Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites

Perovskite solar cells, with efficiencies of 22.1%, are the only solution-processable technology to outperform multicrystalline silicon and thin-film solar cells. Whereas substantial progress has been made in scalability and stability, toxicity concerns drive the need for lead replacement, intensify...

Full description

Saved in:
Bibliographic Details
Published in:ACS energy letters Vol. 2; no. 4; pp. 837 - 845
Main Authors: Chakraborty, Sudip, Xie, Wei, Mathews, Nripan, Sherburne, Matthew, Ahuja, Rajeev, Asta, Mark, Mhaisalkar, Subodh G
Format: Journal Article
Language:English
Published: American Chemical Society 14-04-2017
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Perovskite solar cells, with efficiencies of 22.1%, are the only solution-processable technology to outperform multicrystalline silicon and thin-film solar cells. Whereas substantial progress has been made in scalability and stability, toxicity concerns drive the need for lead replacement, intensifying research into the broad palette of elemental substitutions, solid solutions, and multidimensional structures. Perovskites have gone from comprising three to more than eight (CH3NH3, HC­(NH2)2, Cs, Rb, Pb, Sn, I, Br) organic and inorganic constituents, and a variety of new embodiments including layered, double perovskites, and metal-deficient perovskites are being explored. Although most experimentation is guided by intuition and trial-and-error-based Edisonian approaches, rational strategies underpinned by computational screening and targeted experimental validation are emerging. In addressing emergent perovskites, this perspective discusses the rational design methodology leveraging density functional theory-based high-throughput computational screening coupled to downselection strategies to accelerate the discovery of materials and industrialization of perovskite solar cells.
AbstractList Perovskite solar cells, with efficiencies of 22.1%, are the only solution-processable technology to outperform multicrystalline silicon and thin-film solar cells. Whereas substantial progress has been made in scalability and stability, toxicity concerns drive the need for lead replacement, intensifying research into the broad palette of elemental substitutions, solid solutions, and multidimensional structures. Perovskites have gone from comprising three to more than eight (CH3NH3, HC­(NH2)2, Cs, Rb, Pb, Sn, I, Br) organic and inorganic constituents, and a variety of new embodiments including layered, double perovskites, and metal-deficient perovskites are being explored. Although most experimentation is guided by intuition and trial-and-error-based Edisonian approaches, rational strategies underpinned by computational screening and targeted experimental validation are emerging. In addressing emergent perovskites, this perspective discusses the rational design methodology leveraging density functional theory-based high-throughput computational screening coupled to downselection strategies to accelerate the discovery of materials and industrialization of perovskite solar cells.
Author Chakraborty, Sudip
Mhaisalkar, Subodh G
Sherburne, Matthew
Asta, Mark
Xie, Wei
Ahuja, Rajeev
Mathews, Nripan
AuthorAffiliation School of Materials Science and Engineering
Department of Materials Science and Engineering
Energy Research Institute @NTU (ERI@N)
Uppsala University
Materials Theory Division, Department of Physics and Astronomy
Nanyang Technological University
AuthorAffiliation_xml – name: Uppsala University
– name: Materials Theory Division, Department of Physics and Astronomy
– name: School of Materials Science and Engineering
– name: Energy Research Institute @NTU (ERI@N)
– name: Department of Materials Science and Engineering
– name: Nanyang Technological University
Author_xml – sequence: 1
  givenname: Sudip
  orcidid: 0000-0002-6765-2084
  surname: Chakraborty
  fullname: Chakraborty, Sudip
  email: sudiphys@gmail.com, sudip.chakraborty@physics.uu.se
  organization: Uppsala University
– sequence: 2
  givenname: Wei
  orcidid: 0000-0003-1501-896X
  surname: Xie
  fullname: Xie, Wei
  organization: Department of Materials Science and Engineering
– sequence: 3
  givenname: Nripan
  orcidid: 0000-0001-5234-0822
  surname: Mathews
  fullname: Mathews, Nripan
  organization: Energy Research Institute @NTU (ERI@N)
– sequence: 4
  givenname: Matthew
  surname: Sherburne
  fullname: Sherburne, Matthew
  organization: Department of Materials Science and Engineering
– sequence: 5
  givenname: Rajeev
  surname: Ahuja
  fullname: Ahuja, Rajeev
  organization: Uppsala University
– sequence: 6
  givenname: Mark
  surname: Asta
  fullname: Asta, Mark
  email: mdasta@berkeley.edu
  organization: Department of Materials Science and Engineering
– sequence: 7
  givenname: Subodh G
  surname: Mhaisalkar
  fullname: Mhaisalkar, Subodh G
  organization: Energy Research Institute @NTU (ERI@N)
BookMark eNqFkNFKwzAUhoMoOOceQcgLdCZp07Xejbk5YaLo9LakyWmX2SUj6cS-hY9sdBP0Ss7Ff-D83-Gc_wwdG2sAoQtKhpQweimkBwOu7hpo2-GoJITE_Aj1WJyRKKM5P_7Vn6KB9-tgoWnGQ_XQx6NotTWiwdfgdW2u8BjPdb2Klitnd_Vqu2vxxG6C_PiepAMw2tRYGIWn71twegOmDaMX0Wj17cN30K6sso2tO1xZhxcgVDQL5J7ahIsDg-dd6bTCD-Dsm3_VLfhzdFKJxsPgoH30PJsuJ_NocX9zOxkvIpGQrI3SVJV5LjiLlaTAVJVIpqikpBI8jzmTlchYLEAmJfCKpjwblSNCcsLSPEtKEvcR3--VznrvoCq24Q_huoKS4ivZ4k-yxSHZwNE9F8bF2u5cyMT_w3wCrkqGlA
CitedBy_id crossref_primary_10_1016_j_joule_2018_05_008
crossref_primary_10_1021_acs_chemmater_7b02013
crossref_primary_10_1021_acs_chemmater_7b04036
crossref_primary_10_1002_cssc_201701653
crossref_primary_10_1016_j_mattod_2018_04_007
crossref_primary_10_1088_1361_6463_aaa727
crossref_primary_10_1002_wcms_1663
crossref_primary_10_1088_1402_4896_ad38e9
crossref_primary_10_1063_1_5127929
crossref_primary_10_1039_D1CP02198B
crossref_primary_10_1140_epjb_s10051_022_00381_2
crossref_primary_10_1088_1402_4896_acb6c5
crossref_primary_10_3390_en13143516
crossref_primary_10_1016_j_jechem_2021_01_035
crossref_primary_10_1016_j_nanoen_2024_109802
crossref_primary_10_1016_j_ejmech_2021_113705
crossref_primary_10_1039_C9TA01456J
crossref_primary_10_1063_5_0087381
crossref_primary_10_1002_advs_202103648
crossref_primary_10_1016_j_mtelec_2024_100095
crossref_primary_10_1002_adom_202202153
crossref_primary_10_1002_cmtd_202200008
crossref_primary_10_1088_1361_6463_abd0ad
crossref_primary_10_1021_acs_jpclett_7b01440
crossref_primary_10_1002_adfm_201804354
crossref_primary_10_1021_acsenergylett_8b01226
crossref_primary_10_1016_j_jssc_2021_121988
crossref_primary_10_1103_PhysRevB_103_165110
crossref_primary_10_1016_j_nanoen_2018_02_055
crossref_primary_10_2139_ssrn_3915002
crossref_primary_10_1016_j_actamat_2019_01_051
crossref_primary_10_1007_s10904_019_01187_z
crossref_primary_10_1039_C9NA00330D
crossref_primary_10_1016_j_jallcom_2018_08_322
crossref_primary_10_1021_acs_nanolett_7b04659
crossref_primary_10_1002_hlca_201700090
crossref_primary_10_1016_j_mtcomm_2021_102462
crossref_primary_10_1364_JOSAB_439672
crossref_primary_10_1039_C9CC03038G
crossref_primary_10_1039_D0TA07607D
crossref_primary_10_1002_chem_202000788
crossref_primary_10_1021_acsami_7b06001
crossref_primary_10_1021_acsenergylett_3c02666
crossref_primary_10_1016_j_joule_2018_11_010
crossref_primary_10_1038_s41597_022_01438_8
crossref_primary_10_1063_5_0053128
crossref_primary_10_1002_solr_202000606
crossref_primary_10_1016_j_jmrt_2022_05_082
crossref_primary_10_1088_1361_6463_ac1e4c
crossref_primary_10_1002_poc_4519
crossref_primary_10_1063_5_0027573
crossref_primary_10_1016_j_nanoen_2020_105380
crossref_primary_10_1021_acsenergylett_1c01108
crossref_primary_10_3390_cryst11111329
crossref_primary_10_1016_j_nanoen_2019_104070
crossref_primary_10_1016_j_jssc_2023_124003
crossref_primary_10_1021_acsenergylett_0c00402
crossref_primary_10_1016_j_applthermaleng_2022_119024
crossref_primary_10_1016_j_matchemphys_2024_128947
crossref_primary_10_7498_aps_68_20190853
crossref_primary_10_1007_s12274_020_3161_6
crossref_primary_10_1016_j_cjph_2023_11_007
crossref_primary_10_1021_acs_chemmater_9b00116
crossref_primary_10_1038_s41598_018_23211_x
crossref_primary_10_3762_bjnano_9_207
crossref_primary_10_1002_pssb_202200124
crossref_primary_10_1088_1402_4896_ac555b
crossref_primary_10_1002_cctc_201902363
crossref_primary_10_1002_adpr_202200172
crossref_primary_10_1002_aenm_201903161
crossref_primary_10_1021_acs_jpcc_1c04817
crossref_primary_10_1021_acsomega_1c05333
crossref_primary_10_1016_j_matdes_2023_112324
crossref_primary_10_1021_acsami_0c03622
crossref_primary_10_1002_adma_202302575
crossref_primary_10_1016_j_mtcomm_2021_102609
crossref_primary_10_1186_s40580_022_00314_w
crossref_primary_10_1021_jacs_7b10739
crossref_primary_10_1016_j_joule_2019_05_014
crossref_primary_10_1021_acs_jpcc_1c07262
crossref_primary_10_1021_acsenergylett_0c00899
crossref_primary_10_1016_j_jpcs_2021_110302
crossref_primary_10_1016_j_mattod_2022_09_008
crossref_primary_10_1021_acs_chemmater_9b04021
crossref_primary_10_3390_nano10122569
crossref_primary_10_1016_j_inoche_2022_110303
crossref_primary_10_1021_acs_jpcc_8b00480
crossref_primary_10_1103_PhysRevB_101_155137
crossref_primary_10_1016_j_matt_2021_03_009
crossref_primary_10_1016_j_apsusc_2021_150916
crossref_primary_10_1063_5_0205610
crossref_primary_10_1002_adts_202000022
crossref_primary_10_1002_aenm_201703385
crossref_primary_10_1016_j_rser_2019_03_036
crossref_primary_10_1088_1402_4896_ad43c7
crossref_primary_10_1016_j_cej_2022_138926
crossref_primary_10_1039_D2CP02484E
crossref_primary_10_1002_adfm_202104941
crossref_primary_10_1038_s41598_021_86145_x
crossref_primary_10_1016_j_rser_2019_109436
crossref_primary_10_1557_s43578_024_01334_4
crossref_primary_10_1021_acsami_9b02367
crossref_primary_10_1021_acs_jpclett_0c02497
crossref_primary_10_1021_acs_jpcc_8b12228
crossref_primary_10_1103_PhysRevMaterials_2_055401
crossref_primary_10_1021_acs_jpclett_7b02203
crossref_primary_10_1002_adfm_201905487
crossref_primary_10_1002_wcms_1500
crossref_primary_10_1016_j_jechem_2017_10_010
crossref_primary_10_1088_1402_4896_acd30f
crossref_primary_10_1021_acs_jpclett_0c00504
crossref_primary_10_1039_C9NR01031A
crossref_primary_10_1021_acs_chemmater_1c02467
crossref_primary_10_1016_j_mtchem_2020_100363
crossref_primary_10_1016_j_solmat_2018_12_038
crossref_primary_10_1063_5_0019132
crossref_primary_10_1021_acs_chemmater_8b04202
crossref_primary_10_1021_acsaem_1c03824
crossref_primary_10_1002_er_8008
crossref_primary_10_1039_D0TA10098F
crossref_primary_10_1021_acsphotonics_2c00484
crossref_primary_10_1039_D0TC03440A
crossref_primary_10_1007_s10904_024_03018_2
crossref_primary_10_1021_acs_jpcc_2c04502
crossref_primary_10_1039_C8CP06528D
crossref_primary_10_1088_2053_1591_ab48ba
crossref_primary_10_1002_qua_25621
crossref_primary_10_1002_mgea_11
crossref_primary_10_1002_solr_202000299
crossref_primary_10_1021_acs_chemmater_8b01505
crossref_primary_10_1002_cptc_202300104
crossref_primary_10_1021_acs_jpcc_8b11821
crossref_primary_10_1021_acs_inorgchem_3c01696
crossref_primary_10_3390_en15196963
crossref_primary_10_1021_acs_jpcc_3c05901
crossref_primary_10_1002_ente_201700423
crossref_primary_10_1016_j_joule_2024_02_017
crossref_primary_10_1016_j_commatsci_2021_110578
crossref_primary_10_1016_j_solener_2021_07_026
crossref_primary_10_1016_j_materresbull_2018_08_046
crossref_primary_10_1002_cssc_202102334
crossref_primary_10_1016_j_isci_2021_103340
crossref_primary_10_1016_j_jmrt_2022_04_114
crossref_primary_10_1021_acsenergylett_7b00382
crossref_primary_10_1021_acs_chemmater_1c02294
crossref_primary_10_1088_1402_4896_acad3a
crossref_primary_10_1016_j_heliyon_2023_e21702
crossref_primary_10_1021_acs_jpclett_8b02555
crossref_primary_10_1063_1_5086321
crossref_primary_10_1109_TDEI_2020_009253
crossref_primary_10_1039_D0TC04516K
crossref_primary_10_1021_acs_chemmater_9b04472
crossref_primary_10_1002_wcms_1489
crossref_primary_10_1063_5_0044989
crossref_primary_10_1002_adfm_202011168
crossref_primary_10_1021_acsenergylett_1c00977
crossref_primary_10_1002_adma_201702905
crossref_primary_10_1021_jacs_9b06276
crossref_primary_10_1021_acsami_0c07501
crossref_primary_10_1016_j_commatsci_2022_111872
crossref_primary_10_1103_PhysRevApplied_13_014005
crossref_primary_10_1134_S0036024421130240
crossref_primary_10_1021_acsaem_9b01479
crossref_primary_10_1002_pssa_202200425
crossref_primary_10_1016_j_mattod_2024_02_002
crossref_primary_10_1016_j_mattod_2020_11_026
crossref_primary_10_1021_jacs_8b01034
crossref_primary_10_1039_C7TA03114A
crossref_primary_10_1021_acsaem_2c04066
crossref_primary_10_1021_acsenergylett_7b00246
crossref_primary_10_1016_j_ssc_2023_115162
crossref_primary_10_1002_slct_202003376
crossref_primary_10_1021_acsenergylett_0c00577
crossref_primary_10_1038_s41928_023_01001_2
crossref_primary_10_1002_aenm_201803150
crossref_primary_10_1021_acs_jpcc_9b10860
crossref_primary_10_1063_1_5140441
crossref_primary_10_1088_1361_6528_ac88db
crossref_primary_10_1063_1_5027261
crossref_primary_10_1038_s41467_018_05761_w
crossref_primary_10_1002_advs_202002510
crossref_primary_10_1016_j_jpcs_2020_109860
crossref_primary_10_1002_smtd_201700316
crossref_primary_10_1021_acscombsci_9b00068
crossref_primary_10_1016_j_mattod_2019_10_021
Cites_doi 10.1021/jacs.5b13294
10.1039/9781782624066-00234
10.1002/pssr.201600166
10.1021/acs.chemmater.5b04231
10.1126/science.1243167
10.1021/acs.chemmater.5b03147
10.1021/nl5039314
10.1021/jacs.6b06291
10.1038/369467a0
10.1039/C5TA05741H
10.1021/acsami.6b06714
10.1021/acsenergylett.6b00471
10.1002/adma.201602696
10.1038/scientificamerican1213-36
10.3389/fmats.2016.00019
10.1103/PhysRevLett.108.068701
10.1039/C6MH00519E
10.1557/jmr.2016.80
10.1126/science.1243982
10.1002/adma.201501978
10.1038/natrevmats.2015.4
10.1002/minf.201400174
10.1021/acs.nanolett.5b03271
10.1007/s11837-013-0755-4
10.1039/C4CS00458B
10.1021/acs.jpcc.5b11845
10.1002/adma.201601418
10.1021/nl500390f
10.1039/9781782624066-00202
10.1038/nature14133
10.1002/adfm.201604818
10.1002/adma.201600669
10.1007/978-3-319-35114-8_1
10.1021/ja507086b
10.1021/ic50089a034
10.1103/PhysRevB.86.165211
10.1103/PhysRevLett.105.196403
10.1039/C4EE01076K
10.1002/9781119148739.ch4
10.1039/C6EE02693A
10.1039/C5RA19778C
10.1002/adma.201401991
10.1038/nmat3568
10.1002/cssc.201600933
10.1002/cssc.201601025
10.1126/science.aad5845
10.1126/science.aah5557
10.1002/cssc.201600771
10.1038/ncomms6757
10.1021/ja809598r
10.4018/978-1-5225-0290-6.ch007
10.1021/acs.inorgchem.5b01896
10.1021/acs.jpcc.6b02175
10.1063/1.4893495
10.1021/acs.nanolett.5b00616
10.1021/ja508464w
10.1007/978-3-319-23871-5
10.1021/jp5126624
10.1021/acs.chemmater.6b03310
10.1021/acs.chemmater.6b00433
10.1021/acsenergylett.6b00170
10.1002/adma.201306281
10.1021/jz402706q
10.1021/jacs.6b08337
10.1021/acs.jpclett.6b00376
10.1039/C6TA05817E
10.1002/ente.201500045
10.1039/c0cs00163e
10.1039/C5TC04172D
10.1126/science.aah4046
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsenergylett.7b00035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2380-8195
EndPage 845
ExternalDocumentID 10_1021_acsenergylett_7b00035
b931387544
GroupedDBID ABUCX
ACGFS
ACS
AFEFF
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
VF5
VG9
AAYXX
ABQRX
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a408t-66db99a523dc1e2df4c2d1c10fa59352cfa823aec4be5f16587b7009026984b03
IEDL.DBID ACS
ISSN 2380-8195
IngestDate Fri Aug 23 05:01:33 EDT 2024
Thu Aug 27 13:42:19 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a408t-66db99a523dc1e2df4c2d1c10fa59352cfa823aec4be5f16587b7009026984b03
ORCID 0000-0001-5234-0822
0000-0002-6765-2084
0000-0003-1501-896X
OpenAccessLink https://dr.ntu.edu.sg/bitstream/10356/140264/2/ACS%20energy%20letter.pdf
PageCount 9
ParticipantIDs crossref_primary_10_1021_acsenergylett_7b00035
acs_journals_10_1021_acsenergylett_7b00035
ProviderPackageCode ACS
VG9
ABUCX
AFEFF
VF5
PublicationCentury 2000
PublicationDate 2017-04-14
PublicationDateYYYYMMDD 2017-04-14
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-14
  day: 14
PublicationDecade 2010
PublicationTitle ACS energy letters
PublicationTitleAlternate ACS Energy Lett
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
Balachandran P. (ref48/cit48) 2016; 1
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
Mueller T. (ref46/cit46) 2016; 29
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref38/cit38
  doi: 10.1021/jacs.5b13294
– ident: ref53/cit53
  doi: 10.1039/9781782624066-00234
– ident: ref31/cit31
  doi: 10.1002/pssr.201600166
– ident: ref34/cit34
  doi: 10.1021/acs.chemmater.5b04231
– ident: ref8/cit8
  doi: 10.1126/science.1243167
– ident: ref27/cit27
  doi: 10.1021/acs.chemmater.5b03147
– ident: ref6/cit6
  doi: 10.1021/nl5039314
– ident: ref41/cit41
  doi: 10.1021/jacs.6b06291
– ident: ref17/cit17
  doi: 10.1038/369467a0
– ident: ref15/cit15
  doi: 10.1039/C5TA05741H
– ident: ref63/cit63
  doi: 10.1021/acsami.6b06714
– ident: ref36/cit36
  doi: 10.1021/acsenergylett.6b00471
– ident: ref10/cit10
  doi: 10.1002/adma.201602696
– ident: ref49/cit49
  doi: 10.1038/scientificamerican1213-36
– ident: ref59/cit59
  doi: 10.3389/fmats.2016.00019
– ident: ref56/cit56
  doi: 10.1103/PhysRevLett.108.068701
– ident: ref65/cit65
  doi: 10.1039/C6MH00519E
– ident: ref47/cit47
  doi: 10.1557/jmr.2016.80
– ident: ref9/cit9
  doi: 10.1126/science.1243982
– ident: ref66/cit66
  doi: 10.1002/adma.201501978
– ident: ref50/cit50
  doi: 10.1038/natrevmats.2015.4
– ident: ref62/cit62
  doi: 10.1002/minf.201400174
– ident: ref22/cit22
  doi: 10.1021/acs.nanolett.5b03271
– ident: ref19/cit19
  doi: 10.1002/adma.201602696
– ident: ref51/cit51
  doi: 10.1007/s11837-013-0755-4
– ident: ref2/cit2
  doi: 10.1039/C4CS00458B
– ident: ref55/cit55
  doi: 10.1021/acs.jpcc.5b11845
– ident: ref42/cit42
  doi: 10.1002/adma.201601418
– ident: ref7/cit7
  doi: 10.1021/nl500390f
– ident: ref52/cit52
  doi: 10.1039/9781782624066-00202
– ident: ref12/cit12
  doi: 10.1038/nature14133
– ident: ref64/cit64
  doi: 10.1002/adfm.201604818
– ident: ref25/cit25
  doi: 10.1002/adma.201600669
– ident: ref54/cit54
  doi: 10.1007/978-3-319-35114-8_1
– ident: ref5/cit5
  doi: 10.1021/ja507086b
– ident: ref33/cit33
  doi: 10.1021/ic50089a034
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.86.165211
– ident: ref43/cit43
  doi: 10.1103/PhysRevLett.105.196403
– ident: ref23/cit23
  doi: 10.1039/C4EE01076K
– volume: 29
  volume-title: Machine Machine Learning in Materials Science
  year: 2016
  ident: ref46/cit46
  doi: 10.1002/9781119148739.ch4
  contributor:
    fullname: Mueller T.
– ident: ref68/cit68
  doi: 10.1039/C6EE02693A
– ident: ref18/cit18
  doi: 10.1039/C5RA19778C
– ident: ref60/cit60
  doi: 10.1002/adma.201401991
– ident: ref44/cit44
  doi: 10.1038/nmat3568
– ident: ref70/cit70
  doi: 10.1002/cssc.201600933
– ident: ref21/cit21
  doi: 10.1002/cssc.201601025
– ident: ref13/cit13
  doi: 10.1126/science.aad5845
– ident: ref14/cit14
  doi: 10.1126/science.aah5557
– ident: ref39/cit39
  doi: 10.1002/cssc.201600771
– ident: ref58/cit58
  doi: 10.1038/ncomms6757
– ident: ref1/cit1
  doi: 10.1021/ja809598r
– volume: 1
  start-page: 192
  volume-title: Computational Approaches to Materials Design: Theoretical and Practical Aspects
  year: 2016
  ident: ref48/cit48
  doi: 10.4018/978-1-5225-0290-6.ch007
  contributor:
    fullname: Balachandran P.
– ident: ref26/cit26
  doi: 10.1021/acs.inorgchem.5b01896
– ident: ref30/cit30
  doi: 10.1021/acs.jpcc.6b02175
– ident: ref57/cit57
  doi: 10.1063/1.4893495
– ident: ref4/cit4
  doi: 10.1021/acs.nanolett.5b00616
– ident: ref29/cit29
  doi: 10.1021/ja508464w
– ident: ref45/cit45
  doi: 10.1007/978-3-319-23871-5
– ident: ref61/cit61
  doi: 10.1021/jp5126624
– ident: ref28/cit28
  doi: 10.1021/acs.chemmater.6b03310
– ident: ref32/cit32
  doi: 10.1021/acs.chemmater.6b00433
– ident: ref67/cit67
  doi: 10.1021/acsenergylett.6b00170
– ident: ref11/cit11
  doi: 10.1002/adma.201306281
– ident: ref24/cit24
  doi: 10.1021/jz402706q
– ident: ref20/cit20
  doi: 10.1021/jacs.6b08337
– ident: ref37/cit37
  doi: 10.1021/acs.jpclett.6b00376
– ident: ref40/cit40
  doi: 10.1039/C6TA05817E
– ident: ref71/cit71
  doi: 10.1002/ente.201500045
– ident: ref3/cit3
  doi: 10.1039/c0cs00163e
– ident: ref16/cit16
  doi: 10.1039/C5TC04172D
– ident: ref69/cit69
  doi: 10.1126/science.aah4046
SSID ssj0001685858
Score 2.5083222
Snippet Perovskite solar cells, with efficiencies of 22.1%, are the only solution-processable technology to outperform multicrystalline silicon and thin-film solar...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 837
Title Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites
URI http://dx.doi.org/10.1021/acsenergylett.7b00035
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZoWWDgRpRLHpiQ3MZHYoet6qEuIEQLYosc2xnbqkmR-Bf8ZHykIgxFYvezkuck78s7vg-AOy2UopLkyOiYIoYlRjnHBeKEpEnBk1gRN-88mfKndzEcOZqc3pYKPsE9qUrjx-DsfVRdHopfLbBLuEULDgsNpj9JFc-m7lXoqIiQqxFtpna27eSikiobUakRXsaH_76wI3BQI0nYD0d_DHbM_ATsN_gFT8HXS53qg0PfqPEA-9A1dqBZUOdZrisYZB0266bK9eFYYyjnGo4a9P_wzSL2IMAEH73stE_IQwt6odPpRGNrGazCRGcFJ59uHAw-m9Xio3RZ4vIMvI5Hs8EE1RIMSLJIVChJdJ6m0v6taoUN0QWzZ4cVjgoZpxa7qUIKQqVRLDdxgS2c4TmPXK9nkgqWR_QctOeLubkAUBn7bZU8FTZYsohqaZdLmitGtRBxXHTAvfVoVr9CZear4wRnv9yc1W7ugO7mvLJloOX42-DyP7tfgT3iorejdGTXoF2t1uYGtEq9vvXP2zcWKtjx
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVoOQAHdkRZfeCE5BJndbhVXRREWyFaELfIsZ1jWjUpEn_BJzN2ErUcQIJr5Bk5XjIvsz2EbiQTwuF2QpT0HOJSTkkS0JQEth36aeB7wtb1ztEkGL-xXl-3yfHrWhiYRA6achPEX3UXoHfwTJlqOHidoh2UMbAG2vR8AMQaEnUnK9-KaapuyOgcZhEdKqqLd37SpI2TyNeM05qVGez9d377aLfClbhTHoQDtKGyQ7Sz1m3wCH0-V44_3DNpG_e4g3WaB5mWXD3zZYFLkod63ETorBwQxjyTuL9GBoBfAb-XdEx4ZEiojXseAwTGmrWTDECylCrrOwscfejiMPykFrP3XPuM82P0MuhPuxGpCBkIdy1WEN-XSRhy-HeVgipbpi7sJBXUSrkXApITKWe2w5VwE-WlFMBNkASWzvz0Q-YmlnOCmtksU6cICwVfWh6EDEynazmSw3DuJMJ1JGOel7bQLaxoXF2oPDaxcpvG35Y5rpa5hdr1tsXzsknH7wJnf9F-jbai6WgYDx_Gj-do29Z2XTd7dC9Qs1gs1SVq5HJ5ZY7gF5x84V4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSAgO7Iiy-sAJySXOZqe3qm1UBFQVLYhb5Hg5plWTIvEXfDK2k4hwAAlxjTwjZ7zMeLYHwLWgnHvMTZEUgYd8zDBKCVaIuG4UKhIG3DX1zqMpGb_SwdC0yenWtTB6ErnmlNsgvjnVC6GqDgP4Vn-XtiJO_1LRIWUcbB1sBCGJzMOr159--VdsY3ULSOdRB5lwUV3A8xMno6B43lBQDU0T7_5njntgp7IvYa_cEPtgTWYHYLvRdfAQfDxVDkA4sOkbXdiDJt0DzUrMnsWqgCXYQz1uyk12jiaGLBNw2AAFgC_aji9hmeCjBaO2bnqoTWFo0DtRrClLqrLOs4Cjd1MkBidyOX_Lje84PwLP8XDWH6EKmAEx36EFCkORRhHTb1jBsXSF8vWKYo4dxYJIW3RcMep6THI_lYHC2sghKXFMBmgYUT91vGPQyuaZPAGQS33jMhJRrUJ9xxNMD2deyn1PUBoEqg1utEST6mDliY2Zuzj5JuakEnMbdOqlSxZls47fCU7_wv0KbE4GcfJwN74_A1uuUe-m56N_DlrFciUvwHouVpd2F34C2snj4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design%3A+A+High-Throughput+Computational+Screening+and+Experimental+Validation+Methodology+for+Lead-Free+and+Emergent+Hybrid+Perovskites&rft.jtitle=ACS+energy+letters&rft.au=Chakraborty%2C+Sudip&rft.au=Xie%2C+Wei&rft.au=Mathews%2C+Nripan&rft.au=Sherburne%2C+Matthew&rft.date=2017-04-14&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=2&rft.issue=4&rft.spage=837&rft.epage=845&rft_id=info:doi/10.1021%2Facsenergylett.7b00035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsenergylett_7b00035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon