e4c crossref_primary_10_1002_poc_4519 crossref_primary_10_1063_5_0027573 crossref_primary_10_1016_j_nanoen_2020_105380 crossref_primary_10_1021_acsenergylett_1c01108 crossref_primary_10_3390_cryst11111329 crossref_primary_10_1016_j_nanoen_2019_104070 crossref_primary_10_1016_j_jssc_2023_124003 crossref_primary_10_1021_acsenergylett_0c00402 crossref_primary_10_1016_j_applthermaleng_2022_119024 crossref_primary_10_1016_j_matchemphys_2024_128947 crossref_primary_10_7498_aps_68_20190853 crossref_primary_10_1007_s12274_020_3161_6 crossref_primary_10_1016_j_cjph_2023_11_007 crossref_primary_10_1021_acs_chemmater_9b00116 crossref_primary_10_1038_s41598_018_23211_x crossref_primary_10_3762_bjnano_9_207 crossref_primary_10_1002_pssb_202200124 crossref_primary_10_1088_1402_4896_ac555b crossref_primary_10_1002_cctc_201902363 crossref_primary_10_1002_adpr_202200172 crossref_primary_10_1002_aenm_201903161 crossref_primary_10_1021_acs_jpcc_1c04817 crossref_primary_10_1021_acsomega_1c05333 crossref_primary_10_1016_j_matdes_2023_112324 crossref_primary_10_1021_acsami_0c03622 crossref_primary_10_1002_adma_202302575 crossref_primary_10_1016_j_mtcomm_2021_102609 crossref_primary_10_1186_s40580_022_00314_w crossref_primary_10_1021_jacs_7b10739 crossref_primary_10_1016_j_joule_2019_05_014 crossref_primary_10_1021_acs_jpcc_1c07262 crossref_primary_10_1021_acsenergylett_0c00899 crossref_primary_10_1016_j_jpcs_2021_110302 crossref_primary_10_1016_j_mattod_2022_09_008 crossref_primary_10_1021_acs_chemmater_9b04021 crossref_primary_10_3390_nano10122569 crossref_primary_10_1016_j_inoche_2022_110303 crossref_primary_10_1021_acs_jpcc_8b00480 crossref_primary_10_1103_PhysRevB_101_155137 crossref_primary_10_1016_j_matt_2021_03_009 crossref_primary_10_1016_j_apsusc_2021_150916 crossref_primary_10_1063_5_0205610 crossref_primary_10_1002_adts_202000022 crossref_primary_10_1002_aenm_201703385 crossref_primary_10_1016_j_rser_2019_03_036 crossref_primary_10_1088_1402_4896_ad43c7 crossref_primary_10_1016_j_cej_2022_138926 crossref_primary_10_1039_D2CP02484E crossref_primary_10_1002_adfm_202104941 crossref_primary_10_1038_s41598_021_86145_x crossref_primary_10_1016_j_rser_2019_109436 crossref_primary_10_1557_s43578_024_01334_4 crossref_primary_10_1021_acsami_9b02367 crossref_primary_10_1021_acs_jpclett_0c02497 crossref_primary_10_1021_acs_jpcc_8b12228 crossref_primary_10_1103_PhysRevMaterials_2_055401 crossref_primary_10_1021_acs_jpclett_7b02203 crossref_primary_10_1002_adfm_201905487 crossref_primary_10_1002_wcms_1500 crossref_primary_10_1016_j_jechem_2017_10_010 crossref_primary_10_1088_1402_4896_acd30f crossref_primary_10_1021_acs_jpclett_0c00504 crossref_primary_10_1039_C9NR01031A crossref_primary_10_1021_acs_chemmater_1c02467 crossref_primary_10_1016_j_mtchem_2020_100363 crossref_primary_10_1016_j_solmat_2018_12_038 crossref_primary_10_1063_5_0019132 crossref_primary_10_1021_acs_chemmater_8b04202 crossref_primary_10_1021_acsaem_1c03824 crossref_primary_10_1002_er_8008 crossref_primary_10_1039_D0TA10098F crossref_primary_10_1021_acsphotonics_2c00484 crossref_primary_10_1039_D0TC03440A crossref_primary_10_1007_s10904_024_03018_2 crossref_primary_10_1021_acs_jpcc_2c04502 crossref_primary_10_1039_C8CP06528D crossref_primary_10_1088_2053_1591_ab48ba crossref_primary_10_1002_qua_25621 crossref_primary_10_1002_mgea_11 crossref_primary_10_1002_solr_202000299 crossref_primary_10_1021_acs_chemmater_8b01505 crossref_primary_10_1002_cptc_202300104 crossref_primary_10_1021_acs_jpcc_8b11821 crossref_primary_10_1021_acs_inorgchem_3c01696 crossref_primary_10_3390_en15196963 crossref_primary_10_1021_acs_jpcc_3c05901 crossref_primary_10_1002_ente_201700423 crossref_primary_10_1016_j_joule_2024_02_017 crossref_primary_10_1016_j_commatsci_2021_110578 crossref_primary_10_1016_j_solener_2021_07_026 crossref_primary_10_1016_j_materresbull_2018_08_046 crossref_primary_10_1002_cssc_202102334 crossref_primary_10_1016_j_isci_2021_103340 crossref_primary_10_1016_j_jmrt_2022_04_114 crossref_primary_10_1021_acsenergylett_7b00382 crossref_primary_10_1021_acs_chemmater_1c02294 crossref_primary_10_1088_1402_4896_acad3a crossref_primary_10_1016_j_heliyon_2023_e21702 crossref_primary_10_1021_acs_jpclett_8b02555 crossref_primary_10_1063_1_5086321 crossref_primary_10_1109_TDEI_2020_009253 crossref_primary_10_1039_D0TC04516K crossref_primary_10_1021_acs_chemmater_9b04472 crossref_primary_10_1002_wcms_1489 crossref_primary_10_1063_5_0044989 crossref_primary_10_1002_adfm_202011168 crossref_primary_10_1021_acsenergylett_1c00977 crossref_primary_10_1002_adma_201702905 crossref_primary_10_1021_jacs_9b06276 crossref_primary_10_1021_acsami_0c07501 crossref_primary_10_1016_j_commatsci_2022_111872 crossref_primary_10_1103_PhysRevApplied_13_014005 crossref_primary_10_1134_S0036024421130240 crossref_primary_10_1021_acsaem_9b01479 crossref_primary_10_1002_pssa_202200425 crossref_primary_10_1016_j_mattod_2024_02_002 crossref_primary_10_1016_j_mattod_2020_11_026 crossref_primary_10_1021_jacs_8b01034 crossref_primary_10_1039_C7TA03114A crossref_primary_10_1021_acsaem_2c04066 crossref_primary_10_1021_acsenergylett_7b00246 crossref_primary_10_1016_j_ssc_2023_115162 crossref_primary_10_1002_slct_202003376 crossref_primary_10_1021_acsenergylett_0c00577 crossref_primary_10_1038_s41928_023_01001_2 crossref_primary_10_1002_aenm_201803150 crossref_primary_10_1021_acs_jpcc_9b10860 crossref_primary_10_1063_1_5140441 crossref_primary_10_1088_1361_6528_ac88db crossref_primary_10_1063_1_5027261 crossref_primary_10_1038_s41467_018_05761_w crossref_primary_10_1002_advs_202002510 crossref_primary_10_1016_j_jpcs_2020_109860 crossref_primary_10_1002_smtd_201700316 crossref_primary_10_1021_acscombsci_9b00068 crossref_primary_10_1016_j_mattod_2019_10_021 |
Cites_doi | 10.1021/jacs.5b13294 10.1039/9781782624066-00234 10.1002/pssr.201600166 10.1021/acs.chemmater.5b04231 10.1126/science.1243167 10.1021/acs.chemmater.5b03147 10.1021/nl5039314 10.1021/jacs.6b06291 10.1038/369467a0 10.1039/C5TA05741H 10.1021/acsami.6b06714 10.1021/acsenergylett.6b00471 10.1002/adma.201602696 10.1038/scientificamerican1213-36 10.3389/fmats.2016.00019 10.1103/PhysRevLett.108.068701 10.1039/C6MH00519E 10.1557/jmr.2016.80 10.1126/science.1243982 10.1002/adma.201501978 10.1038/natrevmats.2015.4 10.1002/minf.201400174 10.1021/acs.nanolett.5b03271 10.1007/s11837-013-0755-4 10.1039/C4CS00458B 10.1021/acs.jpcc.5b11845 10.1002/adma.201601418 10.1021/nl500390f 10.1039/9781782624066-00202 10.1038/nature14133 10.1002/adfm.201604818 10.1002/adma.201600669 10.1007/978-3-319-35114-8_1 10.1021/ja507086b 10.1021/ic50089a034 10.1103/PhysRevB.86.165211 10.1103/PhysRevLett.105.196403 10.1039/C4EE01076K 10.1002/9781119148739.ch4 10.1039/C6EE02693A 10.1039/C5RA19778C 10.1002/adma.201401991 10.1038/nmat3568 10.1002/cssc.201600933 10.1002/cssc.201601025 10.1126/science.aad5845 10.1126/science.aah5557 10.1002/cssc.201600771 10.1038/ncomms6757 10.1021/ja809598r 10.4018/978-1-5225-0290-6.ch007 10.1021/acs.inorgchem.5b01896 10.1021/acs.jpcc.6b02175 10.1063/1.4893495 10.1021/acs.nanolett.5b00616 10.1021/ja508464w 10.1007/978-3-319-23871-5 10.1021/jp5126624 10.1021/acs.chemmater.6b03310 10.1021/acs.chemmater.6b00433 10.1021/acsenergylett.6b00170 10.1002/adma.201306281 10.1021/jz402706q 10.1021/jacs.6b08337 10.1021/acs.jpclett.6b00376 10.1039/C6TA05817E 10.1002/ente.201500045 10.1039/c0cs00163e 10.1039/C5TC04172D 10.1126/science.aah4046 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsenergylett.7b00035 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2380-8195 |
EndPage | 845 |
ExternalDocumentID | 10_1021_acsenergylett_7b00035 b931387544 |
GroupedDBID | ABUCX ACGFS ACS AFEFF ALMA_UNASSIGNED_HOLDINGS EBS EJD VF5 VG9 AAYXX ABQRX AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a408t-66db99a523dc1e2df4c2d1c10fa59352cfa823aec4be5f16587b7009026984b03 |
IEDL.DBID | ACS |
ISSN | 2380-8195 |
IngestDate | Fri Aug 23 05:01:33 EDT 2024 Thu Aug 27 13:42:19 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a408t-66db99a523dc1e2df4c2d1c10fa59352cfa823aec4be5f16587b7009026984b03 |
ORCID | 0000-0001-5234-0822 0000-0002-6765-2084 0000-0003-1501-896X |
OpenAccessLink | https://dr.ntu.edu.sg/bitstream/10356/140264/2/ACS%20energy%20letter.pdf |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1021_acsenergylett_7b00035 acs_journals_10_1021_acsenergylett_7b00035 |
ProviderPackageCode | ACS VG9 ABUCX AFEFF VF5 |
PublicationCentury | 2000 |
PublicationDate | 2017-04-14 |
PublicationDateYYYYMMDD | 2017-04-14 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-14 day: 14 |
PublicationDecade | 2010 |
PublicationTitle | ACS energy letters |
PublicationTitleAlternate | ACS Energy Lett |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 Balachandran P. (ref48/cit48) 2016; 1 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 Mueller T. (ref46/cit46) 2016; 29 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref38/cit38 doi: 10.1021/jacs.5b13294 – ident: ref53/cit53 doi: 10.1039/9781782624066-00234 – ident: ref31/cit31 doi: 10.1002/pssr.201600166 – ident: ref34/cit34 doi: 10.1021/acs.chemmater.5b04231 – ident: ref8/cit8 doi: 10.1126/science.1243167 – ident: ref27/cit27 doi: 10.1021/acs.chemmater.5b03147 – ident: ref6/cit6 doi: 10.1021/nl5039314 – ident: ref41/cit41 doi: 10.1021/jacs.6b06291 – ident: ref17/cit17 doi: 10.1038/369467a0 – ident: ref15/cit15 doi: 10.1039/C5TA05741H – ident: ref63/cit63 doi: 10.1021/acsami.6b06714 – ident: ref36/cit36 doi: 10.1021/acsenergylett.6b00471 – ident: ref10/cit10 doi: 10.1002/adma.201602696 – ident: ref49/cit49 doi: 10.1038/scientificamerican1213-36 – ident: ref59/cit59 doi: 10.3389/fmats.2016.00019 – ident: ref56/cit56 doi: 10.1103/PhysRevLett.108.068701 – ident: ref65/cit65 doi: 10.1039/C6MH00519E – ident: ref47/cit47 doi: 10.1557/jmr.2016.80 – ident: ref9/cit9 doi: 10.1126/science.1243982 – ident: ref66/cit66 doi: 10.1002/adma.201501978 – ident: ref50/cit50 doi: 10.1038/natrevmats.2015.4 – ident: ref62/cit62 doi: 10.1002/minf.201400174 – ident: ref22/cit22 doi: 10.1021/acs.nanolett.5b03271 – ident: ref19/cit19 doi: 10.1002/adma.201602696 – ident: ref51/cit51 doi: 10.1007/s11837-013-0755-4 – ident: ref2/cit2 doi: 10.1039/C4CS00458B – ident: ref55/cit55 doi: 10.1021/acs.jpcc.5b11845 – ident: ref42/cit42 doi: 10.1002/adma.201601418 – ident: ref7/cit7 doi: 10.1021/nl500390f – ident: ref52/cit52 doi: 10.1039/9781782624066-00202 – ident: ref12/cit12 doi: 10.1038/nature14133 – ident: ref64/cit64 doi: 10.1002/adfm.201604818 – ident: ref25/cit25 doi: 10.1002/adma.201600669 – ident: ref54/cit54 doi: 10.1007/978-3-319-35114-8_1 – ident: ref5/cit5 doi: 10.1021/ja507086b – ident: ref33/cit33 doi: 10.1021/ic50089a034 – ident: ref35/cit35 doi: 10.1103/PhysRevB.86.165211 – ident: ref43/cit43 doi: 10.1103/PhysRevLett.105.196403 – ident: ref23/cit23 doi: 10.1039/C4EE01076K – volume: 29 volume-title: Machine Machine Learning in Materials Science year: 2016 ident: ref46/cit46 doi: 10.1002/9781119148739.ch4 contributor: fullname: Mueller T. – ident: ref68/cit68 doi: 10.1039/C6EE02693A – ident: ref18/cit18 doi: 10.1039/C5RA19778C – ident: ref60/cit60 doi: 10.1002/adma.201401991 – ident: ref44/cit44 doi: 10.1038/nmat3568 – ident: ref70/cit70 doi: 10.1002/cssc.201600933 – ident: ref21/cit21 doi: 10.1002/cssc.201601025 – ident: ref13/cit13 doi: 10.1126/science.aad5845 – ident: ref14/cit14 doi: 10.1126/science.aah5557 – ident: ref39/cit39 doi: 10.1002/cssc.201600771 – ident: ref58/cit58 doi: 10.1038/ncomms6757 – ident: ref1/cit1 doi: 10.1021/ja809598r – volume: 1 start-page: 192 volume-title: Computational Approaches to Materials Design: Theoretical and Practical Aspects year: 2016 ident: ref48/cit48 doi: 10.4018/978-1-5225-0290-6.ch007 contributor: fullname: Balachandran P. – ident: ref26/cit26 doi: 10.1021/acs.inorgchem.5b01896 – ident: ref30/cit30 doi: 10.1021/acs.jpcc.6b02175 – ident: ref57/cit57 doi: 10.1063/1.4893495 – ident: ref4/cit4 doi: 10.1021/acs.nanolett.5b00616 – ident: ref29/cit29 doi: 10.1021/ja508464w – ident: ref45/cit45 doi: 10.1007/978-3-319-23871-5 – ident: ref61/cit61 doi: 10.1021/jp5126624 – ident: ref28/cit28 doi: 10.1021/acs.chemmater.6b03310 – ident: ref32/cit32 doi: 10.1021/acs.chemmater.6b00433 – ident: ref67/cit67 doi: 10.1021/acsenergylett.6b00170 – ident: ref11/cit11 doi: 10.1002/adma.201306281 – ident: ref24/cit24 doi: 10.1021/jz402706q – ident: ref20/cit20 doi: 10.1021/jacs.6b08337 – ident: ref37/cit37 doi: 10.1021/acs.jpclett.6b00376 – ident: ref40/cit40 doi: 10.1039/C6TA05817E – ident: ref71/cit71 doi: 10.1002/ente.201500045 – ident: ref3/cit3 doi: 10.1039/c0cs00163e – ident: ref16/cit16 doi: 10.1039/C5TC04172D – ident: ref69/cit69 doi: 10.1126/science.aah4046 |
SSID | ssj0001685858 |
Score | 2.5083222 |
Snippet | Perovskite solar cells, with efficiencies of 22.1%, are the only solution-processable technology to outperform multicrystalline silicon and thin-film solar... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 837 |
Title | Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites |
URI | http://dx.doi.org/10.1021/acsenergylett.7b00035 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZoWWDgRpRLHpiQ3MZHYoet6qEuIEQLYosc2xnbqkmR-Bf8ZHykIgxFYvezkuck78s7vg-AOy2UopLkyOiYIoYlRjnHBeKEpEnBk1gRN-88mfKndzEcOZqc3pYKPsE9qUrjx-DsfVRdHopfLbBLuEULDgsNpj9JFc-m7lXoqIiQqxFtpna27eSikiobUakRXsaH_76wI3BQI0nYD0d_DHbM_ATsN_gFT8HXS53qg0PfqPEA-9A1dqBZUOdZrisYZB0266bK9eFYYyjnGo4a9P_wzSL2IMAEH73stE_IQwt6odPpRGNrGazCRGcFJ59uHAw-m9Xio3RZ4vIMvI5Hs8EE1RIMSLJIVChJdJ6m0v6taoUN0QWzZ4cVjgoZpxa7qUIKQqVRLDdxgS2c4TmPXK9nkgqWR_QctOeLubkAUBn7bZU8FTZYsohqaZdLmitGtRBxXHTAvfVoVr9CZear4wRnv9yc1W7ugO7mvLJloOX42-DyP7tfgT3iorejdGTXoF2t1uYGtEq9vvXP2zcWKtjx |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVoOQAHdkRZfeCE5BJndbhVXRREWyFaELfIsZ1jWjUpEn_BJzN2ErUcQIJr5Bk5XjIvsz2EbiQTwuF2QpT0HOJSTkkS0JQEth36aeB7wtb1ztEkGL-xXl-3yfHrWhiYRA6achPEX3UXoHfwTJlqOHidoh2UMbAG2vR8AMQaEnUnK9-KaapuyOgcZhEdKqqLd37SpI2TyNeM05qVGez9d377aLfClbhTHoQDtKGyQ7Sz1m3wCH0-V44_3DNpG_e4g3WaB5mWXD3zZYFLkod63ETorBwQxjyTuL9GBoBfAb-XdEx4ZEiojXseAwTGmrWTDECylCrrOwscfejiMPykFrP3XPuM82P0MuhPuxGpCBkIdy1WEN-XSRhy-HeVgipbpi7sJBXUSrkXApITKWe2w5VwE-WlFMBNkASWzvz0Q-YmlnOCmtksU6cICwVfWh6EDEynazmSw3DuJMJ1JGOel7bQLaxoXF2oPDaxcpvG35Y5rpa5hdr1tsXzsknH7wJnf9F-jbai6WgYDx_Gj-do29Z2XTd7dC9Qs1gs1SVq5HJ5ZY7gF5x84V4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSAgO7Iiy-sAJySXOZqe3qm1UBFQVLYhb5Hg5plWTIvEXfDK2k4hwAAlxjTwjZ7zMeLYHwLWgnHvMTZEUgYd8zDBKCVaIuG4UKhIG3DX1zqMpGb_SwdC0yenWtTB6ErnmlNsgvjnVC6GqDgP4Vn-XtiJO_1LRIWUcbB1sBCGJzMOr159--VdsY3ULSOdRB5lwUV3A8xMno6B43lBQDU0T7_5njntgp7IvYa_cEPtgTWYHYLvRdfAQfDxVDkA4sOkbXdiDJt0DzUrMnsWqgCXYQz1uyk12jiaGLBNw2AAFgC_aji9hmeCjBaO2bnqoTWFo0DtRrClLqrLOs4Cjd1MkBidyOX_Lje84PwLP8XDWH6EKmAEx36EFCkORRhHTb1jBsXSF8vWKYo4dxYJIW3RcMep6THI_lYHC2sghKXFMBmgYUT91vGPQyuaZPAGQS33jMhJRrUJ9xxNMD2deyn1PUBoEqg1utEST6mDliY2Zuzj5JuakEnMbdOqlSxZls47fCU7_wv0KbE4GcfJwN74_A1uuUe-m56N_DlrFciUvwHouVpd2F34C2snj4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design%3A+A+High-Throughput+Computational+Screening+and+Experimental+Validation+Methodology+for+Lead-Free+and+Emergent+Hybrid+Perovskites&rft.jtitle=ACS+energy+letters&rft.au=Chakraborty%2C+Sudip&rft.au=Xie%2C+Wei&rft.au=Mathews%2C+Nripan&rft.au=Sherburne%2C+Matthew&rft.date=2017-04-14&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=2&rft.issue=4&rft.spage=837&rft.epage=845&rft_id=info:doi/10.1021%2Facsenergylett.7b00035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsenergylett_7b00035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon |