A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries

Much of our understanding of vascular mechanotransduction has come from studies using either cell culture or in vivo animal models, but the recent success of organ culture systems offers an exciting alternative. In studying cell-mediated vascular adaptations to altered loading, organ culture allows...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanical engineering Vol. 126; no. 6; p. 787
Main Authors: Gleason, R L, Gray, S P, Wilson, E, Humphrey, J D
Format: Journal Article
Language:English
Published: United States 01-12-2004
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Much of our understanding of vascular mechanotransduction has come from studies using either cell culture or in vivo animal models, but the recent success of organ culture systems offers an exciting alternative. In studying cell-mediated vascular adaptations to altered loading, organ culture allows one to impose well-controlled mechanical loads and to perform multiaxial mechanical tests on the same vessel throughout the culture period, and thereby to observe cell-mediated vascular adaptations independent of neural and hormonal effects. Here, we present a computer-controlled perfused organ culture and biomechanical testing device designed for small caliber (50-5000 micron) blood vessels. This device can control precisely the pulsatile pressure, luminal flow, and axial load (or stretch) and perform intermittent biaxial (pressure-diameter and axial load-length) and functional tests to quantify adaptations in mechanical behavior and cellular function, respectively. Device capabilities are demonstrated by culturing mouse carotid arteries for 4 days.
ISSN:0148-0731
DOI:10.1115/1.1824130