Surface Diffusion in Gaseous Monolayers of an Insoluble Surfactant

Surface diffusion is an important mass transfer mechanism of surfactant molecules within adsorbed layers, which has to be taken into account in many fluid dynamics problems. Although considerable research has been devoted to studying the thermodynamic and rheological properties of surface films, rat...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir Vol. 35; no. 44; pp. 14180 - 14187
Main Authors: Shmyrov, Andrey, Mizev, Aleksey
Format: Journal Article
Language:English
Published: United States American Chemical Society 05-11-2019
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Surface diffusion is an important mass transfer mechanism of surfactant molecules within adsorbed layers, which has to be taken into account in many fluid dynamics problems. Although considerable research has been devoted to studying the thermodynamic and rheological properties of surface films, rather less attention has been paid to surface diffusivity measurements. Current measurement methods, which are based on marking part of surfactant molecules in uniform motionless layers with the radiotracer or fluorescence technique, are well suited for use in quite condensed layers, but they do not work in rarefied layers due to increasing contribution of density fluctuations at an interface. In this study, we propose a method for measuring the surface diffusion coefficient in gaseous monolayers of an insoluble surfactant under dynamic conditions, i.e., in the presence of a flow at an interface. Our approach is based on measuring the velocity of thermocapillary flow on the water surface, which contains molecules of an insoluble surfactant. We show that under conditions of the balance between thermo- and solutocapillary tangential stresses the convective motion exists at an interface, which is caused by a blurring of the surface concentration gradient of surfactant molecules due to the surface diffusion mechanism. For calculations of the surface diffusion coefficient, we use the equation proposed earlier in the theoretical study [ Homsy, G. M. ; et al. J. Fluid Mech. 1984 139,443−459 ]. The surface diffusion coefficient measured by us in gaseous layers is 2–3 orders of magnitude larger than the results for liquid-expanded and liquid-condensed layers obtained by other researchers. Finally, we compare the obtained results with the known measurements of surface diffusion and discuss the limitations of the proposed method.
AbstractList Surface diffusion is an important mass transfer mechanism of surfactant molecules within adsorbed layers, which has to be taken into account in many fluid dynamics problems. Although considerable research has been devoted to studying the thermodynamic and rheological properties of surface films, rather less attention has been paid to surface diffusivity measurements. Current measurement methods, which are based on marking part of surfactant molecules in uniform motionless layers with the radiotracer or fluorescence technique, are well suited for use in quite condensed layers, but they do not work in rarefied layers due to increasing contribution of density fluctuations at an interface. In this study, we propose a method for measuring the surface diffusion coefficient in gaseous monolayers of an insoluble surfactant under dynamic conditions, i.e., in the presence of a flow at an interface. Our approach is based on measuring the velocity of thermocapillary flow on the water surface, which contains molecules of an insoluble surfactant. We show that under conditions of the balance between thermo- and solutocapillary tangential stresses the convective motion exists at an interface, which is caused by a blurring of the surface concentration gradient of surfactant molecules due to the surface diffusion mechanism. For calculations of the surface diffusion coefficient, we use the equation proposed earlier in the theoretical study [ Homsy, G. M. ; et al. J. Fluid Mech. 1984 139,443−459 ]. The surface diffusion coefficient measured by us in gaseous layers is 2–3 orders of magnitude larger than the results for liquid-expanded and liquid-condensed layers obtained by other researchers. Finally, we compare the obtained results with the known measurements of surface diffusion and discuss the limitations of the proposed method.
Surface diffusion is an important mass transfer mechanism of surfactant molecules within adsorbed layers, which has to be taken into account in many fluid dynamics problems. Although considerable research has been devoted to studying the thermodynamic and rheological properties of surface films, rather less attention has been paid to surface diffusivity measurements. Current measurement methods, which are based on marking part of surfactant molecules in uniform motionless layers with the radiotracer or fluorescence technique, are well suited for use in quite condensed layers, but they do not work in rarefied layers due to increasing contribution of density fluctuations at an interface. In this study, we propose a method for measuring the surface diffusion coefficient in gaseous monolayers of an insoluble surfactant under dynamic conditions, i.e., in the presence of a flow at an interface. Our approach is based on measuring the velocity of thermocapillary flow on the water surface, which contains molecules of an insoluble surfactant. We show that under conditions of the balance between thermo- and solutocapillary tangential stresses the convective motion exists at an interface, which is caused by a blurring of the surface concentration gradient of surfactant molecules due to the surface diffusion mechanism. For calculations of the surface diffusion coefficient, we use the equation proposed earlier in the theoretical study [ Homsy , G. M. ; 1984 139 , 443 - 459 ]. The surface diffusion coefficient measured by us in gaseous layers is 2-3 orders of magnitude larger than the results for liquid-expanded and liquid-condensed layers obtained by other researchers. Finally, we compare the obtained results with the known measurements of surface diffusion and discuss the limitations of the proposed method.
Author Mizev, Aleksey
Shmyrov, Andrey
Author_xml – sequence: 1
  givenname: Andrey
  surname: Shmyrov
  fullname: Shmyrov, Andrey
  email: shmyrov@icmm.ru
– sequence: 2
  givenname: Aleksey
  orcidid: 0000-0001-5233-8271
  surname: Mizev
  fullname: Mizev, Aleksey
  email: alex_mizev@icmm.ru
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31618037$$D View this record in MEDLINE/PubMed
BookMark eNp9kLtOwzAUhi0Eohd4A4Q8sqT4EucyQoFSqYgBmC07tlGqxC52PPTtcZWWkelIR99_Lt8MnFtnNQA3GC0wIvheNGHRCfvdx9YvaplarDgDU8wIylhFynMwRWVOszIv6ATMQtgihGqa15dgQnGBK0TLKXj8iN6IRsOn1pgYWmdha-FKBO1igG_Ouk7stQ_QGSgsXNvguig7DcfcIOxwBS6M6IK-PtY5-Hp5_ly-Zpv31Xr5sMkErdiQaYURZenMSlOhFKsbJEVBRFFhRWSuckUIphVtDCO5lMxQmUgpMVW0xljQObgb5-68-4k6DLxvQ6O7JOFwLCcUFXmNClQlNB_RxrsQvDZ859te-D3HiB_s8WSPn-zxo70Uuz1uiLLX6i900pUANAKH-NZFb9PD_8_8BYc1gIU
CitedBy_id crossref_primary_10_1103_PhysRevE_106_045107
crossref_primary_10_1017_jfm_2022_601
crossref_primary_10_1088_1742_6596_1809_1_012004
crossref_primary_10_3390_fluids9020048
crossref_primary_10_1103_PhysRevFluids_8_083602
crossref_primary_10_3367_UFNr_2021_07_039030
Cites_doi 10.1073/pnas.80.23.7183
10.1016/0001-8686(67)85001-2
10.1016/0021-9797(88)90440-7
10.1016/0005-2736(75)90300-4
10.1016/j.expthermflusci.2018.03.026
10.1163/ej.9789004175860.i-684
10.1111/j.1432-1033.1978.tb12070.x
10.1016/S0006-3495(93)81301-8
10.1017/S0022112097005053
10.1093/qjmam/27.1.87
10.1017/S0022112085001884
10.1016/0021-9797(72)90176-2
10.1017/S0022112084000446
10.1016/j.colsurfa.2010.01.054
10.1017/jfm.2019.613
10.1017/S0022112005007019
10.1016/S0021-9797(78)80018-6
10.1063/1.2912441
10.1016/j.cis.2017.08.010
10.1002/aic.16379
10.1007/BF01381695
10.1016/0009-2509(65)80061-6
10.1016/0021-9797(88)90439-0
10.1021/j100643a020
10.1098/rstl.1886.0005
10.1002/andp.18752300213
10.1016/j.colsurfa.2011.03.069
10.1007/BF01382463
10.1039/tf9464200619
10.1007/BF01526745
10.1063/1.439101
10.1246/bcsj.25.13
10.1021/i160031a033
10.1016/0009-2509(66)80017-9
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acs.langmuir.9b02156
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 14187
ExternalDocumentID 10_1021_acs_langmuir_9b02156
31618037
a184933907
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
4.4
AAHBH
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
CUPRZ
GGK
NPM
YQT
~02
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a385t-ed10350218e3add59c0ba62a681d2b4d4d221383cf524bb5f3b8e3bb13d3911a3
IEDL.DBID ACS
ISSN 0743-7463
IngestDate Fri Aug 16 23:33:39 EDT 2024
Fri Aug 23 01:23:19 EDT 2024
Sat Sep 28 08:30:27 EDT 2024
Thu Aug 27 13:43:49 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a385t-ed10350218e3add59c0ba62a681d2b4d4d221383cf524bb5f3b8e3bb13d3911a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5233-8271
PMID 31618037
PQID 2306490608
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2306490608
crossref_primary_10_1021_acs_langmuir_9b02156
pubmed_primary_31618037
acs_journals_10_1021_acs_langmuir_9b02156
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-11-05
PublicationDateYYYYMMDD 2019-11-05
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
Abramzon A. (ref21/cit21) 1981
Nepomnyashchy A. (ref2/cit2) 2006
ref26/cit26
ref35/cit35
ref19/cit19
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
Miller R. (ref4/cit4) 2009
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1073/pnas.80.23.7183
– ident: ref32/cit32
  doi: 10.1016/0001-8686(67)85001-2
– ident: ref16/cit16
  doi: 10.1016/0021-9797(88)90440-7
– ident: ref8/cit8
  doi: 10.1016/0005-2736(75)90300-4
– ident: ref29/cit29
  doi: 10.1016/j.expthermflusci.2018.03.026
– volume-title: Interfacial Rheology
  year: 2009
  ident: ref4/cit4
  doi: 10.1163/ej.9789004175860.i-684
  contributor:
    fullname: Miller R.
– ident: ref11/cit11
  doi: 10.1111/j.1432-1033.1978.tb12070.x
– ident: ref14/cit14
  doi: 10.1016/S0006-3495(93)81301-8
– ident: ref27/cit27
  doi: 10.1017/S0022112097005053
– ident: ref24/cit24
– ident: ref26/cit26
  doi: 10.1093/qjmam/27.1.87
– ident: ref18/cit18
  doi: 10.1017/S0022112085001884
– ident: ref9/cit9
  doi: 10.1016/0021-9797(72)90176-2
– ident: ref17/cit17
  doi: 10.1017/S0022112084000446
– ident: ref37/cit37
  doi: 10.1016/j.colsurfa.2010.01.054
– ident: ref20/cit20
  doi: 10.1017/jfm.2019.613
– ident: ref28/cit28
  doi: 10.1017/S0022112005007019
– ident: ref10/cit10
  doi: 10.1016/S0021-9797(78)80018-6
– ident: ref30/cit30
  doi: 10.1063/1.2912441
– ident: ref19/cit19
  doi: 10.1016/j.cis.2017.08.010
– ident: ref31/cit31
  doi: 10.1002/aic.16379
– volume-title: Springer Monographs in Mathematics
  year: 2006
  ident: ref2/cit2
  contributor:
    fullname: Nepomnyashchy A.
– ident: ref36/cit36
  doi: 10.1007/BF01381695
– ident: ref1/cit1
  doi: 10.1016/0009-2509(65)80061-6
– ident: ref15/cit15
  doi: 10.1016/0021-9797(88)90439-0
– ident: ref22/cit22
  doi: 10.1021/j100643a020
– ident: ref34/cit34
  doi: 10.1098/rstl.1886.0005
– volume-title: Surface-Active Materials
  year: 1981
  ident: ref21/cit21
  contributor:
    fullname: Abramzon A.
– ident: ref33/cit33
  doi: 10.1002/andp.18752300213
– ident: ref3/cit3
  doi: 10.1016/j.colsurfa.2011.03.069
– ident: ref7/cit7
  doi: 10.1007/BF01382463
– ident: ref23/cit23
  doi: 10.1039/tf9464200619
– ident: ref35/cit35
  doi: 10.1007/BF01526745
– ident: ref12/cit12
  doi: 10.1063/1.439101
– ident: ref5/cit5
  doi: 10.1246/bcsj.25.13
– ident: ref6/cit6
  doi: 10.1021/i160031a033
– ident: ref25/cit25
  doi: 10.1016/0009-2509(66)80017-9
SSID ssj0009349
Score 2.4008126
Snippet Surface diffusion is an important mass transfer mechanism of surfactant molecules within adsorbed layers, which has to be taken into account in many fluid...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 14180
Title Surface Diffusion in Gaseous Monolayers of an Insoluble Surfactant
URI http://dx.doi.org/10.1021/acs.langmuir.9b02156
https://www.ncbi.nlm.nih.gov/pubmed/31618037
https://search.proquest.com/docview/2306490608
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7YOMCF92O8FCQuHDraJG3aI-zBuHAZSNyqPKVJ0KFt_f_YfYA4TIhrlUaWY-f7bCs2ITcO_Edgo1vvQxsI6USgtbaBdGmsjI5FojDfMZnK57d0OMI2Of01FXwW3Smz7GPu7qOcLfqZRoxKOmSTSSALSIUG058mu7ymu9h2U4qEt0_l1uyCgGSWvwFpDcus0Ga8-18598hOwyvpfW0I-2TDFQdka9COczskD9Ny4ZVxdDjzvsQcGZ0V9BFADGJ_Cq4NMS7Sbzr3VBX0qUCj1O-O1v_hsOEj8joevQwmQTNAIVA8jVeBsxEWDgHFHYd7LM5MqFXCVAIklWlhhWUsghDV-JgJrWPPNazUOuKWwyWo-DHpFvPCnRKq0iy1xqYSIi4hPcuAZ2gWqkj7kEuT9MgtKCBvHGCZV7VtFuX4sdVK3milR4JW4_ln3VPjj_XX7bHkoDSsaKgClZNX8VMWJmHaIyf1eX3vyHEUAMh29g_Jzsk2EKKsemsYX5DualG6S9JZ2vKqsrQvIQjRRg
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HODC-zGeQeLCodA2SR9HGBtDPC4DiVuVNIk0CTq0rv8fu11BHBCCa5RYlmPHn23FBji1aD-CGt065xtPxFZ4WmvjxTaRKtdSRIryHYNh_PiSXPeoTY5s_8IgEyVSKusi_ld3geCC1iiF91aNJuepJlcVzcOijBAPEyLqDr967fIG9VL3zVhEvP0x9wMV8kt5-d0v_QA2a6fTX_0nu2uwMkOZ7LJRi3WYs8UGLHXb4W6bcDWsJk7lll2PnKsoY8ZGBbtBlzauSoaGjhEvgXE2dkwV7LYgFdWvljXnaPTwFjz3e0_dgTcbp-ApnsipZ01AZUT06ZbjqybT3NcqClWEkDXUwggThgEGrLmTodBaOq5xp9YBNxyfRMW3YaEYF3YXmErSxOQmiTH-ErELU0QdOvRVoJ3P4zzqwBkKIJuZQ5nVle4wyGixlUo2k0oHvFbw2XvTYeOX_Sft7WQoNKpvqIKEk9XRVOpHftKBnebaPilyGgyAvO39gbNjWBo8Pdxn97ePd_uwjFAprX8hygNYmE4qewjzpamOauX7ABrn2bM
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwQxDA4eoL54H-tZwRcfRmemnetR93BFEWEVfBvaaQsLOrvsOP_fZA7FBxHxtbQhpEnzJaEJwJlB-xHU6NZaVzsiMsJRSmknMnEgMxWIUFK-YziKHl7iXp_a5HyO-kImCqRUVEV8suqptk2HAe-S1imN91aOZxeJIncVzsNiEEYJxV1X3dFXv11eI1_qwBmJkLe_5n6gQr4pK777ph8AZ-V4Bmv_YHkdVhu0ya5q9diAOZNvwnK3HfK2BdejcmZlZlhvbG1JmTM2ztkNurZJWTA0eIx8CZSziWUyZ7c5qap6Naw-RyOIt-F50H_qDp1mrIIjeRy8O0Z7VE5E3244vm5BkrlKhr4MEbr6Smihfd_DwDWzgS-UCixXuFMpj2uOT6PkO7CQT3KzB0zGSawzHUcYh4nI-gmiD-W70lPW5VEWduAcBZA2ZlGkVcXb91JabKWSNlLpgNMKP53WnTZ-2X_a3lCKQqM6h8xJOGkVVSVu6MYd2K2v7pMipwEByNv-Hzg7gaXH3iC9v324O4AVRExJ9RkxOISF91lpjmC-0OVxpX8fSUTcNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Diffusion+in+Gaseous+Monolayers+of+an+Insoluble+Surfactant&rft.jtitle=Langmuir&rft.au=Shmyrov%2C+Andrey&rft.au=Mizev%2C+Aleksey&rft.date=2019-11-05&rft.eissn=1520-5827&rft.volume=35&rft.issue=44&rft.spage=14180&rft.epage=14187&rft_id=info:doi/10.1021%2Facs.langmuir.9b02156&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon