Electrical conductivity as an indicator of iron reduction rates in abiotic and biotic systems
Although changes in bulk electrical conductivity (σb) in aquifers have been attributed to microbial activity, σb has never been used to infer biogeochemical reaction rates quantitatively. To explore the use of electrical conductivity to measure reaction rates, we conducted iron oxide reduction exper...
Saved in:
Published in: | Water resources research Vol. 47; no. 4 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
Blackwell Publishing Ltd
01-04-2011
John Wiley & Sons, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although changes in bulk electrical conductivity (σb) in aquifers have been attributed to microbial activity, σb has never been used to infer biogeochemical reaction rates quantitatively. To explore the use of electrical conductivity to measure reaction rates, we conducted iron oxide reduction experiments of increasing biological complexity. To quantify reaction rates, we propose composite reactions that incorporate the stoichiometry of five different types of reactions: redox, acid‐base, sorption, dissolution/precipitation, and biosynthesis. In batch experiments and the early stages of a column experiment, such reaction stoichiometries inferred from a few chemical measurements allowed quantification of the Fe oxide reduction rate based on changes in electrical conductivity. The relationship between electrical conductivity and fluid chemistry did not hold during the latter stages of the column experiment when σb increased while fluid chemistry remained constant. Growth of an electrically conductive biofilm could possibly explain this late stage σb increase. The measured σb increase is consistent with a model proposed by analogy from percolation theory that attributes the increased conductivity to growth of biofilms with conductivity of ∼5.5 S m−1 in at least 3% of the column pore space. This work demonstrates that measurements of σb and flow rate, combined with a few direct chemical measurements, can be used to quantify biogeochemical reaction rates in controlled laboratory situations and may be able to detect the presence of biofilms. This approach may help in designing future field experiments to interpret biogeochemical reactivity from conductivity measurements. |
---|---|
Bibliography: | ArticleID:2010WR009551 Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3. istex:EF1D26FE30AE9F4A77C2CC4F411C0F27ED333806 ark:/67375/WNG-L3MTM76P-L USDOE Office of Science (SC), Biological and Environmental Research (BER) |
ISSN: | 0043-1397 1944-7973 |
DOI: | 10.1029/2010WR009551 |