Connectosomes for Direct Molecular Delivery to the Cellular Cytoplasm

Transport of biomolecules, drugs, and other reagents across the cell’s plasma membrane barrier is an inefficient and poorly controlled process, despite its fundamental importance to biotechnology, cell biology, and pharmaceutics. In particular, insufficient membrane permeability frequently limits th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society Vol. 138; no. 39; pp. 12833 - 12840
Main Authors: Gadok, Avinash K, Busch, David J, Ferrati, Silvia, Li, Brian, Smyth, Hugh D. C, Stachowiak, Jeanne C
Format: Journal Article
Language:English
Published: United States American Chemical Society 05-10-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transport of biomolecules, drugs, and other reagents across the cell’s plasma membrane barrier is an inefficient and poorly controlled process, despite its fundamental importance to biotechnology, cell biology, and pharmaceutics. In particular, insufficient membrane permeability frequently limits the accumulation of drugs and reagents in the cytoplasm, undermining their efficacy. While encapsulating drugs in particles increases uptake by cells, inefficient release of drugs from these particles into the cytoplasm ultimately limits drug efficacy. In contrast, gap junctions provide a direct route to the cytoplasm that bypasses the plasma membrane. As transmembrane channels that physically connect the cytoplasm of adjacent cells, gap junctions permit transport of a diverse range of molecules, from ions and metabolites to siRNA, peptides, and chemotherapeutics. To utilize gap junctions for molecular delivery we have developed Connectosomes, cell-derived lipid vesicles that contain functional gap junction channels and encapsulate molecular cargos. Here we show that these vesicles form gap junction channels with cells, opening a direct and efficient route for the delivery of molecular cargo to the cellular cytoplasm. Specifically, we demonstrate that using gap junctions to deliver the chemotherapeutic doxorubicin reduces the therapeutically effective dose of the drug by more than an order of magnitude. Delivering drugs through gap junctions has the potential to boost the effectiveness of existing drugs such as chemotherapeutics, while simultaneously enabling the delivery of membrane-impermeable drugs and reagents.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.6b05191