Late Miocene Onset of Tasman Leakage and Southern Hemisphere Supergyre Ushers in Near‐Modern Circulation
This study provides a Miocene‐to‐recent history of Tasman Leakage (TL), driving surface‐to‐intermediate waters from the Pacific into the Indian Ocean. TL, in addition to Indonesian ThroughFlow (ITF), constitutes an important part of the Southern Hemisphere Supergyre. Here, we employ deep‐sea benthic...
Saved in:
Published in: | Geophysical research letters Vol. 48; no. 18 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
John Wiley & Sons, Inc
28-09-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This study provides a Miocene‐to‐recent history of Tasman Leakage (TL), driving surface‐to‐intermediate waters from the Pacific into the Indian Ocean. TL, in addition to Indonesian ThroughFlow (ITF), constitutes an important part of the Southern Hemisphere Supergyre. Here, we employ deep‐sea benthic δ13C timeseries from the southwestern Pacific and eastern Indian Oceans to identify the history of Tasman Leakage. The δ13C results combined with sedimentary evidence show that an inter‐ocean connection south of Australia existed from 7 Ma onward. A southward shift in Westerlies combined with a northward movement of Australia created the oceanic corridor necessary for Tasman Leakage (between Australia and the sub‐Antarctic Front) at this time. Furthermore, changes in the northern limb of the Supergyre (ITF) are evident in the sedimentary record on Broken Ridge from ∼3 to 2 Ma when Banda Sea intermediate waters started originating from the North Pacific.
Plain Language Summary
Global ocean circulation allows for the distribution of heat between different latitudes and different water depths. It has long been understood that much of the return flow from the Pacific to the Atlantic occurs through the Indonesian Throughflow, but more recently, oceanographers have identified another, deeper pathway south of Australia: the Tasman Leakage. This connection consists of Pacific waters that leave the Tasman Sea by flowing southwest around Australia, into the Indian Ocean and ultimately back into the Atlantic. We use carbon isotopes of benthic foraminifera, coupled with sedimentation patterns around Australia and the Indian Ocean, to determine the onset of this new pathway in global thermohaline circulation: This occurred around 7 Ma. This onset was coincident with major global climatic and oceanographic change and was controlled by the position of the Australian continent and the sub‐Antarctic Front. TL onset was only able to occur when Australia had moved far enough north to allow for westward flow.
Key Points
Benthic δ13C time‐series from the southwestern Pacific and eastern Indian Ocean suggest onset of Tasman Leakage at 7 Ma
Latitudinal movement of the Australian continent away from the sub‐Antarctic Front creates the oceanic corridor necessary for Tasman Leakage
The Late Miocene onset of Tasman Leakage completed the Southern Hemisphere Supergyre and ushered in the near‐modern ocean circulation style |
---|---|
AbstractList | This study provides a Miocene‐to‐recent history of Tasman Leakage (TL), driving surface‐to‐intermediate waters from the Pacific into the Indian Ocean. TL, in addition to Indonesian ThroughFlow (ITF), constitutes an important part of the Southern Hemisphere Supergyre. Here, we employ deep‐sea benthic δ13C timeseries from the southwestern Pacific and eastern Indian Oceans to identify the history of Tasman Leakage. The δ13C results combined with sedimentary evidence show that an inter‐ocean connection south of Australia existed from 7 Ma onward. A southward shift in Westerlies combined with a northward movement of Australia created the oceanic corridor necessary for Tasman Leakage (between Australia and the sub‐Antarctic Front) at this time. Furthermore, changes in the northern limb of the Supergyre (ITF) are evident in the sedimentary record on Broken Ridge from ∼3 to 2 Ma when Banda Sea intermediate waters started originating from the North Pacific. This study provides a Miocene‐to‐recent history of Tasman Leakage (TL), driving surface‐to‐intermediate waters from the Pacific into the Indian Ocean. TL, in addition to Indonesian ThroughFlow (ITF), constitutes an important part of the Southern Hemisphere Supergyre. Here, we employ deep‐sea benthic δ13C timeseries from the southwestern Pacific and eastern Indian Oceans to identify the history of Tasman Leakage. The δ13C results combined with sedimentary evidence show that an inter‐ocean connection south of Australia existed from 7 Ma onward. A southward shift in Westerlies combined with a northward movement of Australia created the oceanic corridor necessary for Tasman Leakage (between Australia and the sub‐Antarctic Front) at this time. Furthermore, changes in the northern limb of the Supergyre (ITF) are evident in the sedimentary record on Broken Ridge from ∼3 to 2 Ma when Banda Sea intermediate waters started originating from the North Pacific. Plain Language Summary Global ocean circulation allows for the distribution of heat between different latitudes and different water depths. It has long been understood that much of the return flow from the Pacific to the Atlantic occurs through the Indonesian Throughflow, but more recently, oceanographers have identified another, deeper pathway south of Australia: the Tasman Leakage. This connection consists of Pacific waters that leave the Tasman Sea by flowing southwest around Australia, into the Indian Ocean and ultimately back into the Atlantic. We use carbon isotopes of benthic foraminifera, coupled with sedimentation patterns around Australia and the Indian Ocean, to determine the onset of this new pathway in global thermohaline circulation: This occurred around 7 Ma. This onset was coincident with major global climatic and oceanographic change and was controlled by the position of the Australian continent and the sub‐Antarctic Front. TL onset was only able to occur when Australia had moved far enough north to allow for westward flow. Key Points Benthic δ13C time‐series from the southwestern Pacific and eastern Indian Ocean suggest onset of Tasman Leakage at 7 Ma Latitudinal movement of the Australian continent away from the sub‐Antarctic Front creates the oceanic corridor necessary for Tasman Leakage The Late Miocene onset of Tasman Leakage completed the Southern Hemisphere Supergyre and ushered in the near‐modern ocean circulation style This study provides a Miocene-to-recent history of Tasman Leakage (TL), driving surface-to-intermediate waters from the Pacific into the Indian Ocean. TL, in addition to Indonesian ThroughFlow (ITF), constitutes an important part of the Southern Hemisphere Supergyre. Here, we employ deep-sea benthic delta C-13 timeseries from the southwestern Pacific and eastern Indian Oceans to identify the history of Tasman Leakage. The delta C-13 results combined with sedimentary evidence show that an inter-ocean connection south of Australia existed from 7 Ma onward. A southward shift in Westerlies combined with a northward movement of Australia created the oceanic corridor necessary for Tasman Leakage (between Australia and the sub-Antarctic Front) at this time. Furthermore, changes in the northern limb of the Supergyre (ITF) are evident in the sedimentary record on Broken Ridge from similar to 3 to 2 Ma when Banda Sea intermediate waters started originating from the North Pacific. This study provides a Miocene‐to‐recent history of Tasman Leakage (TL), driving surface‐to‐intermediate waters from the Pacific into the Indian Ocean. TL, in addition to Indonesian ThroughFlow (ITF), constitutes an important part of the Southern Hemisphere Supergyre. Here, we employ deep‐sea benthic δ 13 C timeseries from the southwestern Pacific and eastern Indian Oceans to identify the history of Tasman Leakage. The δ 13 C results combined with sedimentary evidence show that an inter‐ocean connection south of Australia existed from 7 Ma onward. A southward shift in Westerlies combined with a northward movement of Australia created the oceanic corridor necessary for Tasman Leakage (between Australia and the sub‐Antarctic Front) at this time. Furthermore, changes in the northern limb of the Supergyre (ITF) are evident in the sedimentary record on Broken Ridge from ∼3 to 2 Ma when Banda Sea intermediate waters started originating from the North Pacific. Global ocean circulation allows for the distribution of heat between different latitudes and different water depths. It has long been understood that much of the return flow from the Pacific to the Atlantic occurs through the Indonesian Throughflow, but more recently, oceanographers have identified another, deeper pathway south of Australia: the Tasman Leakage. This connection consists of Pacific waters that leave the Tasman Sea by flowing southwest around Australia, into the Indian Ocean and ultimately back into the Atlantic. We use carbon isotopes of benthic foraminifera, coupled with sedimentation patterns around Australia and the Indian Ocean, to determine the onset of this new pathway in global thermohaline circulation: This occurred around 7 Ma. This onset was coincident with major global climatic and oceanographic change and was controlled by the position of the Australian continent and the sub‐Antarctic Front. TL onset was only able to occur when Australia had moved far enough north to allow for westward flow. Benthic δ 13 C time‐series from the southwestern Pacific and eastern Indian Ocean suggest onset of Tasman Leakage at 7 Ma Latitudinal movement of the Australian continent away from the sub‐Antarctic Front creates the oceanic corridor necessary for Tasman Leakage The Late Miocene onset of Tasman Leakage completed the Southern Hemisphere Supergyre and ushered in the near‐modern ocean circulation style |
Author | Auer, Gerald Kroon, Dick Drury, Anna Joy Betzler, Christian Christensen, Beth A. De Vleeschouwer, David Groeneveld, Jeroen Lyu, Jing Karatsolis, Boris Theofanis Eberli, Gregor P. Henderiks, Jorijntje |
Author_xml | – sequence: 1 givenname: Beth A. orcidid: 0000-0003-4346-0851 surname: Christensen fullname: Christensen, Beth A. email: christensenb@rowan.edu organization: Rowan University – sequence: 2 givenname: David orcidid: 0000-0002-3323-807X surname: De Vleeschouwer fullname: De Vleeschouwer, David organization: University of Bremen – sequence: 3 givenname: Jorijntje orcidid: 0000-0001-9486-6275 surname: Henderiks fullname: Henderiks, Jorijntje organization: Uppsala University – sequence: 4 givenname: Jeroen orcidid: 0000-0002-8382-8019 surname: Groeneveld fullname: Groeneveld, Jeroen organization: Hamburg University – sequence: 5 givenname: Gerald orcidid: 0000-0002-2574-0027 surname: Auer fullname: Auer, Gerald organization: University of Graz – sequence: 6 givenname: Anna Joy surname: Drury fullname: Drury, Anna Joy organization: University College London – sequence: 7 givenname: Boris Theofanis orcidid: 0000-0002-6248-2151 surname: Karatsolis fullname: Karatsolis, Boris Theofanis organization: Uppsala University – sequence: 8 givenname: Jing surname: Lyu fullname: Lyu, Jing organization: University of Bremen – sequence: 9 givenname: Christian orcidid: 0000-0002-5757-4553 surname: Betzler fullname: Betzler, Christian organization: Hamburg University – sequence: 10 givenname: Gregor P. surname: Eberli fullname: Eberli, Gregor P. organization: Rosenstiel School of Marine and Atmospheric Science, University of Miami – sequence: 11 givenname: Dick surname: Kroon fullname: Kroon, Dick organization: University of Edinburgh |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-457899$$DView record from Swedish Publication Index |
BookMark | eNp9kMtqG0EQRRvjQGTHu3xAQ7ZWUv2YRy-NHMuBcQzxY9vUzNTIrUjdk-4ZjHb5hHxjviQjZJyssrqH4nAp7gk79sETY-8FfBQgzScJUiwrMBmo_IjNhNF6XgIUx2wGYCaWRf6WnaS0BgAFSszYusKB-I0LDXnitz7RwEPH7zFt0fOK8DuuiKNv-V0YhyeKnl_T1qV-QuJ3Y09xtZvoIU2HxJ3nXwnj75-_bkK7lxcuNuMGBxf8O_amw02is5c8ZQ9Xn-8X1_PqdvllcVHNUYMWc93uI4OsLuq8adpSd7JWKmu1whJKVaLqJBbKYE2g60YaUI0oUJcacoFSnbLzQ296pn6sbR_dFuPOBnT20j1e2BBXdhytzorSmEn_cND7GH6MlAa7DmP004dWZiYrtAGR_S1tYkgpUvdaK8Dux7f_jj_p8qA_uw3t_uva5bcql8YI9QeU9YdA |
CitedBy_id | crossref_primary_10_1029_2023PA004761 crossref_primary_10_1016_j_margeo_2024_107224 crossref_primary_10_5194_cp_19_787_2023 crossref_primary_10_1038_s41467_023_43106_4 crossref_primary_10_1016_j_dsr2_2023_105264 crossref_primary_10_1029_2022PA004588 crossref_primary_10_1016_j_gloplacha_2023_104297 |
Cites_doi | 10.1016/j.pocean.2019.102254 10.1029/2007GL031583 10.3389/feart.2020.553506 10.1029/2004JC002855 10.1016/j.epsl.2016.05.005 10.1029/2020GL089137 10.1130/G38663.1 10.1127/0078-0421/2012/0020 10.1029/2000PA000501 10.1016/j.marmicro.2003.10.003 10.1002/2015JC011133 10.1029/2018PA003512 10.1016/0012-821X(79)90137-7 10.1002/2016JC011842 10.1029/2005GC001211 10.1016/S0025-3227(03)00329-3 10.1016/j.palaeo.2012.08.008 10.1029/2010PA001949 10.3767/000651909X475941 10.1002/2013JC009543 10.1029/1998JC900008 10.5194/jm-38-189-2019 10.1002/jgrc.20407 10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2 10.1016/S0025-3227(99)00057-2 10.1002/2017PA003135 10.1038/ngeo520 10.1029/2007GL030392 10.1016/j.dsr2.2010.09.029 10.1038/nature14504 10.1016/j.epsl.2010.10.028 10.1029/2007RG000245 10.1002/2017GL072977 10.1016/j.margeo.2018.06.007 10.1175/JPO3130.1 10.1016/j.epsl.2018.07.035 10.5194/cp-17-2091-2021 10.1002/2015JC010993 10.1071/MF9660061 10.1002/2017JC013311 10.1038/284613a0 10.1029/2020PA003857 10.1002/2013JC009525 10.1029/2006PA001267 10.1016/j.epsl.2017.07.038 10.1029/GM070p0311 10.1029/2018JC014391 10.1029/2019GL083670 10.1111/sed.12584 10.1016/S0031-0182(02)00340-1 10.1080/00288306.2001.9514954 10.1029/2008PA001683 10.1126/sciadv.1602567 10.1029/2004JC002826 10.1175/1520-0485(2001)031<2917:TDOTEA>2.0.CO;2 10.1029/93PA02699 10.1016/j.epsl.2018.07.025 10.1029/2018GC007668 10.1016/j.palaeo.2019.01.006 10.1029/2000JC900107 10.1029/2001GL014586 10.1130/G45994.1 10.1016/S0079-6611(03)00004-1 10.1038/srep29838 10.1002/2013GL057797 10.5670/oceanog.2013.07 10.1111/brv.12076 10.1016/S0967-0637(99)00013-8 10.3389/fmars.2019.00228 10.1038/ngeo2813 10.1007/s13131-013-0380-7 10.1029/2020PA003872 10.1002/jgrc.20408 10.1029/2019JC015024 10.1002/2017PA003245 10.1029/2005GC001085 10.1002/2016JC012676 10.1357/0022240054663196 10.1073/pnas.1520188113 10.2973/odp.proc.ir.182.2000 |
ContentType | Journal Article |
Copyright | 2021. The Authors. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. The Authors. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
DOI | 10.1029/2021GL095036 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Online Library Free Content CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_DiVA_org_uu_457899 10_1029_2021GL095036 GRL62991 |
Genre | article |
GeographicLocations | Indian Ocean Australia Southern Hemisphere |
GeographicLocations_xml | – name: Southern Hemisphere – name: Indian Ocean – name: Australia |
GrantInformation_xml | – fundername: German Academic Exchange Service (DAAD) |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAYXX ALXUD CITATION PYCSY 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 31~ 3V. 6TJ 7XC 88I 8FE 8FG 8FH 8G5 AASGY ABJCF ABJNI ABUWG ACBWZ ACNBI ADTPV AFKRA AFZJQ AI. AOWAS ARAPS ASPBG ATCPS AVWKF AZQEC BDRZF BGLVJ BHPHI BKSAR BPHCQ CCPQU D1K D8T DDYGU DF2 DWQXO EJD FEDTE GNUQQ GROUPED_DOAJ GUQSH HCIFZ HVGLF K6- L6V LK5 M2O M2P M7R M7S MVM OHT P62 PALCI PATMY PCBAR PQQKQ PROAC PTHSS RIWAO RJQFR SAMSI UQL VH1 VOH ZCG ZZAVC |
ID | FETCH-LOGICAL-a4041-4d4041505b7b6ccd84f2b335d43a80838a3f2a739abe04bc2903c17a484061a23 |
IEDL.DBID | 33P |
ISSN | 0094-8276 1944-8007 |
IngestDate | Sat Aug 24 00:16:49 EDT 2024 Tue Nov 19 07:10:09 EST 2024 Thu Nov 21 22:08:19 EST 2024 Sat Aug 24 00:59:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4041-4d4041505b7b6ccd84f2b335d43a80838a3f2a739abe04bc2903c17a484061a23 |
ORCID | 0000-0002-8382-8019 0000-0001-9486-6275 0000-0002-3323-807X 0000-0002-2574-0027 0000-0002-5757-4553 0000-0002-6248-2151 0000-0003-4346-0851 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL095036 |
PQID | 2595749015 |
PQPubID | 54723 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_457899 proquest_journals_2595749015 crossref_primary_10_1029_2021GL095036 wiley_primary_10_1029_2021GL095036_GRL62991 |
PublicationCentury | 2000 |
PublicationDate | 28 September 2021 |
PublicationDateYYYYMMDD | 2021-09-28 |
PublicationDate_xml | – month: 09 year: 2021 text: 28 September 2021 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | Rögl F. (e_1_2_8_2_10_1) 1999; 50 e_1_2_8_1_11_1 e_1_2_8_1_57_1 Sebille E. (e_1_2_8_1_77_1) 2012; 39 e_1_2_8_1_13_1 e_1_2_8_1_34_1 e_1_2_8_1_55_1 e_1_2_8_1_32_1 e_1_2_8_1_30_1 e_1_2_8_1_51_1 e_1_2_8_1_70_1 Talley L. D. (e_1_2_8_2_13_1) 2007 e_1_2_8_1_9_1 Rea D. K. (e_1_2_8_1_53_1) 1991; 121 Eberli G. P. (e_1_2_8_1_21_1) 2010 e_1_2_8_2_7_1 e_1_2_8_2_9_1 e_1_2_8_1_27_1 e_1_2_8_1_29_1 e_1_2_8_1_48_1 e_1_2_8_1_22_1 e_1_2_8_1_68_1 e_1_2_8_1_45_1 e_1_2_8_1_66_1 e_1_2_8_2_3_1 e_1_2_8_1_64_1 e_1_2_8_2_5_1 e_1_2_8_1_20_1 e_1_2_8_1_41_1 e_1_2_8_1_62_1 e_1_2_8_1_60_1 e_1_2_8_2_14_1 e_1_2_8_2_12_1 e_1_2_8_1_3_1 e_1_2_8_1_7_1 e_1_2_8_1_5_1 e_1_2_8_1_19_1 e_1_2_8_1_74_1 e_1_2_8_1_76_1 e_1_2_8_1_15_1 e_1_2_8_1_78_1 e_1_2_8_1_17_1 e_1_2_8_1_38_1 e_1_2_8_1_59_1 e_1_2_8_1_12_1 e_1_2_8_1_35_1 e_1_2_8_1_58_1 e_1_2_8_1_14_1 e_1_2_8_1_56_1 House M. (e_1_2_8_1_33_1) 1992; 121 e_1_2_8_1_31_1 e_1_2_8_1_54_1 e_1_2_8_1_10_1 e_1_2_8_1_52_1 e_1_2_8_1_50_1 e_1_2_8_1_71_1 e_1_2_8_1_8_1 Feary D. A. (e_1_2_8_1_25_1) 2004 Isern A. R. (e_1_2_8_1_36_1) 2002; 194 e_1_2_8_2_8_1 e_1_2_8_1_26_1 e_1_2_8_1_28_1 e_1_2_8_1_49_1 e_1_2_8_1_23_1 e_1_2_8_1_46_1 e_1_2_8_1_69_1 e_1_2_8_1_44_1 e_1_2_8_1_67_1 Mackensen A. (e_1_2_8_1_47_1) 1992; 120 e_1_2_8_2_2_1 e_1_2_8_1_42_1 e_1_2_8_1_65_1 e_1_2_8_2_4_1 e_1_2_8_1_40_1 e_1_2_8_1_63_1 e_1_2_8_2_6_1 e_1_2_8_1_61_1 e_1_2_8_2_11_1 Kennett J. P. (e_1_2_8_1_43_1) 1986; 90 e_1_2_8_2_15_1 e_1_2_8_1_2_1 e_1_2_8_1_6_1 e_1_2_8_1_4_1 Feakins S. J. (e_1_2_8_1_24_1) 2020; 35 e_1_2_8_1_73_1 e_1_2_8_1_75_1 e_1_2_8_1_16_1 e_1_2_8_1_39_1 Talley L. D. (e_1_2_8_1_72_1) 2013 e_1_2_8_1_18_1 e_1_2_8_1_37_1 e_1_2_8_1_79_1 |
References_xml | – ident: e_1_2_8_2_4_1 doi: 10.1016/j.pocean.2019.102254 – ident: e_1_2_8_1_68_1 doi: 10.1029/2007GL031583 – ident: e_1_2_8_1_23_1 doi: 10.3389/feart.2020.553506 – ident: e_1_2_8_2_8_1 doi: 10.1029/2004JC002855 – ident: e_1_2_8_1_45_1 doi: 10.1016/j.epsl.2016.05.005 – ident: e_1_2_8_1_61_1 doi: 10.1029/2020GL089137 – volume: 120 start-page: 867 year: 1992 ident: e_1_2_8_1_47_1 article-title: Neogene circulation in the southern Indian Ocean: Evidence from benthic foraminifers, carbonate data, and stable isotope analyses (Site 751) publication-title: Proceedings of the Ocean Drilling Program, Scientific Results contributor: fullname: Mackensen A. – ident: e_1_2_8_1_12_1 doi: 10.1130/G38663.1 – volume-title: Cenozoic Carbonates of Central Australasia year: 2010 ident: e_1_2_8_1_21_1 contributor: fullname: Eberli G. P. – ident: e_1_2_8_1_27_1 doi: 10.1127/0078-0421/2012/0020 – ident: e_1_2_8_1_31_1 doi: 10.1029/2000PA000501 – ident: e_1_2_8_1_63_1 doi: 10.1016/j.marmicro.2003.10.003 – ident: e_1_2_8_2_15_1 doi: 10.1002/2015JC011133 – ident: e_1_2_8_1_2_1 doi: 10.1029/2018PA003512 – ident: e_1_2_8_1_41_1 doi: 10.1016/0012-821X(79)90137-7 – ident: e_1_2_8_2_5_1 doi: 10.1002/2016JC011842 – ident: e_1_2_8_1_32_1 doi: 10.1029/2005GC001211 – volume: 90 start-page: 29 year: 1986 ident: e_1_2_8_1_43_1 article-title: Miocene to early Pliocene oxygen and carbon isotope stratigraphy in the southwest Pacific, Deep Sea Drilling Project Leg 90. Initial reports of the Deep Sea Drilling Project publication-title: Legal Times contributor: fullname: Kennett J. P. – ident: e_1_2_8_1_44_1 doi: 10.1016/S0025-3227(03)00329-3 – ident: e_1_2_8_1_64_1 doi: 10.1016/j.palaeo.2012.08.008 – ident: e_1_2_8_1_39_1 doi: 10.1029/2010PA001949 – ident: e_1_2_8_2_7_1 doi: 10.3767/000651909X475941 – ident: e_1_2_8_2_12_1 doi: 10.1002/2013JC009543 – ident: e_1_2_8_2_14_1 doi: 10.1029/1998JC900008 – ident: e_1_2_8_1_56_1 doi: 10.5194/jm-38-189-2019 – ident: e_1_2_8_1_9_1 doi: 10.1002/jgrc.20407 – ident: e_1_2_8_1_65_1 doi: 10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2 – ident: e_1_2_8_1_14_1 doi: 10.1016/S0025-3227(99)00057-2 – ident: e_1_2_8_1_35_1 doi: 10.1002/2017PA003135 – ident: e_1_2_8_1_37_1 doi: 10.1038/ngeo520 – ident: e_1_2_8_1_55_1 doi: 10.1029/2007GL030392 – ident: e_1_2_8_2_11_1 doi: 10.1016/j.dsr2.2010.09.029 – ident: e_1_2_8_1_34_1 doi: 10.1038/nature14504 – ident: e_1_2_8_1_38_1 doi: 10.1016/j.epsl.2010.10.028 – volume: 194 start-page: 1 year: 2002 ident: e_1_2_8_1_36_1 article-title: Leg 194 summary publication-title: Proceedings of the Ocean Drilling Program contributor: fullname: Isern A. R. – ident: e_1_2_8_1_62_1 doi: 10.1029/2007RG000245 – volume: 39 issue: 6 year: 2012 ident: e_1_2_8_1_77_1 article-title: Tasman leakage in a fine‐resolution ocean model publication-title: Geophysical Research Letters contributor: fullname: Sebille E. – ident: e_1_2_8_1_7_1 doi: 10.1002/2017GL072977 – ident: e_1_2_8_1_70_1 doi: 10.1016/j.margeo.2018.06.007 – ident: e_1_2_8_1_46_1 doi: 10.1175/JPO3130.1 – ident: e_1_2_8_1_10_1 doi: 10.1016/j.epsl.2018.07.035 – ident: e_1_2_8_1_17_1 doi: 10.5194/cp-17-2091-2021 – ident: e_1_2_8_1_49_1 doi: 10.1002/2015JC010993 – ident: e_1_2_8_1_59_1 doi: 10.1071/MF9660061 – ident: e_1_2_8_2_3_1 doi: 10.1002/2017JC013311 – ident: e_1_2_8_1_42_1 doi: 10.1038/284613a0 – ident: e_1_2_8_1_74_1 doi: 10.1029/2020PA003857 – ident: e_1_2_8_1_78_1 doi: 10.1002/2013JC009525 – ident: e_1_2_8_1_15_1 doi: 10.1029/2006PA001267 – ident: e_1_2_8_1_18_1 doi: 10.1016/j.epsl.2017.07.038 – volume-title: Proceedings of the Ocean Drilling Program year: 2004 ident: e_1_2_8_1_25_1 contributor: fullname: Feary D. A. – ident: e_1_2_8_1_50_1 doi: 10.1029/GM070p0311 – ident: e_1_2_8_1_52_1 doi: 10.1029/2018JC014391 – ident: e_1_2_8_1_11_1 doi: 10.1029/2019GL083670 – ident: e_1_2_8_1_22_1 doi: 10.1111/sed.12584 – ident: e_1_2_8_1_6_1 doi: 10.1016/S0031-0182(02)00340-1 – volume: 35 start-page: 18 issue: 7 year: 2020 ident: e_1_2_8_1_24_1 article-title: Miocene C4 Grassland expansion as recorded by the Indus fan publication-title: Paleoceanography and Paleoclimatology contributor: fullname: Feakins S. J. – ident: e_1_2_8_1_48_1 doi: 10.1080/00288306.2001.9514954 – ident: e_1_2_8_1_8_1 doi: 10.1029/2008PA001683 – ident: e_1_2_8_1_28_1 doi: 10.1126/sciadv.1602567 – ident: e_1_2_8_1_73_1 doi: 10.1029/2004JC002826 – volume: 50 start-page: 339 year: 1999 ident: e_1_2_8_2_10_1 article-title: Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview) publication-title: Geologica Carpathica contributor: fullname: Rögl F. – ident: e_1_2_8_1_76_1 doi: 10.1175/1520-0485(2001)031<2917:TDOTEA>2.0.CO;2 – ident: e_1_2_8_1_13_1 doi: 10.1029/93PA02699 – ident: e_1_2_8_1_75_1 doi: 10.1016/j.epsl.2018.07.025 – ident: e_1_2_8_1_29_1 doi: 10.1029/2018GC007668 – ident: e_1_2_8_1_40_1 doi: 10.1016/j.palaeo.2019.01.006 – ident: e_1_2_8_1_58_1 doi: 10.1029/2000JC900107 – ident: e_1_2_8_1_69_1 doi: 10.1029/2001GL014586 – ident: e_1_2_8_1_4_1 doi: 10.1130/G45994.1 – ident: e_1_2_8_1_54_1 doi: 10.1016/S0079-6611(03)00004-1 – ident: e_1_2_8_1_5_1 doi: 10.1038/srep29838 – ident: e_1_2_8_1_60_1 doi: 10.1002/2013GL057797 – ident: e_1_2_8_1_71_1 doi: 10.5670/oceanog.2013.07 – ident: e_1_2_8_2_2_1 doi: 10.1111/brv.12076 – volume-title: Hydrographic atlas of the world ocean circulation experiment (WOCE) year: 2013 ident: e_1_2_8_1_72_1 contributor: fullname: Talley L. D. – ident: e_1_2_8_1_57_1 doi: 10.1016/S0967-0637(99)00013-8 – ident: e_1_2_8_1_3_1 doi: 10.3389/fmars.2019.00228 – ident: e_1_2_8_1_30_1 doi: 10.1038/ngeo2813 – ident: e_1_2_8_1_19_1 doi: 10.1007/s13131-013-0380-7 – ident: e_1_2_8_1_66_1 doi: 10.1029/2020PA003872 – ident: e_1_2_8_2_6_1 doi: 10.1002/jgrc.20408 – volume-title: Pacific Ocean year: 2007 ident: e_1_2_8_2_13_1 contributor: fullname: Talley L. D. – ident: e_1_2_8_2_9_1 doi: 10.1029/2019JC015024 – ident: e_1_2_8_1_16_1 doi: 10.1002/2017PA003245 – ident: e_1_2_8_1_51_1 doi: 10.1029/2005GC001085 – volume: 121 year: 1991 ident: e_1_2_8_1_53_1 article-title: Oxygen and carbon isotopic records from the oozes of Sites 752,754,756, AND 757, Eastern Indian Ocean publication-title: Proceedings of the Ocean Drilling Program, Scientific Results contributor: fullname: Rea D. K. – ident: e_1_2_8_1_20_1 doi: 10.1002/2016JC012676 – ident: e_1_2_8_1_79_1 doi: 10.1357/0022240054663196 – ident: e_1_2_8_1_67_1 doi: 10.1073/pnas.1520188113 – ident: e_1_2_8_1_26_1 doi: 10.2973/odp.proc.ir.182.2000 – volume: 121 start-page: 211 year: 1992 ident: e_1_2_8_1_33_1 article-title: Grain‐size record of ocean current winnowing in Oligocene to Pleistocene ooze, Broken Ridge, Southeastern Indian Ocean publication-title: Proceedings of the Ocean Drilling Program, Scientific Results contributor: fullname: House M. |
SSID | ssj0003031 |
Score | 2.4613683 |
Snippet | This study provides a Miocene‐to‐recent history of Tasman Leakage (TL), driving surface‐to‐intermediate waters from the Pacific into the Indian Ocean. TL, in... This study provides a Miocene-to-recent history of Tasman Leakage (TL), driving surface-to-intermediate waters from the Pacific into the Indian Ocean. TL, in... |
SourceID | swepub proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Publisher |
SubjectTerms | Antarctic front Australia Benthos Carbon isotopes Climate change Foraminifera Global climate Indonesian Throughflow Intermediate water Isotopes ITF late Miocene Leakage Miocene Ocean circulation Ocean currents Oceanographers Oceans Return flow Southern Hemisphere Southern Hemisphere Supergyre Tasman Leakage Thermohaline circulation Water circulation Water depth Westerlies |
Title | Late Miocene Onset of Tasman Leakage and Southern Hemisphere Supergyre Ushers in Near‐Modern Circulation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL095036 https://www.proquest.com/docview/2595749015 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-457899 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYACYkLsDxEgV35ACcUkdpuYl-QEI_2UB7iJW7W2HFRWa2LGnLgxk_Y37i_hLGTVuWyEuIUK4qdKOOZ-SaZ-YaQPZt1jLDpIBFOdRKB40RK1CubAsP9IrIMQr1z7za_fJSnZ4Em52hSC1PzQ0w_uAXNiPY6KDiYsiEbCByZGLW3u31ECGiD0QRjoBArOPj11BCjda4b5imRSJZnTd47Tj-cnfzZI83AzJo69DNqjW7nfOW7D7xKlhvASY_rHfKDzDm_Rha7saHvG45iCqgt18lzH2EnvRiiQ_OOXvnSvdLRgN5B-Qc87Tv4jaaHgi9obLvnxp72QrO4wEvg6G31EooIcXQfk-zp0NNL1KJ_73_rdmv0ZDi2Ta-wDXJ_fnZ30kuaTgwJiFRgkFmEA4Ilk5vM2kKKATOcdwrBQSKIk8AHDHKuwLhUGMtUym07ByEDXgDGN8mCH3m3RSgzCqMox4QFIzB6A86ZMtYUIFQb0rxF9ifS0C814YaOP8qZ0rNvsEV2J6LSjdqVGmO5Ti4CxMFlavFNFwk82qfDh2M9Gj_pqtICbZVSLXIQZfbfe-nuTT9Dv93e_tLVO2QpnA_ZJUzukoXXceV-kvmyqH7FjfoB-NDlUA |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbYRQgu_K8oLOADnFBEak8T-4RW-9MisgWxXcTNGjsuKgh31WwO3HgEnpEnYeykVfeChDjFh9iJMp6Zb5yZbxh74YqRBZfPM_B6lAGNM6VIr1yOgvYLFAXGeufJWTn9rI6OI03Om3UtTMcPsTlwi5qR7HVU8Hgg3bMNRJJMCtuH44ogAhnhHXYdClo71nDIDxtTTPa5a5mnIVOiLPrMd5r_env2VZ-0BTQ78tCruDU5npM7__3Kd9ntHnPyg26T3GPXfLjPboxTT98fNEpZoK55wL5WhDz56YJ8WvD8fWj8JV_O-Qyb7xh45fEbWR-Ooeap855fBT6J_eIiNYHnZ-1FrCOk0XnKs-eLwKekSL9__uo6rvHDxcr17cIesvOT49nhJOubMWQIOVCcWccL4SVb2sK5WsFcWClHNUhUhOMUyrnAUmq0PgfrhM6lG5YIKkIGFHKP7YZl8I8YF1ZTIOUFOLRAARxKKbR1tkbQQ8zLAXu5Foe56Dg3TPpXLrTZ_oIDtr-Wlek1rzEUzo1KiCiHlunkt1kkUmkfLT4dmOXqi2lbA2SutB6wV0lof32WGX-sCnLdw8f_dPdzdnMyO61M9Xb67gm7Fe-JySZC7bPdy1Xrn7Kdpm6fpV37B4wD6Xg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELb6IxAX_isWCvgAJxSRtWcT-1Kp6nZ3K8JS0RZxs2zHqbYI72rTHLjxCH1GnoSxk11tL0iop8zBdqKMZ-abZPwNIe9sNjBg0yoBJwcJoJwIgXZlU81wv0CW6XDeeXKWT7-L4XGgyTlYnYVp-SHWH9yCZUR_HQx8UVYd2UDgyMSsvT8uECGgD94mu4BIPHDnc3669sTontuOeRISwfKsK3zH-R83Z98OSRs4s-UOvQ1bY9wZPbrrEz8mDzvESQ_bLfKEbDn_lNwbx46-v1CKNaC2fkauCsSd9PMMI5p39Iuv3TWdV_Rc1z-1p4XTP9D3UO1LGvvuuaWnk9AtLhATOHrWLMIpQpQuYpU9nXk6RTP68_um7bdGj2ZL2zULe04uRsfnR5Oka8WQaEgBs8wyXBAtmdxk1pYCKmY4H5TAtUAUJzSvmM651MalYCyTKbf9XIMIgEEzvkd2_Ny7F4QyIzGNcgysNoDpm-acSWNNqUH2dZr3yPuVNtSiZdxQ8U85k2rzDfbI_kpVqrO7WmEyN8ghYBxcplXfepFApD2cfTtU8-WlahoF6Kyk7JEPUWf_vJcafy0yDNz9l_81-i25fzocqeJk-ukVeRCGhEoTJvbJzvWyca_Jdl02b-Ke_Qu7q-ge |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Late+Miocene+Onset+of+Tasman+Leakage+and+Southern+Hemisphere+Supergyre+Ushers+in+Near%E2%80%90Modern+Circulation&rft.jtitle=Geophysical+research+letters&rft.au=Christensen%2C+Beth+A.&rft.au=De+Vleeschouwer%2C+David&rft.au=Henderiks%2C+Jorijntje&rft.au=Groeneveld%2C+Jeroen&rft.date=2021-09-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=48&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2021GL095036&rft.externalDBID=10.1029%252F2021GL095036&rft.externalDocID=GRL62991 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |