Late Miocene Onset of Tasman Leakage and Southern Hemisphere Supergyre Ushers in Near‐Modern Circulation

This study provides a Miocene‐to‐recent history of Tasman Leakage (TL), driving surface‐to‐intermediate waters from the Pacific into the Indian Ocean. TL, in addition to Indonesian ThroughFlow (ITF), constitutes an important part of the Southern Hemisphere Supergyre. Here, we employ deep‐sea benthic...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters Vol. 48; no. 18
Main Authors: Christensen, Beth A., De Vleeschouwer, David, Henderiks, Jorijntje, Groeneveld, Jeroen, Auer, Gerald, Drury, Anna Joy, Karatsolis, Boris Theofanis, Lyu, Jing, Betzler, Christian, Eberli, Gregor P., Kroon, Dick
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 28-09-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study provides a Miocene‐to‐recent history of Tasman Leakage (TL), driving surface‐to‐intermediate waters from the Pacific into the Indian Ocean. TL, in addition to Indonesian ThroughFlow (ITF), constitutes an important part of the Southern Hemisphere Supergyre. Here, we employ deep‐sea benthic δ13C timeseries from the southwestern Pacific and eastern Indian Oceans to identify the history of Tasman Leakage. The δ13C results combined with sedimentary evidence show that an inter‐ocean connection south of Australia existed from 7 Ma onward. A southward shift in Westerlies combined with a northward movement of Australia created the oceanic corridor necessary for Tasman Leakage (between Australia and the sub‐Antarctic Front) at this time. Furthermore, changes in the northern limb of the Supergyre (ITF) are evident in the sedimentary record on Broken Ridge from ∼3 to 2 Ma when Banda Sea intermediate waters started originating from the North Pacific. Plain Language Summary Global ocean circulation allows for the distribution of heat between different latitudes and different water depths. It has long been understood that much of the return flow from the Pacific to the Atlantic occurs through the Indonesian Throughflow, but more recently, oceanographers have identified another, deeper pathway south of Australia: the Tasman Leakage. This connection consists of Pacific waters that leave the Tasman Sea by flowing southwest around Australia, into the Indian Ocean and ultimately back into the Atlantic. We use carbon isotopes of benthic foraminifera, coupled with sedimentation patterns around Australia and the Indian Ocean, to determine the onset of this new pathway in global thermohaline circulation: This occurred around 7 Ma. This onset was coincident with major global climatic and oceanographic change and was controlled by the position of the Australian continent and the sub‐Antarctic Front. TL onset was only able to occur when Australia had moved far enough north to allow for westward flow. Key Points Benthic δ13C time‐series from the southwestern Pacific and eastern Indian Ocean suggest onset of Tasman Leakage at 7 Ma Latitudinal movement of the Australian continent away from the sub‐Antarctic Front creates the oceanic corridor necessary for Tasman Leakage The Late Miocene onset of Tasman Leakage completed the Southern Hemisphere Supergyre and ushered in the near‐modern ocean circulation style
AbstractList This study provides a Miocene‐to‐recent history of Tasman Leakage (TL), driving surface‐to‐intermediate waters from the Pacific into the Indian Ocean. TL, in addition to Indonesian ThroughFlow (ITF), constitutes an important part of the Southern Hemisphere Supergyre. Here, we employ deep‐sea benthic δ13C timeseries from the southwestern Pacific and eastern Indian Oceans to identify the history of Tasman Leakage. The δ13C results combined with sedimentary evidence show that an inter‐ocean connection south of Australia existed from 7 Ma onward. A southward shift in Westerlies combined with a northward movement of Australia created the oceanic corridor necessary for Tasman Leakage (between Australia and the sub‐Antarctic Front) at this time. Furthermore, changes in the northern limb of the Supergyre (ITF) are evident in the sedimentary record on Broken Ridge from ∼3 to 2 Ma when Banda Sea intermediate waters started originating from the North Pacific.
This study provides a Miocene‐to‐recent history of Tasman Leakage (TL), driving surface‐to‐intermediate waters from the Pacific into the Indian Ocean. TL, in addition to Indonesian ThroughFlow (ITF), constitutes an important part of the Southern Hemisphere Supergyre. Here, we employ deep‐sea benthic δ13C timeseries from the southwestern Pacific and eastern Indian Oceans to identify the history of Tasman Leakage. The δ13C results combined with sedimentary evidence show that an inter‐ocean connection south of Australia existed from 7 Ma onward. A southward shift in Westerlies combined with a northward movement of Australia created the oceanic corridor necessary for Tasman Leakage (between Australia and the sub‐Antarctic Front) at this time. Furthermore, changes in the northern limb of the Supergyre (ITF) are evident in the sedimentary record on Broken Ridge from ∼3 to 2 Ma when Banda Sea intermediate waters started originating from the North Pacific. Plain Language Summary Global ocean circulation allows for the distribution of heat between different latitudes and different water depths. It has long been understood that much of the return flow from the Pacific to the Atlantic occurs through the Indonesian Throughflow, but more recently, oceanographers have identified another, deeper pathway south of Australia: the Tasman Leakage. This connection consists of Pacific waters that leave the Tasman Sea by flowing southwest around Australia, into the Indian Ocean and ultimately back into the Atlantic. We use carbon isotopes of benthic foraminifera, coupled with sedimentation patterns around Australia and the Indian Ocean, to determine the onset of this new pathway in global thermohaline circulation: This occurred around 7 Ma. This onset was coincident with major global climatic and oceanographic change and was controlled by the position of the Australian continent and the sub‐Antarctic Front. TL onset was only able to occur when Australia had moved far enough north to allow for westward flow. Key Points Benthic δ13C time‐series from the southwestern Pacific and eastern Indian Ocean suggest onset of Tasman Leakage at 7 Ma Latitudinal movement of the Australian continent away from the sub‐Antarctic Front creates the oceanic corridor necessary for Tasman Leakage The Late Miocene onset of Tasman Leakage completed the Southern Hemisphere Supergyre and ushered in the near‐modern ocean circulation style
This study provides a Miocene-to-recent history of Tasman Leakage (TL), driving surface-to-intermediate waters from the Pacific into the Indian Ocean. TL, in addition to Indonesian ThroughFlow (ITF), constitutes an important part of the Southern Hemisphere Supergyre. Here, we employ deep-sea benthic delta C-13 timeseries from the southwestern Pacific and eastern Indian Oceans to identify the history of Tasman Leakage. The delta C-13 results combined with sedimentary evidence show that an inter-ocean connection south of Australia existed from 7 Ma onward. A southward shift in Westerlies combined with a northward movement of Australia created the oceanic corridor necessary for Tasman Leakage (between Australia and the sub-Antarctic Front) at this time. Furthermore, changes in the northern limb of the Supergyre (ITF) are evident in the sedimentary record on Broken Ridge from similar to 3 to 2 Ma when Banda Sea intermediate waters started originating from the North Pacific.
This study provides a Miocene‐to‐recent history of Tasman Leakage (TL), driving surface‐to‐intermediate waters from the Pacific into the Indian Ocean. TL, in addition to Indonesian ThroughFlow (ITF), constitutes an important part of the Southern Hemisphere Supergyre. Here, we employ deep‐sea benthic δ 13 C timeseries from the southwestern Pacific and eastern Indian Oceans to identify the history of Tasman Leakage. The δ 13 C results combined with sedimentary evidence show that an inter‐ocean connection south of Australia existed from 7 Ma onward. A southward shift in Westerlies combined with a northward movement of Australia created the oceanic corridor necessary for Tasman Leakage (between Australia and the sub‐Antarctic Front) at this time. Furthermore, changes in the northern limb of the Supergyre (ITF) are evident in the sedimentary record on Broken Ridge from ∼3 to 2 Ma when Banda Sea intermediate waters started originating from the North Pacific. Global ocean circulation allows for the distribution of heat between different latitudes and different water depths. It has long been understood that much of the return flow from the Pacific to the Atlantic occurs through the Indonesian Throughflow, but more recently, oceanographers have identified another, deeper pathway south of Australia: the Tasman Leakage. This connection consists of Pacific waters that leave the Tasman Sea by flowing southwest around Australia, into the Indian Ocean and ultimately back into the Atlantic. We use carbon isotopes of benthic foraminifera, coupled with sedimentation patterns around Australia and the Indian Ocean, to determine the onset of this new pathway in global thermohaline circulation: This occurred around 7 Ma. This onset was coincident with major global climatic and oceanographic change and was controlled by the position of the Australian continent and the sub‐Antarctic Front. TL onset was only able to occur when Australia had moved far enough north to allow for westward flow. Benthic δ 13 C time‐series from the southwestern Pacific and eastern Indian Ocean suggest onset of Tasman Leakage at 7 Ma Latitudinal movement of the Australian continent away from the sub‐Antarctic Front creates the oceanic corridor necessary for Tasman Leakage The Late Miocene onset of Tasman Leakage completed the Southern Hemisphere Supergyre and ushered in the near‐modern ocean circulation style
Author Auer, Gerald
Kroon, Dick
Drury, Anna Joy
Betzler, Christian
Christensen, Beth A.
De Vleeschouwer, David
Groeneveld, Jeroen
Lyu, Jing
Karatsolis, Boris Theofanis
Eberli, Gregor P.
Henderiks, Jorijntje
Author_xml – sequence: 1
  givenname: Beth A.
  orcidid: 0000-0003-4346-0851
  surname: Christensen
  fullname: Christensen, Beth A.
  email: christensenb@rowan.edu
  organization: Rowan University
– sequence: 2
  givenname: David
  orcidid: 0000-0002-3323-807X
  surname: De Vleeschouwer
  fullname: De Vleeschouwer, David
  organization: University of Bremen
– sequence: 3
  givenname: Jorijntje
  orcidid: 0000-0001-9486-6275
  surname: Henderiks
  fullname: Henderiks, Jorijntje
  organization: Uppsala University
– sequence: 4
  givenname: Jeroen
  orcidid: 0000-0002-8382-8019
  surname: Groeneveld
  fullname: Groeneveld, Jeroen
  organization: Hamburg University
– sequence: 5
  givenname: Gerald
  orcidid: 0000-0002-2574-0027
  surname: Auer
  fullname: Auer, Gerald
  organization: University of Graz
– sequence: 6
  givenname: Anna Joy
  surname: Drury
  fullname: Drury, Anna Joy
  organization: University College London
– sequence: 7
  givenname: Boris Theofanis
  orcidid: 0000-0002-6248-2151
  surname: Karatsolis
  fullname: Karatsolis, Boris Theofanis
  organization: Uppsala University
– sequence: 8
  givenname: Jing
  surname: Lyu
  fullname: Lyu, Jing
  organization: University of Bremen
– sequence: 9
  givenname: Christian
  orcidid: 0000-0002-5757-4553
  surname: Betzler
  fullname: Betzler, Christian
  organization: Hamburg University
– sequence: 10
  givenname: Gregor P.
  surname: Eberli
  fullname: Eberli, Gregor P.
  organization: Rosenstiel School of Marine and Atmospheric Science, University of Miami
– sequence: 11
  givenname: Dick
  surname: Kroon
  fullname: Kroon, Dick
  organization: University of Edinburgh
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-457899$$DView record from Swedish Publication Index
BookMark eNp9kMtqG0EQRRvjQGTHu3xAQ7ZWUv2YRy-NHMuBcQzxY9vUzNTIrUjdk-4ZjHb5hHxjviQjZJyssrqH4nAp7gk79sETY-8FfBQgzScJUiwrMBmo_IjNhNF6XgIUx2wGYCaWRf6WnaS0BgAFSszYusKB-I0LDXnitz7RwEPH7zFt0fOK8DuuiKNv-V0YhyeKnl_T1qV-QuJ3Y09xtZvoIU2HxJ3nXwnj75-_bkK7lxcuNuMGBxf8O_amw02is5c8ZQ9Xn-8X1_PqdvllcVHNUYMWc93uI4OsLuq8adpSd7JWKmu1whJKVaLqJBbKYE2g60YaUI0oUJcacoFSnbLzQ296pn6sbR_dFuPOBnT20j1e2BBXdhytzorSmEn_cND7GH6MlAa7DmP004dWZiYrtAGR_S1tYkgpUvdaK8Dux7f_jj_p8qA_uw3t_uva5bcql8YI9QeU9YdA
CitedBy_id crossref_primary_10_1029_2023PA004761
crossref_primary_10_1016_j_margeo_2024_107224
crossref_primary_10_5194_cp_19_787_2023
crossref_primary_10_1038_s41467_023_43106_4
crossref_primary_10_1016_j_dsr2_2023_105264
crossref_primary_10_1029_2022PA004588
crossref_primary_10_1016_j_gloplacha_2023_104297
Cites_doi 10.1016/j.pocean.2019.102254
10.1029/2007GL031583
10.3389/feart.2020.553506
10.1029/2004JC002855
10.1016/j.epsl.2016.05.005
10.1029/2020GL089137
10.1130/G38663.1
10.1127/0078-0421/2012/0020
10.1029/2000PA000501
10.1016/j.marmicro.2003.10.003
10.1002/2015JC011133
10.1029/2018PA003512
10.1016/0012-821X(79)90137-7
10.1002/2016JC011842
10.1029/2005GC001211
10.1016/S0025-3227(03)00329-3
10.1016/j.palaeo.2012.08.008
10.1029/2010PA001949
10.3767/000651909X475941
10.1002/2013JC009543
10.1029/1998JC900008
10.5194/jm-38-189-2019
10.1002/jgrc.20407
10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2
10.1016/S0025-3227(99)00057-2
10.1002/2017PA003135
10.1038/ngeo520
10.1029/2007GL030392
10.1016/j.dsr2.2010.09.029
10.1038/nature14504
10.1016/j.epsl.2010.10.028
10.1029/2007RG000245
10.1002/2017GL072977
10.1016/j.margeo.2018.06.007
10.1175/JPO3130.1
10.1016/j.epsl.2018.07.035
10.5194/cp-17-2091-2021
10.1002/2015JC010993
10.1071/MF9660061
10.1002/2017JC013311
10.1038/284613a0
10.1029/2020PA003857
10.1002/2013JC009525
10.1029/2006PA001267
10.1016/j.epsl.2017.07.038
10.1029/GM070p0311
10.1029/2018JC014391
10.1029/2019GL083670
10.1111/sed.12584
10.1016/S0031-0182(02)00340-1
10.1080/00288306.2001.9514954
10.1029/2008PA001683
10.1126/sciadv.1602567
10.1029/2004JC002826
10.1175/1520-0485(2001)031<2917:TDOTEA>2.0.CO;2
10.1029/93PA02699
10.1016/j.epsl.2018.07.025
10.1029/2018GC007668
10.1016/j.palaeo.2019.01.006
10.1029/2000JC900107
10.1029/2001GL014586
10.1130/G45994.1
10.1016/S0079-6611(03)00004-1
10.1038/srep29838
10.1002/2013GL057797
10.5670/oceanog.2013.07
10.1111/brv.12076
10.1016/S0967-0637(99)00013-8
10.3389/fmars.2019.00228
10.1038/ngeo2813
10.1007/s13131-013-0380-7
10.1029/2020PA003872
10.1002/jgrc.20408
10.1029/2019JC015024
10.1002/2017PA003245
10.1029/2005GC001085
10.1002/2016JC012676
10.1357/0022240054663196
10.1073/pnas.1520188113
10.2973/odp.proc.ir.182.2000
ContentType Journal Article
Copyright 2021. The Authors.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. The Authors.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1029/2021GL095036
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Free Content
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_DiVA_org_uu_457899
10_1029_2021GL095036
GRL62991
Genre article
GeographicLocations Indian Ocean
Australia
Southern Hemisphere
GeographicLocations_xml – name: Southern Hemisphere
– name: Indian Ocean
– name: Australia
GrantInformation_xml – fundername: German Academic Exchange Service (DAAD)
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAYXX
ALXUD
CITATION
PYCSY
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
31~
3V.
6TJ
7XC
88I
8FE
8FG
8FH
8G5
AASGY
ABJCF
ABJNI
ABUWG
ACBWZ
ACNBI
ADTPV
AFKRA
AFZJQ
AI.
AOWAS
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BDRZF
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
D1K
D8T
DDYGU
DF2
DWQXO
EJD
FEDTE
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
K6-
L6V
LK5
M2O
M2P
M7R
M7S
MVM
OHT
P62
PALCI
PATMY
PCBAR
PQQKQ
PROAC
PTHSS
RIWAO
RJQFR
SAMSI
UQL
VH1
VOH
ZCG
ZZAVC
ID FETCH-LOGICAL-a4041-4d4041505b7b6ccd84f2b335d43a80838a3f2a739abe04bc2903c17a484061a23
IEDL.DBID 33P
ISSN 0094-8276
1944-8007
IngestDate Sat Aug 24 00:16:49 EDT 2024
Tue Nov 19 07:10:09 EST 2024
Thu Nov 21 22:08:19 EST 2024
Sat Aug 24 00:59:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4041-4d4041505b7b6ccd84f2b335d43a80838a3f2a739abe04bc2903c17a484061a23
ORCID 0000-0002-8382-8019
0000-0001-9486-6275
0000-0002-3323-807X
0000-0002-2574-0027
0000-0002-5757-4553
0000-0002-6248-2151
0000-0003-4346-0851
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL095036
PQID 2595749015
PQPubID 54723
PageCount 11
ParticipantIDs swepub_primary_oai_DiVA_org_uu_457899
proquest_journals_2595749015
crossref_primary_10_1029_2021GL095036
wiley_primary_10_1029_2021GL095036_GRL62991
PublicationCentury 2000
PublicationDate 28 September 2021
PublicationDateYYYYMMDD 2021-09-28
PublicationDate_xml – month: 09
  year: 2021
  text: 28 September 2021
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References Rögl F. (e_1_2_8_2_10_1) 1999; 50
e_1_2_8_1_11_1
e_1_2_8_1_57_1
Sebille E. (e_1_2_8_1_77_1) 2012; 39
e_1_2_8_1_13_1
e_1_2_8_1_34_1
e_1_2_8_1_55_1
e_1_2_8_1_32_1
e_1_2_8_1_30_1
e_1_2_8_1_51_1
e_1_2_8_1_70_1
Talley L. D. (e_1_2_8_2_13_1) 2007
e_1_2_8_1_9_1
Rea D. K. (e_1_2_8_1_53_1) 1991; 121
Eberli G. P. (e_1_2_8_1_21_1) 2010
e_1_2_8_2_7_1
e_1_2_8_2_9_1
e_1_2_8_1_27_1
e_1_2_8_1_29_1
e_1_2_8_1_48_1
e_1_2_8_1_22_1
e_1_2_8_1_68_1
e_1_2_8_1_45_1
e_1_2_8_1_66_1
e_1_2_8_2_3_1
e_1_2_8_1_64_1
e_1_2_8_2_5_1
e_1_2_8_1_20_1
e_1_2_8_1_41_1
e_1_2_8_1_62_1
e_1_2_8_1_60_1
e_1_2_8_2_14_1
e_1_2_8_2_12_1
e_1_2_8_1_3_1
e_1_2_8_1_7_1
e_1_2_8_1_5_1
e_1_2_8_1_19_1
e_1_2_8_1_74_1
e_1_2_8_1_76_1
e_1_2_8_1_15_1
e_1_2_8_1_78_1
e_1_2_8_1_17_1
e_1_2_8_1_38_1
e_1_2_8_1_59_1
e_1_2_8_1_12_1
e_1_2_8_1_35_1
e_1_2_8_1_58_1
e_1_2_8_1_14_1
e_1_2_8_1_56_1
House M. (e_1_2_8_1_33_1) 1992; 121
e_1_2_8_1_31_1
e_1_2_8_1_54_1
e_1_2_8_1_10_1
e_1_2_8_1_52_1
e_1_2_8_1_50_1
e_1_2_8_1_71_1
e_1_2_8_1_8_1
Feary D. A. (e_1_2_8_1_25_1) 2004
Isern A. R. (e_1_2_8_1_36_1) 2002; 194
e_1_2_8_2_8_1
e_1_2_8_1_26_1
e_1_2_8_1_28_1
e_1_2_8_1_49_1
e_1_2_8_1_23_1
e_1_2_8_1_46_1
e_1_2_8_1_69_1
e_1_2_8_1_44_1
e_1_2_8_1_67_1
Mackensen A. (e_1_2_8_1_47_1) 1992; 120
e_1_2_8_2_2_1
e_1_2_8_1_42_1
e_1_2_8_1_65_1
e_1_2_8_2_4_1
e_1_2_8_1_40_1
e_1_2_8_1_63_1
e_1_2_8_2_6_1
e_1_2_8_1_61_1
e_1_2_8_2_11_1
Kennett J. P. (e_1_2_8_1_43_1) 1986; 90
e_1_2_8_2_15_1
e_1_2_8_1_2_1
e_1_2_8_1_6_1
e_1_2_8_1_4_1
Feakins S. J. (e_1_2_8_1_24_1) 2020; 35
e_1_2_8_1_73_1
e_1_2_8_1_75_1
e_1_2_8_1_16_1
e_1_2_8_1_39_1
Talley L. D. (e_1_2_8_1_72_1) 2013
e_1_2_8_1_18_1
e_1_2_8_1_37_1
e_1_2_8_1_79_1
References_xml – ident: e_1_2_8_2_4_1
  doi: 10.1016/j.pocean.2019.102254
– ident: e_1_2_8_1_68_1
  doi: 10.1029/2007GL031583
– ident: e_1_2_8_1_23_1
  doi: 10.3389/feart.2020.553506
– ident: e_1_2_8_2_8_1
  doi: 10.1029/2004JC002855
– ident: e_1_2_8_1_45_1
  doi: 10.1016/j.epsl.2016.05.005
– ident: e_1_2_8_1_61_1
  doi: 10.1029/2020GL089137
– volume: 120
  start-page: 867
  year: 1992
  ident: e_1_2_8_1_47_1
  article-title: Neogene circulation in the southern Indian Ocean: Evidence from benthic foraminifers, carbonate data, and stable isotope analyses (Site 751)
  publication-title: Proceedings of the Ocean Drilling Program, Scientific Results
  contributor:
    fullname: Mackensen A.
– ident: e_1_2_8_1_12_1
  doi: 10.1130/G38663.1
– volume-title: Cenozoic Carbonates of Central Australasia
  year: 2010
  ident: e_1_2_8_1_21_1
  contributor:
    fullname: Eberli G. P.
– ident: e_1_2_8_1_27_1
  doi: 10.1127/0078-0421/2012/0020
– ident: e_1_2_8_1_31_1
  doi: 10.1029/2000PA000501
– ident: e_1_2_8_1_63_1
  doi: 10.1016/j.marmicro.2003.10.003
– ident: e_1_2_8_2_15_1
  doi: 10.1002/2015JC011133
– ident: e_1_2_8_1_2_1
  doi: 10.1029/2018PA003512
– ident: e_1_2_8_1_41_1
  doi: 10.1016/0012-821X(79)90137-7
– ident: e_1_2_8_2_5_1
  doi: 10.1002/2016JC011842
– ident: e_1_2_8_1_32_1
  doi: 10.1029/2005GC001211
– volume: 90
  start-page: 29
  year: 1986
  ident: e_1_2_8_1_43_1
  article-title: Miocene to early Pliocene oxygen and carbon isotope stratigraphy in the southwest Pacific, Deep Sea Drilling Project Leg 90. Initial reports of the Deep Sea Drilling Project
  publication-title: Legal Times
  contributor:
    fullname: Kennett J. P.
– ident: e_1_2_8_1_44_1
  doi: 10.1016/S0025-3227(03)00329-3
– ident: e_1_2_8_1_64_1
  doi: 10.1016/j.palaeo.2012.08.008
– ident: e_1_2_8_1_39_1
  doi: 10.1029/2010PA001949
– ident: e_1_2_8_2_7_1
  doi: 10.3767/000651909X475941
– ident: e_1_2_8_2_12_1
  doi: 10.1002/2013JC009543
– ident: e_1_2_8_2_14_1
  doi: 10.1029/1998JC900008
– ident: e_1_2_8_1_56_1
  doi: 10.5194/jm-38-189-2019
– ident: e_1_2_8_1_9_1
  doi: 10.1002/jgrc.20407
– ident: e_1_2_8_1_65_1
  doi: 10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2
– ident: e_1_2_8_1_14_1
  doi: 10.1016/S0025-3227(99)00057-2
– ident: e_1_2_8_1_35_1
  doi: 10.1002/2017PA003135
– ident: e_1_2_8_1_37_1
  doi: 10.1038/ngeo520
– ident: e_1_2_8_1_55_1
  doi: 10.1029/2007GL030392
– ident: e_1_2_8_2_11_1
  doi: 10.1016/j.dsr2.2010.09.029
– ident: e_1_2_8_1_34_1
  doi: 10.1038/nature14504
– ident: e_1_2_8_1_38_1
  doi: 10.1016/j.epsl.2010.10.028
– volume: 194
  start-page: 1
  year: 2002
  ident: e_1_2_8_1_36_1
  article-title: Leg 194 summary
  publication-title: Proceedings of the Ocean Drilling Program
  contributor:
    fullname: Isern A. R.
– ident: e_1_2_8_1_62_1
  doi: 10.1029/2007RG000245
– volume: 39
  issue: 6
  year: 2012
  ident: e_1_2_8_1_77_1
  article-title: Tasman leakage in a fine‐resolution ocean model
  publication-title: Geophysical Research Letters
  contributor:
    fullname: Sebille E.
– ident: e_1_2_8_1_7_1
  doi: 10.1002/2017GL072977
– ident: e_1_2_8_1_70_1
  doi: 10.1016/j.margeo.2018.06.007
– ident: e_1_2_8_1_46_1
  doi: 10.1175/JPO3130.1
– ident: e_1_2_8_1_10_1
  doi: 10.1016/j.epsl.2018.07.035
– ident: e_1_2_8_1_17_1
  doi: 10.5194/cp-17-2091-2021
– ident: e_1_2_8_1_49_1
  doi: 10.1002/2015JC010993
– ident: e_1_2_8_1_59_1
  doi: 10.1071/MF9660061
– ident: e_1_2_8_2_3_1
  doi: 10.1002/2017JC013311
– ident: e_1_2_8_1_42_1
  doi: 10.1038/284613a0
– ident: e_1_2_8_1_74_1
  doi: 10.1029/2020PA003857
– ident: e_1_2_8_1_78_1
  doi: 10.1002/2013JC009525
– ident: e_1_2_8_1_15_1
  doi: 10.1029/2006PA001267
– ident: e_1_2_8_1_18_1
  doi: 10.1016/j.epsl.2017.07.038
– volume-title: Proceedings of the Ocean Drilling Program
  year: 2004
  ident: e_1_2_8_1_25_1
  contributor:
    fullname: Feary D. A.
– ident: e_1_2_8_1_50_1
  doi: 10.1029/GM070p0311
– ident: e_1_2_8_1_52_1
  doi: 10.1029/2018JC014391
– ident: e_1_2_8_1_11_1
  doi: 10.1029/2019GL083670
– ident: e_1_2_8_1_22_1
  doi: 10.1111/sed.12584
– ident: e_1_2_8_1_6_1
  doi: 10.1016/S0031-0182(02)00340-1
– volume: 35
  start-page: 18
  issue: 7
  year: 2020
  ident: e_1_2_8_1_24_1
  article-title: Miocene C4 Grassland expansion as recorded by the Indus fan
  publication-title: Paleoceanography and Paleoclimatology
  contributor:
    fullname: Feakins S. J.
– ident: e_1_2_8_1_48_1
  doi: 10.1080/00288306.2001.9514954
– ident: e_1_2_8_1_8_1
  doi: 10.1029/2008PA001683
– ident: e_1_2_8_1_28_1
  doi: 10.1126/sciadv.1602567
– ident: e_1_2_8_1_73_1
  doi: 10.1029/2004JC002826
– volume: 50
  start-page: 339
  year: 1999
  ident: e_1_2_8_2_10_1
  article-title: Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview)
  publication-title: Geologica Carpathica
  contributor:
    fullname: Rögl F.
– ident: e_1_2_8_1_76_1
  doi: 10.1175/1520-0485(2001)031<2917:TDOTEA>2.0.CO;2
– ident: e_1_2_8_1_13_1
  doi: 10.1029/93PA02699
– ident: e_1_2_8_1_75_1
  doi: 10.1016/j.epsl.2018.07.025
– ident: e_1_2_8_1_29_1
  doi: 10.1029/2018GC007668
– ident: e_1_2_8_1_40_1
  doi: 10.1016/j.palaeo.2019.01.006
– ident: e_1_2_8_1_58_1
  doi: 10.1029/2000JC900107
– ident: e_1_2_8_1_69_1
  doi: 10.1029/2001GL014586
– ident: e_1_2_8_1_4_1
  doi: 10.1130/G45994.1
– ident: e_1_2_8_1_54_1
  doi: 10.1016/S0079-6611(03)00004-1
– ident: e_1_2_8_1_5_1
  doi: 10.1038/srep29838
– ident: e_1_2_8_1_60_1
  doi: 10.1002/2013GL057797
– ident: e_1_2_8_1_71_1
  doi: 10.5670/oceanog.2013.07
– ident: e_1_2_8_2_2_1
  doi: 10.1111/brv.12076
– volume-title: Hydrographic atlas of the world ocean circulation experiment (WOCE)
  year: 2013
  ident: e_1_2_8_1_72_1
  contributor:
    fullname: Talley L. D.
– ident: e_1_2_8_1_57_1
  doi: 10.1016/S0967-0637(99)00013-8
– ident: e_1_2_8_1_3_1
  doi: 10.3389/fmars.2019.00228
– ident: e_1_2_8_1_30_1
  doi: 10.1038/ngeo2813
– ident: e_1_2_8_1_19_1
  doi: 10.1007/s13131-013-0380-7
– ident: e_1_2_8_1_66_1
  doi: 10.1029/2020PA003872
– ident: e_1_2_8_2_6_1
  doi: 10.1002/jgrc.20408
– volume-title: Pacific Ocean
  year: 2007
  ident: e_1_2_8_2_13_1
  contributor:
    fullname: Talley L. D.
– ident: e_1_2_8_2_9_1
  doi: 10.1029/2019JC015024
– ident: e_1_2_8_1_16_1
  doi: 10.1002/2017PA003245
– ident: e_1_2_8_1_51_1
  doi: 10.1029/2005GC001085
– volume: 121
  year: 1991
  ident: e_1_2_8_1_53_1
  article-title: Oxygen and carbon isotopic records from the oozes of Sites 752,754,756, AND 757, Eastern Indian Ocean
  publication-title: Proceedings of the Ocean Drilling Program, Scientific Results
  contributor:
    fullname: Rea D. K.
– ident: e_1_2_8_1_20_1
  doi: 10.1002/2016JC012676
– ident: e_1_2_8_1_79_1
  doi: 10.1357/0022240054663196
– ident: e_1_2_8_1_67_1
  doi: 10.1073/pnas.1520188113
– ident: e_1_2_8_1_26_1
  doi: 10.2973/odp.proc.ir.182.2000
– volume: 121
  start-page: 211
  year: 1992
  ident: e_1_2_8_1_33_1
  article-title: Grain‐size record of ocean current winnowing in Oligocene to Pleistocene ooze, Broken Ridge, Southeastern Indian Ocean
  publication-title: Proceedings of the Ocean Drilling Program, Scientific Results
  contributor:
    fullname: House M.
SSID ssj0003031
Score 2.4613683
Snippet This study provides a Miocene‐to‐recent history of Tasman Leakage (TL), driving surface‐to‐intermediate waters from the Pacific into the Indian Ocean. TL, in...
This study provides a Miocene-to-recent history of Tasman Leakage (TL), driving surface-to-intermediate waters from the Pacific into the Indian Ocean. TL, in...
SourceID swepub
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Antarctic front
Australia
Benthos
Carbon isotopes
Climate change
Foraminifera
Global climate
Indonesian Throughflow
Intermediate water
Isotopes
ITF
late Miocene
Leakage
Miocene
Ocean circulation
Ocean currents
Oceanographers
Oceans
Return flow
Southern Hemisphere
Southern Hemisphere Supergyre
Tasman Leakage
Thermohaline circulation
Water circulation
Water depth
Westerlies
Title Late Miocene Onset of Tasman Leakage and Southern Hemisphere Supergyre Ushers in Near‐Modern Circulation
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL095036
https://www.proquest.com/docview/2595749015
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-457899
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYACYkLsDxEgV35ACcUkdpuYl-QEI_2UB7iJW7W2HFRWa2LGnLgxk_Y37i_hLGTVuWyEuIUK4qdKOOZ-SaZ-YaQPZt1jLDpIBFOdRKB40RK1CubAsP9IrIMQr1z7za_fJSnZ4Em52hSC1PzQ0w_uAXNiPY6KDiYsiEbCByZGLW3u31ECGiD0QRjoBArOPj11BCjda4b5imRSJZnTd47Tj-cnfzZI83AzJo69DNqjW7nfOW7D7xKlhvASY_rHfKDzDm_Rha7saHvG45iCqgt18lzH2EnvRiiQ_OOXvnSvdLRgN5B-Qc87Tv4jaaHgi9obLvnxp72QrO4wEvg6G31EooIcXQfk-zp0NNL1KJ_73_rdmv0ZDi2Ta-wDXJ_fnZ30kuaTgwJiFRgkFmEA4Ilk5vM2kKKATOcdwrBQSKIk8AHDHKuwLhUGMtUym07ByEDXgDGN8mCH3m3RSgzCqMox4QFIzB6A86ZMtYUIFQb0rxF9ifS0C814YaOP8qZ0rNvsEV2J6LSjdqVGmO5Ti4CxMFlavFNFwk82qfDh2M9Gj_pqtICbZVSLXIQZfbfe-nuTT9Dv93e_tLVO2QpnA_ZJUzukoXXceV-kvmyqH7FjfoB-NDlUA
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbYRQgu_K8oLOADnFBEak8T-4RW-9MisgWxXcTNGjsuKgh31WwO3HgEnpEnYeykVfeChDjFh9iJMp6Zb5yZbxh74YqRBZfPM_B6lAGNM6VIr1yOgvYLFAXGeufJWTn9rI6OI03Om3UtTMcPsTlwi5qR7HVU8Hgg3bMNRJJMCtuH44ogAhnhHXYdClo71nDIDxtTTPa5a5mnIVOiLPrMd5r_env2VZ-0BTQ78tCruDU5npM7__3Kd9ntHnPyg26T3GPXfLjPboxTT98fNEpZoK55wL5WhDz56YJ8WvD8fWj8JV_O-Qyb7xh45fEbWR-Ooeap855fBT6J_eIiNYHnZ-1FrCOk0XnKs-eLwKekSL9__uo6rvHDxcr17cIesvOT49nhJOubMWQIOVCcWccL4SVb2sK5WsFcWClHNUhUhOMUyrnAUmq0PgfrhM6lG5YIKkIGFHKP7YZl8I8YF1ZTIOUFOLRAARxKKbR1tkbQQ8zLAXu5Foe56Dg3TPpXLrTZ_oIDtr-Wlek1rzEUzo1KiCiHlunkt1kkUmkfLT4dmOXqi2lbA2SutB6wV0lof32WGX-sCnLdw8f_dPdzdnMyO61M9Xb67gm7Fe-JySZC7bPdy1Xrn7Kdpm6fpV37B4wD6Xg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELb6IxAX_isWCvgAJxSRtWcT-1Kp6nZ3K8JS0RZxs2zHqbYI72rTHLjxCH1GnoSxk11tL0iop8zBdqKMZ-abZPwNIe9sNjBg0yoBJwcJoJwIgXZlU81wv0CW6XDeeXKWT7-L4XGgyTlYnYVp-SHWH9yCZUR_HQx8UVYd2UDgyMSsvT8uECGgD94mu4BIPHDnc3669sTontuOeRISwfKsK3zH-R83Z98OSRs4s-UOvQ1bY9wZPbrrEz8mDzvESQ_bLfKEbDn_lNwbx46-v1CKNaC2fkauCsSd9PMMI5p39Iuv3TWdV_Rc1z-1p4XTP9D3UO1LGvvuuaWnk9AtLhATOHrWLMIpQpQuYpU9nXk6RTP68_um7bdGj2ZL2zULe04uRsfnR5Oka8WQaEgBs8wyXBAtmdxk1pYCKmY4H5TAtUAUJzSvmM651MalYCyTKbf9XIMIgEEzvkd2_Ny7F4QyIzGNcgysNoDpm-acSWNNqUH2dZr3yPuVNtSiZdxQ8U85k2rzDfbI_kpVqrO7WmEyN8ghYBxcplXfepFApD2cfTtU8-WlahoF6Kyk7JEPUWf_vJcafy0yDNz9l_81-i25fzocqeJk-ukVeRCGhEoTJvbJzvWyca_Jdl02b-Ke_Qu7q-ge
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Late+Miocene+Onset+of+Tasman+Leakage+and+Southern+Hemisphere+Supergyre+Ushers+in+Near%E2%80%90Modern+Circulation&rft.jtitle=Geophysical+research+letters&rft.au=Christensen%2C+Beth+A.&rft.au=De+Vleeschouwer%2C+David&rft.au=Henderiks%2C+Jorijntje&rft.au=Groeneveld%2C+Jeroen&rft.date=2021-09-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=48&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2021GL095036&rft.externalDBID=10.1029%252F2021GL095036&rft.externalDocID=GRL62991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon