Unveiling in Vivo Subcutaneous Thermal Dynamics by Infrared Luminescent Nanothermometers

The recent development of core/shell engineering of rare earth doped luminescent nanoparticles has ushered a new era in fluorescence thermal biosensing, allowing for the performance of minimally invasive experiments, not only in living cells but also in more challenging small animal models. Here, th...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters Vol. 16; no. 3; pp. 1695 - 1703
Main Authors: Ximendes, Erving Clayton, Santos, Weslley Queiroz, Rocha, Uéslen, Kagola, Upendra Kumar, Sanz-Rodríguez, Francisco, Fernández, Nuria, Gouveia-Neto, Artur da Silva, Bravo, David, Domingo, Agustín Martín, del Rosal, Blanca, Brites, Carlos D. S, Carlos, Luís Dias, Jaque, Daniel, Jacinto, Carlos
Format: Journal Article
Language:English
Published: United States American Chemical Society 09-03-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The recent development of core/shell engineering of rare earth doped luminescent nanoparticles has ushered a new era in fluorescence thermal biosensing, allowing for the performance of minimally invasive experiments, not only in living cells but also in more challenging small animal models. Here, the potential use of active-core/active-shell Nd3+- and Yb3+-doped nanoparticles as subcutaneous thermal probes has been evaluated. These temperature nanoprobes operate in the infrared transparency window of biological tissues, enabling deep temperature sensing into animal bodies thanks to the temperature dependence of their emission spectra that leads to a ratiometric temperature readout. The ability of active-core/active-shell Nd3+- and Yb3+-doped nanoparticles for unveiling fundamental tissue properties in in vivo conditions was demonstrated by subcutaneous thermal relaxation monitoring through the injected core/shell nanoparticles. The reported results evidence the potential of infrared luminescence nanothermometry as a diagnosis tool at the small animal level.
AbstractList The recent development of core/shell engineering of rare earth doped luminescent nanoparticles has ushered a new era in fluorescence thermal biosensing, allowing for the performance of minimally invasive experiments, not only in living cells but also in more challenging small animal models. Here, the potential use of active-core/active-shell Nd super(3+)- and Yb super(3+)-doped nanoparticles as subcutaneous thermal probes has been evaluated. These temperature nanoprobes operate in the infrared transparency window of biological tissues, enabling deep temperature sensing into animal bodies thanks to the temperature dependence of their emission spectra that leads to a ratiometric temperature readout. The ability of active-core/active-shell Nd super(3+)- and Yb super(3+)-doped nanoparticles for unveiling fundamental tissue properties in in vivo conditions was demonstrated by subcutaneous thermal relaxation monitoring through the injected core/shell nanoparticles. The reported results evidence the potential of infrared luminescence nanothermometry as a diagnosis tool at the small animal level. Keywords: Nanothermometry; rare earth nanoparticles; second biological window; subcutaneous thermal sensing
The recent development of core/shell engineering of rare earth doped luminescent nanoparticles has ushered a new era in fluorescence thermal biosensing, allowing for the performance of minimally invasive experiments, not only in living cells but also in more challenging small animal models. Here, the potential use of active-core/active-shell Nd(3+)- and Yb(3+)-doped nanoparticles as subcutaneous thermal probes has been evaluated. These temperature nanoprobes operate in the infrared transparency window of biological tissues, enabling deep temperature sensing into animal bodies thanks to the temperature dependence of their emission spectra that leads to a ratiometric temperature readout. The ability of active-core/active-shell Nd(3+)- and Yb(3+)-doped nanoparticles for unveiling fundamental tissue properties in in vivo conditions was demonstrated by subcutaneous thermal relaxation monitoring through the injected core/shell nanoparticles. The reported results evidence the potential of infrared luminescence nanothermometry as a diagnosis tool at the small animal level.
The recent development of core/shell engineering of rare earth doped luminescent nanoparticles has ushered a new era in fluorescence thermal biosensing, allowing for the performance of minimally invasive experiments, not only in living cells but also in more challenging small animal models. Here, the potential use of active-core/active-shell Nd3+- and Yb3+-doped nanoparticles as subcutaneous thermal probes has been evaluated. These temperature nanoprobes operate in the infrared transparency window of biological tissues, enabling deep temperature sensing into animal bodies thanks to the temperature dependence of their emission spectra that leads to a ratiometric temperature readout. The ability of active-core/active-shell Nd3+- and Yb3+-doped nanoparticles for unveiling fundamental tissue properties in in vivo conditions was demonstrated by subcutaneous thermal relaxation monitoring through the injected core/shell nanoparticles. The reported results evidence the potential of infrared luminescence nanothermometry as a diagnosis tool at the small animal level.
Author Ximendes, Erving Clayton
Rocha, Uéslen
Bravo, David
Domingo, Agustín Martín
Brites, Carlos D. S
Carlos, Luís Dias
del Rosal, Blanca
Jacinto, Carlos
Fernández, Nuria
Santos, Weslley Queiroz
Sanz-Rodríguez, Francisco
Kagola, Upendra Kumar
Gouveia-Neto, Artur da Silva
Jaque, Daniel
AuthorAffiliation Grupo de Fotônica e Fluidos Complexos, Instituto de Física
University of Aveiro
Universidade Federal de Alagoas
Departamento de Física and CICECOAveiro Institute of Materials
Fluorescence Imaging Group, Departamento de Física de Materiales, Faculdad de Ciencias
Universidad Autónoma de Madrid
AuthorAffiliation_xml – name: Universidad Autónoma de Madrid
– name: Grupo de Fotônica e Fluidos Complexos, Instituto de Física
– name: Universidade Federal de Alagoas
– name: Departamento de Física and CICECOAveiro Institute of Materials
– name: Fluorescence Imaging Group, Departamento de Física de Materiales, Faculdad de Ciencias
– name: University of Aveiro
Author_xml – sequence: 1
  givenname: Erving Clayton
  surname: Ximendes
  fullname: Ximendes, Erving Clayton
– sequence: 2
  givenname: Weslley Queiroz
  surname: Santos
  fullname: Santos, Weslley Queiroz
– sequence: 3
  givenname: Uéslen
  surname: Rocha
  fullname: Rocha, Uéslen
– sequence: 4
  givenname: Upendra Kumar
  surname: Kagola
  fullname: Kagola, Upendra Kumar
– sequence: 5
  givenname: Francisco
  surname: Sanz-Rodríguez
  fullname: Sanz-Rodríguez, Francisco
– sequence: 6
  givenname: Nuria
  surname: Fernández
  fullname: Fernández, Nuria
– sequence: 7
  givenname: Artur da Silva
  surname: Gouveia-Neto
  fullname: Gouveia-Neto, Artur da Silva
– sequence: 8
  givenname: David
  surname: Bravo
  fullname: Bravo, David
– sequence: 9
  givenname: Agustín Martín
  surname: Domingo
  fullname: Domingo, Agustín Martín
– sequence: 10
  givenname: Blanca
  surname: del Rosal
  fullname: del Rosal, Blanca
– sequence: 11
  givenname: Carlos D. S
  surname: Brites
  fullname: Brites, Carlos D. S
– sequence: 12
  givenname: Luís Dias
  surname: Carlos
  fullname: Carlos, Luís Dias
– sequence: 13
  givenname: Daniel
  surname: Jaque
  fullname: Jaque, Daniel
  email: daniel.jaque@uam.es
– sequence: 14
  givenname: Carlos
  surname: Jacinto
  fullname: Jacinto, Carlos
  email: cjacinto@fis.ufal.br
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26845418$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtOwzAUhi1URC_wBgh5ZEmxEztxRlRulSoYaBFb5CTHkCpxiu1U6tvjKm1HmM4Zvv9cvjEa6FYDQteUTCkJ6Z0s7FRL3dbg3JTnhMWUnqER5REJ4jQNB6desCEaW7smhKQRJxdoGMaCcUbFCH2u9BaqutJfuNL4o9q2-L3Li85JDW1n8fIbTCNr_LDTsqkKi_MdnmtlpIESL7qm0mAL0A6_-lPcHm4bcGDsJTpXsrZwdagTtHp6XM5egsXb83x2vwgkI4kLEkkiCGXERZynIuEk5QKSkklJuUoLJSUIFZdJDLJQuSp4SEHleRxT4fmIRhN028_dmPanA-uypvIX1XX_QEYFETRkEef_o0kSUiZ4yjzKerQwrbUGVLYxVSPNLqMk2-vPvP7sqD876Pexm8OGLm-gPIWOvj1AemAfX7ed0d7N3zN_AdiWmBI
CitedBy_id crossref_primary_10_1002_chem_201802219
crossref_primary_10_1039_C9NR00082H
crossref_primary_10_1021_acs_jpcb_1c07659
crossref_primary_10_1016_j_isci_2020_100962
crossref_primary_10_1021_acs_jpcc_3c02449
crossref_primary_10_1016_j_jallcom_2020_157637
crossref_primary_10_1039_D0RA08550B
crossref_primary_10_1039_D2TC02760G
crossref_primary_10_1002_adom_202101870
crossref_primary_10_1002_adma_202100077
crossref_primary_10_1002_adts_202000176
crossref_primary_10_1039_C6TC03396B
crossref_primary_10_1016_j_optmat_2018_09_013
crossref_primary_10_1002_adma_202309452
crossref_primary_10_1002_ejic_202000113
crossref_primary_10_1016_j_physrep_2022_02_004
crossref_primary_10_1002_adom_201600508
crossref_primary_10_1088_2050_6120_ab0bfa
crossref_primary_10_1002_adfm_201807105
crossref_primary_10_1039_C7NR08758F
crossref_primary_10_1016_j_jlumin_2017_06_024
crossref_primary_10_1021_acsami_7b12753
crossref_primary_10_1039_C9NR07973D
crossref_primary_10_1039_D2NA00941B
crossref_primary_10_3389_fphot_2023_1131853
crossref_primary_10_1016_j_jallcom_2021_162494
crossref_primary_10_1021_acsami_7b07172
crossref_primary_10_1364_PRJ_8_000032
crossref_primary_10_1016_j_trac_2023_117368
crossref_primary_10_1002_adhm_202302276
crossref_primary_10_1002_adma_201801140
crossref_primary_10_1039_C8NR02307G
crossref_primary_10_1021_acsami_1c23498
crossref_primary_10_1038_s41598_017_13284_5
crossref_primary_10_1002_adfm_201604629
crossref_primary_10_1155_2018_8516498
crossref_primary_10_1016_j_snb_2016_07_053
crossref_primary_10_1016_j_jlumin_2022_119037
crossref_primary_10_1039_D2AN01717B
crossref_primary_10_1016_j_cej_2020_124506
crossref_primary_10_1021_acsami_6b06075
crossref_primary_10_1063_1_4973452
crossref_primary_10_1002_adma_201705256
crossref_primary_10_3390_ma14040706
crossref_primary_10_1021_acsnano_6b06670
crossref_primary_10_1039_C7CP01167A
crossref_primary_10_1039_C9NR02801C
crossref_primary_10_1016_j_cej_2019_123272
crossref_primary_10_2174_1877946809666190708131511
crossref_primary_10_1021_acsanm_1c00027
crossref_primary_10_1002_ppsc_201900445
crossref_primary_10_1002_adom_201800190
crossref_primary_10_1002_smll_201800868
crossref_primary_10_1002_adfm_201702249
crossref_primary_10_1088_2050_6120_ab8c20
crossref_primary_10_1039_C9MH01167F
crossref_primary_10_1021_acsabm_4c00201
crossref_primary_10_1039_D2TC00952H
crossref_primary_10_1021_acsapm_0c00680
crossref_primary_10_1007_s11426_020_9948_8
crossref_primary_10_1039_D0NR09150B
crossref_primary_10_1039_C8NR00871J
crossref_primary_10_1016_j_jallcom_2019_01_162
crossref_primary_10_1016_j_optmat_2016_06_004
crossref_primary_10_1002_adma_202000678
crossref_primary_10_1002_smll_202004118
crossref_primary_10_1039_D4DT00191E
crossref_primary_10_1016_j_jallcom_2017_08_007
crossref_primary_10_1016_j_msec_2021_112095
crossref_primary_10_2217_nnm_2019_0416
crossref_primary_10_1021_acsami_8b18184
crossref_primary_10_1039_D2TC04291F
crossref_primary_10_1016_j_sna_2019_07_037
crossref_primary_10_1039_C8TC01981A
crossref_primary_10_1002_adma_202302749
crossref_primary_10_1016_j_trac_2023_117338
crossref_primary_10_1002_smll_202107963
crossref_primary_10_3390_photonics11050436
crossref_primary_10_1088_1361_6528_ac49c3
crossref_primary_10_1039_C6TC01484D
crossref_primary_10_1002_adma_201605434
crossref_primary_10_1039_C7TB00403F
crossref_primary_10_1016_j_jlumin_2018_04_051
crossref_primary_10_1039_C6CP00898D
crossref_primary_10_1364_OL_42_004837
crossref_primary_10_1021_acsami_8b03239
crossref_primary_10_1021_acsami_7b13649
crossref_primary_10_1021_acs_nanolett_0c04477
crossref_primary_10_1016_j_ccr_2022_214486
crossref_primary_10_1016_j_mtphys_2022_100872
crossref_primary_10_1002_adom_201901687
crossref_primary_10_1016_j_jnoncrysol_2018_03_007
crossref_primary_10_1016_j_jlumin_2024_120544
crossref_primary_10_1021_acs_chemmater_6b03625
crossref_primary_10_1093_nsr_nwaa194
crossref_primary_10_3390_nano10030543
crossref_primary_10_1021_acsnano_9b08824
crossref_primary_10_1016_j_addr_2021_03_008
crossref_primary_10_1016_j_optmat_2016_11_019
crossref_primary_10_1021_acssensors_1c00415
crossref_primary_10_1021_acsnano_0c08349
crossref_primary_10_1038_s41598_022_20821_4
crossref_primary_10_1039_D0CP03316B
crossref_primary_10_1002_adom_201900917
crossref_primary_10_1039_D3CE00497J
crossref_primary_10_1021_acsomega_8b02416
crossref_primary_10_1364_OL_43_000186
crossref_primary_10_1007_s12274_022_4882_7
crossref_primary_10_1016_j_optmat_2020_110724
crossref_primary_10_1016_j_snb_2018_04_157
crossref_primary_10_1016_j_omx_2023_100236
crossref_primary_10_1016_j_materresbull_2019_01_032
crossref_primary_10_1021_acs_nanolett_3c00190
crossref_primary_10_1016_j_jre_2020_12_011
crossref_primary_10_1016_j_ccr_2021_214040
crossref_primary_10_1039_D0CP04048G
crossref_primary_10_1016_j_cej_2022_139133
crossref_primary_10_1016_j_cplett_2022_140198
crossref_primary_10_1021_acsami_0c15514
crossref_primary_10_1063_5_0146076
crossref_primary_10_1016_j_optmat_2021_111328
crossref_primary_10_1016_j_omx_2023_100243
crossref_primary_10_1038_s41467_024_46727_5
crossref_primary_10_1021_acsphotonics_7b00222
crossref_primary_10_1016_j_jre_2020_06_014
crossref_primary_10_1155_2017_3108586
crossref_primary_10_1039_C8TB03261K
crossref_primary_10_1039_D0NJ04110F
crossref_primary_10_1002_advs_201802282
crossref_primary_10_1002_advs_202001589
crossref_primary_10_1039_D2NH00283C
crossref_primary_10_1039_C9CP01993F
crossref_primary_10_1039_C8CP00558C
crossref_primary_10_1016_j_jlumin_2017_04_002
crossref_primary_10_1016_j_optmat_2016_08_038
crossref_primary_10_1016_j_sna_2016_08_031
crossref_primary_10_1039_D1MH01654G
crossref_primary_10_1039_D0NR05035K
crossref_primary_10_1039_D0CC07699F
crossref_primary_10_1002_smll_201603944
crossref_primary_10_1002_adfm_201803924
crossref_primary_10_1002_chem_202104237
crossref_primary_10_1038_s41467_019_13796_w
crossref_primary_10_1016_j_sna_2020_112445
crossref_primary_10_1063_5_0095439
crossref_primary_10_1016_j_bsecv_2021_07_004
crossref_primary_10_1002_adom_202200770
crossref_primary_10_1016_j_apmt_2018_07_008
crossref_primary_10_1002_ange_201712550
crossref_primary_10_1016_j_jlumin_2021_118652
crossref_primary_10_1002_adom_201801239
crossref_primary_10_1038_s41467_020_19952_x
crossref_primary_10_1039_C6CP07213E
crossref_primary_10_1088_2050_6120_aa9ef9
crossref_primary_10_1149_2162_8777_ac2327
crossref_primary_10_1039_C7TB00070G
crossref_primary_10_1016_j_snb_2016_12_006
crossref_primary_10_1002_smll_201602843
crossref_primary_10_1021_acs_jpcc_8b02328
crossref_primary_10_1016_j_jlumin_2016_07_034
crossref_primary_10_1021_acs_analchem_0c02143
crossref_primary_10_1038_s41578_020_00233_4
crossref_primary_10_1021_acsphotonics_9b00763
crossref_primary_10_1016_j_snb_2016_05_095
crossref_primary_10_1103_PhysRevX_8_011042
crossref_primary_10_1016_j_jlumin_2020_117600
crossref_primary_10_1039_C7RA06741K
crossref_primary_10_1038_s41467_018_05160_1
crossref_primary_10_1016_j_jallcom_2017_11_048
crossref_primary_10_1039_D0CC04459H
crossref_primary_10_1039_D2TC01289H
crossref_primary_10_1016_j_jlumin_2022_119665
crossref_primary_10_1016_j_jallcom_2017_09_156
crossref_primary_10_1002_lpor_202100301
crossref_primary_10_1039_C9NR05733A
crossref_primary_10_1016_j_jre_2019_12_011
crossref_primary_10_1016_j_optmat_2024_115143
crossref_primary_10_1007_s10853_018_2702_9
crossref_primary_10_1038_s41592_020_0957_y
crossref_primary_10_1021_acsnano_3c05622
crossref_primary_10_1039_D0RA10039K
crossref_primary_10_1016_j_jallcom_2019_152691
crossref_primary_10_1021_acs_chemrev_1c00644
crossref_primary_10_1002_smll_202304237
crossref_primary_10_1016_j_cej_2020_126197
crossref_primary_10_1021_acs_analchem_0c03912
crossref_primary_10_1016_j_ceramint_2022_08_110
crossref_primary_10_1016_j_jlumin_2020_117358
crossref_primary_10_1002_anie_201712550
crossref_primary_10_1371_journal_pone_0225729
crossref_primary_10_3390_photonics10040375
crossref_primary_10_1016_j_jlumin_2021_118162
crossref_primary_10_1002_adfm_201807376
crossref_primary_10_1002_adma_202301819
crossref_primary_10_1016_j_jlumin_2020_117475
crossref_primary_10_1002_adhm_201601195
crossref_primary_10_1007_s11051_021_05249_7
crossref_primary_10_1016_j_sna_2024_115594
crossref_primary_10_1016_j_optmat_2018_01_013
crossref_primary_10_1002_adom_201600601
crossref_primary_10_1039_C9TB02274K
crossref_primary_10_1039_C9CP01808E
crossref_primary_10_1016_j_cej_2019_123893
crossref_primary_10_1021_acs_jpcc_9b04002
crossref_primary_10_1021_acsomega_2c03990
crossref_primary_10_1021_acs_bioconjchem_1c00393
crossref_primary_10_1002_marc_201700370
crossref_primary_10_1016_j_jlumin_2020_117221
crossref_primary_10_1063_1_4954170
crossref_primary_10_1038_s41598_018_35354_y
crossref_primary_10_1002_lsm_23762
crossref_primary_10_1021_acs_chemrev_2c00419
crossref_primary_10_3389_fmats_2021_767812
crossref_primary_10_1039_C8DT01991F
crossref_primary_10_1016_j_jallcom_2022_164926
crossref_primary_10_1021_acsami_6b12176
crossref_primary_10_1039_C9NR04768A
crossref_primary_10_1016_j_snb_2017_04_160
crossref_primary_10_1016_j_optlastec_2022_108844
crossref_primary_10_1021_acs_inorgchem_3c01789
crossref_primary_10_1002_adom_202102856
crossref_primary_10_1039_C8NR07445C
crossref_primary_10_1039_C8NR07566B
crossref_primary_10_1002_adom_201901173
crossref_primary_10_1039_D1BM01912K
crossref_primary_10_1021_acs_jpcc_8b05345
crossref_primary_10_1016_j_cej_2016_12_064
crossref_primary_10_1016_j_jlumin_2019_01_005
crossref_primary_10_1016_j_jlumin_2018_01_049
crossref_primary_10_1016_j_optmat_2017_01_035
crossref_primary_10_1016_j_cej_2018_09_076
crossref_primary_10_1016_j_jlumin_2018_12_054
crossref_primary_10_1039_C9CP01806A
crossref_primary_10_1007_s00216_017_0482_8
crossref_primary_10_1021_acs_analchem_9b04470
crossref_primary_10_1021_acsanm_0c00853
crossref_primary_10_1007_s40843_019_9414_4
crossref_primary_10_1039_D0TC04082G
crossref_primary_10_1016_j_optmat_2021_110875
crossref_primary_10_1002_INMD_20230059
crossref_primary_10_1039_C6TC02934E
crossref_primary_10_1016_j_ccr_2022_214745
crossref_primary_10_1039_C6NR08472A
crossref_primary_10_1039_D2NR05721B
crossref_primary_10_1039_D1TA09400A
crossref_primary_10_1039_C6TC01671E
crossref_primary_10_1016_j_jallcom_2021_159386
crossref_primary_10_1016_j_optmat_2021_111607
crossref_primary_10_2116_analsci_20SCR11
crossref_primary_10_1039_D3CP02111D
crossref_primary_10_1088_1361_6528_aafcb8
Cites_doi 10.1038/nnano.2009.326
10.1002/smll.201201740
10.1039/c3nr01398g
10.1002/adma.201102263
10.1002/0470016043
10.1063/1.368705
10.1016/0040-6031(94)02047-R
10.1039/b806051g
10.1098/rstb.1997.0047
10.1002/ijc.22709
10.1002/adom.201400484
10.1002/adfm.200900234
10.1149/1.2424184
10.1039/b905927j
10.1002/adma.201501014
10.1002/smll.201301716
10.1021/ph500208q
10.1063/1.4862968
10.1088/0022-3727/38/15/004
10.1039/C5NR04889C
10.1364/BOE.5.000701
10.1021/nl071606p
10.1039/C5CP03861H
10.1039/c2nr30663h
10.1021/ja4075002
10.1109/JQE.1987.1073238
10.1088/0031-9155/58/11/R37
10.1002/adma.201001780
10.1016/S0006-3495(96)79716-3
10.1002/anie.201206059
10.1021/nn301218z
10.1073/pnas.23.12.631
10.1098/rsif.2009.0243
10.3390/nano2020092
10.1103/PhysRevB.68.035118
10.1002/chem.201500108
10.1039/c2nr30764b
10.1073/pnas.1014501108
10.1103/PhysRev.136.A1692
10.1016/j.mvr.2005.07.003
10.1002/adfm.201403653
10.1021/nn304373q
10.1007/s12274-014-0549-1
10.1039/c2nr32203j
10.1021/ja303737a
10.1016/0360-3016(84)90379-1
10.1021/acs.jpcb.5b01727
10.1016/S0169-409X(02)00044-3
10.1007/BF00522151
10.1364/OE.22.023938
10.1021/nn402601d
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/acs.nanolett.5b04611
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 1703
ExternalDocumentID 10_1021_acs_nanolett_5b04611
26845418
a455307690
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
ABJNI
ABQRX
ACBEA
ADHLV
AHGAQ
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
NPM
AAYXX
CITATION
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a407t-7a03e2a3586b98750958e7d4aa15f9cfaae8f6d76eacfbfc521efbb6618b98313
IEDL.DBID ACS
ISSN 1530-6984
IngestDate Sat Aug 17 01:04:26 EDT 2024
Fri Oct 25 02:05:19 EDT 2024
Fri Aug 23 02:07:09 EDT 2024
Sat Sep 28 08:03:37 EDT 2024
Thu Aug 27 13:42:51 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Nanothermometry
rare earth nanoparticles
second biological window
subcutaneous thermal sensing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a407t-7a03e2a3586b98750958e7d4aa15f9cfaae8f6d76eacfbfc521efbb6618b98313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10773/20717
PMID 26845418
PQID 1772148594
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1808124355
proquest_miscellaneous_1772148594
crossref_primary_10_1021_acs_nanolett_5b04611
pubmed_primary_26845418
acs_journals_10_1021_acs_nanolett_5b04611
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2016-03-09
PublicationDateYYYYMMDD 2016-03-09
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref23/cit23
ref8/cit8
Bergman T. L. (ref41/cit41) 2011
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
Valvano J. W. (ref43/cit43) 2011
ref18/cit18
Kyunghan K. (ref52/cit52) 2006
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref22/cit22
Perez C. A. (ref46/cit46) 1984; 44
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref10/cit10
  doi: 10.1038/nnano.2009.326
– ident: ref19/cit19
  doi: 10.1002/smll.201201740
– ident: ref49/cit49
  doi: 10.1039/c3nr01398g
– ident: ref5/cit5
  doi: 10.1002/adma.201102263
– ident: ref55/cit55
  doi: 10.1002/0470016043
– ident: ref35/cit35
  doi: 10.1063/1.368705
– ident: ref53/cit53
  doi: 10.1016/0040-6031(94)02047-R
– ident: ref2/cit2
  doi: 10.1039/b806051g
– ident: ref54/cit54
  doi: 10.1098/rstb.1997.0047
– ident: ref4/cit4
  doi: 10.1002/ijc.22709
– ident: ref31/cit31
  doi: 10.1002/adom.201400484
– ident: ref38/cit38
  doi: 10.1002/adfm.200900234
– ident: ref33/cit33
  doi: 10.1149/1.2424184
– ident: ref51/cit51
  doi: 10.1039/b905927j
– ident: ref23/cit23
  doi: 10.1002/adma.201501014
– ident: ref28/cit28
  doi: 10.1002/smll.201301716
– ident: ref36/cit36
  doi: 10.1021/ph500208q
– ident: ref29/cit29
  doi: 10.1063/1.4862968
– ident: ref11/cit11
  doi: 10.1088/0022-3727/38/15/004
– ident: ref17/cit17
  doi: 10.1039/C5NR04889C
– ident: ref42/cit42
  doi: 10.1364/BOE.5.000701
– ident: ref22/cit22
  doi: 10.1021/nl071606p
– volume: 44
  start-page: 4818s
  year: 1984
  ident: ref46/cit46
  publication-title: Cancer Res.
  contributor:
    fullname: Perez C. A.
– ident: ref25/cit25
  doi: 10.1039/C5CP03861H
– ident: ref8/cit8
  doi: 10.1039/c2nr30663h
– ident: ref37/cit37
  doi: 10.1021/ja4075002
– ident: ref39/cit39
  doi: 10.1109/JQE.1987.1073238
– volume-title: 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
  year: 2006
  ident: ref52/cit52
  contributor:
    fullname: Kyunghan K.
– ident: ref56/cit56
  doi: 10.1088/0031-9155/58/11/R37
– ident: ref24/cit24
  doi: 10.1002/adma.201001780
– ident: ref18/cit18
  doi: 10.1016/S0006-3495(96)79716-3
– ident: ref15/cit15
  doi: 10.1002/anie.201206059
– ident: ref16/cit16
  doi: 10.1021/nn301218z
– ident: ref40/cit40
  doi: 10.1073/pnas.23.12.631
– volume-title: Fundamentals of heat and mass transfer
  year: 2011
  ident: ref41/cit41
  contributor:
    fullname: Bergman T. L.
– ident: ref3/cit3
  doi: 10.1098/rsif.2009.0243
– ident: ref12/cit12
  doi: 10.3390/nano2020092
– ident: ref6/cit6
– ident: ref34/cit34
  doi: 10.1103/PhysRevB.68.035118
– ident: ref50/cit50
  doi: 10.1002/chem.201500108
– ident: ref9/cit9
  doi: 10.1039/c2nr30764b
– ident: ref14/cit14
  doi: 10.1073/pnas.1014501108
– ident: ref32/cit32
  doi: 10.1103/PhysRev.136.A1692
– ident: ref7/cit7
  doi: 10.1016/j.mvr.2005.07.003
– ident: ref26/cit26
  doi: 10.1002/adfm.201403653
– start-page: 455
  volume-title: Optical-Thermal Response of Laser-Irradiated Tissue
  year: 2011
  ident: ref43/cit43
  contributor:
    fullname: Valvano J. W.
– ident: ref27/cit27
  doi: 10.1021/nn304373q
– ident: ref48/cit48
  doi: 10.1007/s12274-014-0549-1
– ident: ref30/cit30
  doi: 10.1039/c2nr32203j
– ident: ref13/cit13
  doi: 10.1021/ja303737a
– ident: ref47/cit47
  doi: 10.1016/0360-3016(84)90379-1
– ident: ref21/cit21
  doi: 10.1021/acs.jpcb.5b01727
– ident: ref1/cit1
  doi: 10.1016/S0169-409X(02)00044-3
– ident: ref45/cit45
  doi: 10.1007/BF00522151
– ident: ref44/cit44
  doi: 10.1364/OE.22.023938
– ident: ref20/cit20
  doi: 10.1021/nn402601d
SSID ssj0009350
Score 2.6446488
Snippet The recent development of core/shell engineering of rare earth doped luminescent nanoparticles has ushered a new era in fluorescence thermal biosensing,...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 1695
SubjectTerms Administration, Cutaneous
Animals
Biological
Body Temperature
Detection
Infrared
Infrared Rays
Luminescence
Luminescent Measurements - instrumentation
Mice
Monitoring
Nanoparticles
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Nanostructure
Neodymium - administration & dosage
Neodymium - chemistry
Rare earth metals
Skin Physiological Phenomena
Thermometers
Ytterbium - administration & dosage
Ytterbium - chemistry
Title Unveiling in Vivo Subcutaneous Thermal Dynamics by Infrared Luminescent Nanothermometers
URI http://dx.doi.org/10.1021/acs.nanolett.5b04611
https://www.ncbi.nlm.nih.gov/pubmed/26845418
https://search.proquest.com/docview/1772148594
https://search.proquest.com/docview/1808124355
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgXODAvpRNRuLCISWbE_tYdVGREJdS1FtkO7ZUiTqoaSrx94yzsBwK4hpZiTP2zLwnj98gdAtJgqQu006kaeCEhKXgc5Q7FMCx62vCRalbMBrHT1PaH1iZnM6aE3zfu-cy7xhuMviNZYcIKxAObGfLj11qyVa3N_4S2Q3KjqzgxECJGA2bq3Jr3mITksx_JqQ1KLPMNsO9_85zH-3WuBJ3q41wgDaUOUQ739QGj9B0YlZqZq-f45nBL7NVhiFsyALgoQL-j2HHQJR-xf2qSX2OxTt-MHphS9TxYzG3BfK2lhNDRC7vbc2zuS2myY_RZDh47o2curGCw4G_LZ2Yu4HyeUBoJBi1mIFQFach5x7RTGrOFdVRGkcQlbXQElK80kJAKqcwPvCCE9QymVFnCAvwf-Zy6YtIANeiQkptKSQDGJimlLXRHRgmqR0jT8ozb99L7MPGWkltrTZympVI3iqtjT_G3zTLlYBT2JOOymCJB5wBeB5h4S9jbM8RH9AiaaPTaq0_v2olcEjo0fN_zP4CbQOYisr6NHaJWstFoa7QZp4W1-Uu_QCcF-b3
link.rule.ids 315,782,786,2771,27087,27935,27936,56750,56800
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMDA-1GeRmJhCOTlxB6rlqoVpUtb1C2yE1uqRBPUNJX495zzoDAUBKtlOc7Zd_edfPcdQrfgJEhkMmV4ijqGS1gEOke5QQEcm7YiXOS8BZ2B3x_T1qOmySFVLQxsIoWV0vwRf8kuYD3osZjHCfzN_J4IzRMOQc8GAcCrOzY0moMl166TN2YFXYbIiFG3qphbsYr2S2H63S-tAJu502nv_nO7e2inRJm4UVyLfbQm4wO0_YV78BCNR_FCTnQxOp7E-GWySDAYkTADsCiTLMVwf8Bmv-JW0bI-xeIdd2M10wnruJdNdbq8zuzEYJ_zKq5pMtWpNekRGrUfh82OUbZZMDhEc3PD56Yjbe4Q6glGNYIgVPqRy7lFFAsV55IqL_I9sNFKqBAcvlRCgGOnMN-xnGNUi5NYniIswBowk4e28AREXlSEodIBJQNQGEWU1dEdCCYo1SQN8hdw2wr0YCWtoJRWHRnVgQRvBfPGL_NvqlMLQEX0u0chsMCCCAKiPsLcH-boDiQ2YEdSRyfFkX9-VRPiENeiZ3_Y_TXa7Ayfe0Gv2386R1sAs7w8c41doNp8lslLtJ5G2VV-cT8AwNPvXA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66gujB92N9RvDiodpX2uQorssuLovgA28laRNYcNvFbgX_vTN9rHpQEa8hpOlMZuYbMvmGkFMIEiyxhbECwz3LZyIBm-PS4gCObdcwqUregt5dOHzinWukyZm1-oJN5LBSXl7io1VPElMzDDgXOJ7KNIM_mp4zhVzhkPgssABQD6Kiq7sPvl2vbM4K9gzZkeB-82rum1UwNsX519j0DeAsA0939R9bXiMrNdqkl9XxWCdzOt0gy584CDfJ00P6qkf4KJ2OUvo4es0oOJO4ANCosyKncI7Adz_TTtW6PqfqjfZT84KF63RQjLFsHis8Kfjp8jXXOBtjiU2-RR661_dXPatut2BJyOqmVihtT7vSYzxQgiOSYFyHiS-lw4yIjZSamyAJA_DVRpkYAr82SkGA5zDfc7xt0kqzVO8SqsArCFvGrgoUZGBcxbHBxFIAOEwSLtrkDAQT1eaSR-VNuOtEONhIK6ql1SZWo5RoUjFw_DL_pNFcBKaC9x-VwCIHMgnI_pjwf5iDnUhcwJCsTXYqtc--isQ4zHf43h92f0wWbzvdaNAf3uyTJUBbQVnAJg5Ia_pS6EMynyfFUXl23wFkwfHW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+in+Vivo+Subcutaneous+Thermal+Dynamics+by+Infrared+Luminescent+Nanothermometers&rft.jtitle=Nano+letters&rft.au=Ximendes%2C+Erving+Clayton&rft.au=Santos%2C+Weslley+Queiroz&rft.au=Rocha%2C+U%C3%A9slen&rft.au=Kagola%2C+Upendra+Kumar&rft.date=2016-03-09&rft.eissn=1530-6992&rft.volume=16&rft.issue=3&rft.spage=1695&rft.epage=1703&rft_id=info:doi/10.1021%2Facs.nanolett.5b04611&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon