Enhancement of the Exciton Coherence Size in Organic Semiconductor by Alkyl Chain Substitution

Photophysical properties of molecular aggregates are largely determined by exciton coherence size: a spatial extension of exciton delocalization. Increase in exciton coherence size can lead to fast energy transport as well as efficient charge separation. Here, we demonstrate that introducing alkyl c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C Vol. 120; no. 15; pp. 7941 - 7948
Main Authors: Tanaka, Shunsuke, Miyata, Kiyoshi, Sugimoto, Toshiki, Watanabe, Kazuya, Uemura, Takafumi, Takeya, Jun, Matsumoto, Yoshiyasu
Format: Journal Article
Language:English
Published: American Chemical Society 21-04-2016
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Photophysical properties of molecular aggregates are largely determined by exciton coherence size: a spatial extension of exciton delocalization. Increase in exciton coherence size can lead to fast energy transport as well as efficient charge separation. Here, we demonstrate that introducing alkyl chains to organic molecules can enhance the exciton coherence size significantly. Focusing on the thin films of excellent hole transport materials, dinaphtho­[2,3-b:2,3-f]­thieno­[3,2-b]­thiophene (DNTT) and its alkyl-substituted derivative, we analyze the steady-state and picosecond time-resolved photoluminescence spectra of the films to estimate exciton coherence sizes. The alkyl substitution enhances the coherence size by a factor of 2–3, indicating that a long-range ordering in the molecular aggregates is achieved with the additional van der Waals interaction between saturated alkyl chains. The coherence sizes of both the films decrease with increasing temperature owing to thermal populations within the vibronic exciton manifolds.
AbstractList Photophysical properties of molecular aggregates are largely determined by exciton coherence size: a spatial extension of exciton delocalization. Increase in exciton coherence size can lead to fast energy transport as well as efficient charge separation. Here, we demonstrate that introducing alkyl chains to organic molecules can enhance the exciton coherence size significantly. Focusing on the thin films of excellent hole transport materials, dinaphtho­[2,3-b:2,3-f]­thieno­[3,2-b]­thiophene (DNTT) and its alkyl-substituted derivative, we analyze the steady-state and picosecond time-resolved photoluminescence spectra of the films to estimate exciton coherence sizes. The alkyl substitution enhances the coherence size by a factor of 2–3, indicating that a long-range ordering in the molecular aggregates is achieved with the additional van der Waals interaction between saturated alkyl chains. The coherence sizes of both the films decrease with increasing temperature owing to thermal populations within the vibronic exciton manifolds.
Author Watanabe, Kazuya
Takeya, Jun
Miyata, Kiyoshi
Uemura, Takafumi
Tanaka, Shunsuke
Sugimoto, Toshiki
Matsumoto, Yoshiyasu
AuthorAffiliation Kyoto University
Department of Chemistry, Graduate School of Science
The University of Tokyo
Department of Advanced Materials Science, Graduate School of Frontier Sciences
AuthorAffiliation_xml – name: Kyoto University
– name: The University of Tokyo
– name: Department of Chemistry, Graduate School of Science
– name: Department of Advanced Materials Science, Graduate School of Frontier Sciences
Author_xml – sequence: 1
  givenname: Shunsuke
  surname: Tanaka
  fullname: Tanaka, Shunsuke
– sequence: 2
  givenname: Kiyoshi
  surname: Miyata
  fullname: Miyata, Kiyoshi
– sequence: 3
  givenname: Toshiki
  surname: Sugimoto
  fullname: Sugimoto, Toshiki
– sequence: 4
  givenname: Kazuya
  surname: Watanabe
  fullname: Watanabe, Kazuya
  email: kw@kuchem.kyoto-u.ac.jp
– sequence: 5
  givenname: Takafumi
  surname: Uemura
  fullname: Uemura, Takafumi
– sequence: 6
  givenname: Jun
  surname: Takeya
  fullname: Takeya, Jun
– sequence: 7
  givenname: Yoshiyasu
  surname: Matsumoto
  fullname: Matsumoto, Yoshiyasu
  email: matsumoto@kuchem.kyoto-u.ac.jp
BookMark eNp1kE1LwzAYx4NMcJvePeYD2Jk0bZocR5kvMNhherUkj6nN3JKRpOD89HZuePP0_OH_wsNvgkbOO4PQLSUzSnJ6ryDONnuAWalpzgW_QGMqWZ5VRVmO_nRRXaFJjBtCSkYoG6O3heuUA7MzLmHf4tQZvPgCm7zDte9MMIOJ1_bbYOvwKnwoZwGvzc6Cd-89JB-wPuD59vOwxXWnhtC61zHZ1Cfr3TW6bNU2mpvznaLXh8VL_ZQtV4_P9XyZKSZYymjLq0JCIUupjSg151q3jBtGgVYF5IwKMcicKApct1RyBsAqYWReiQIkmyJy2oXgYwymbfbB7lQ4NJQ0Rz7NwKc58mnOfIbK3any6_g-uOHB_-M_W01rmg
CitedBy_id crossref_primary_10_15407_spqeo25_04_372
crossref_primary_10_1002_advs_201700442
crossref_primary_10_1021_acs_jpca_2c00682
crossref_primary_10_1021_acs_chemrev_6b00645
crossref_primary_10_1098_rspa_2020_0278
crossref_primary_10_3390_molecules25173842
crossref_primary_10_1021_acs_chemrev_7b00581
crossref_primary_10_1103_PhysRevMaterials_4_074601
crossref_primary_10_1021_acsomega_0c06313
crossref_primary_10_1002_adom_201901670
crossref_primary_10_1021_acs_jpcc_1c09297
crossref_primary_10_1021_acs_jpcc_6b06175
crossref_primary_10_1021_acsnano_1c11398
crossref_primary_10_1002_admi_202300922
crossref_primary_10_1021_acs_jpcc_2c08334
crossref_primary_10_1039_C7CE02245J
crossref_primary_10_1021_acs_jpca_0c09075
crossref_primary_10_1039_D1NJ00807B
Cites_doi 10.1021/ja512668r
10.1021/cm4018776
10.1063/1.1676371
10.1103/PhysRevB.60.1633
10.1103/PhysRevB.91.195306
10.1021/ja408235h
10.1021/cr00018a001
10.1021/ja107046s
10.1021/jp910102f
10.1146/annurev.physchem.57.032905.104557
10.1002/adma.201001283
10.1021/jz500716k
10.1103/PhysRevLett.91.247401
10.1039/C4EE00446A
10.1021/jz4010569
10.1002/adma.201004387
10.1063/1.4769436
10.1103/PhysRevB.86.085143
10.1021/ja068429z
10.1021/jz5017729
10.1146/annurev.physchem.51.1.691
10.1103/PhysRevLett.95.177402
10.1063/1.2822310
10.1021/jp104752k
10.1021/ja00072a026
10.1021/jz402450m
10.1038/329039a0
10.1002/adma.200800799
10.1063/1.3495764
10.1063/1.2823730
10.1021/ja067321g
10.1021/jp990354g
10.1016/S0301-0104(00)00157-9
10.1039/c3cp54157f
10.1016/0009-2614(90)85258-E
10.1063/1.1521933
10.1021/ar900233v
10.1142/3168
10.1103/PhysRevB.81.033306
10.1063/1.1676250
10.1063/1.2052591
10.1103/PhysRevLett.92.107402
10.1021/ja0162459
10.1021/jp3086717
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.jpcc.5b12686
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 7948
ExternalDocumentID 10_1021_acs_jpcc_5b12686
a277596386
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
AAYXX
ABJNI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a383t-1f6749c4959be85b66bbf36e31c174c231881c120a1c6bf1963cc378e92784c93
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Fri Aug 23 00:31:41 EDT 2024
Thu Aug 27 13:44:47 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a383t-1f6749c4959be85b66bbf36e31c174c231881c120a1c6bf1963cc378e92784c93
PageCount 8
ParticipantIDs crossref_primary_10_1021_acs_jpcc_5b12686
acs_journals_10_1021_acs_jpcc_5b12686
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2016-04-21
PublicationDateYYYYMMDD 2016-04-21
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-21
  day: 21
PublicationDecade 2010
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
Kobayashi T. (ref33/cit33) 1996
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref9/cit9
  doi: 10.1021/ja512668r
– ident: ref10/cit10
  doi: 10.1021/cm4018776
– ident: ref37/cit37
  doi: 10.1063/1.1676371
– ident: ref39/cit39
  doi: 10.1103/PhysRevB.60.1633
– ident: ref21/cit21
  doi: 10.1103/PhysRevB.91.195306
– ident: ref6/cit6
  doi: 10.1021/ja408235h
– ident: ref31/cit31
  doi: 10.1021/cr00018a001
– ident: ref12/cit12
  doi: 10.1021/ja107046s
– ident: ref30/cit30
  doi: 10.1021/jp910102f
– ident: ref44/cit44
  doi: 10.1146/annurev.physchem.57.032905.104557
– ident: ref18/cit18
  doi: 10.1002/adma.201001283
– ident: ref5/cit5
  doi: 10.1021/jz500716k
– ident: ref2/cit2
  doi: 10.1103/PhysRevLett.91.247401
– ident: ref14/cit14
  doi: 10.1039/C4EE00446A
– ident: ref7/cit7
  doi: 10.1021/jz4010569
– ident: ref22/cit22
  doi: 10.1002/adma.201004387
– ident: ref20/cit20
  doi: 10.1063/1.4769436
– ident: ref29/cit29
  doi: 10.1103/PhysRevB.86.085143
– ident: ref19/cit19
  doi: 10.1021/ja068429z
– ident: ref11/cit11
  doi: 10.1021/jz5017729
– ident: ref35/cit35
  doi: 10.1146/annurev.physchem.51.1.691
– ident: ref42/cit42
  doi: 10.1103/PhysRevLett.95.177402
– ident: ref32/cit32
  doi: 10.1063/1.2822310
– ident: ref4/cit4
  doi: 10.1021/jp104752k
– ident: ref16/cit16
  doi: 10.1021/ja00072a026
– ident: ref24/cit24
  doi: 10.1021/jz402450m
– ident: ref15/cit15
  doi: 10.1038/329039a0
– ident: ref17/cit17
  doi: 10.1002/adma.200800799
– ident: ref8/cit8
  doi: 10.1063/1.3495764
– ident: ref34/cit34
  doi: 10.1063/1.2823730
– ident: ref41/cit41
  doi: 10.1021/ja067321g
– ident: ref25/cit25
  doi: 10.1021/jp990354g
– ident: ref38/cit38
  doi: 10.1016/S0301-0104(00)00157-9
– ident: ref23/cit23
  doi: 10.1039/c3cp54157f
– ident: ref1/cit1
  doi: 10.1016/0009-2614(90)85258-E
– ident: ref40/cit40
  doi: 10.1063/1.1521933
– ident: ref28/cit28
  doi: 10.1021/ar900233v
– volume-title: J-aggregates
  year: 1996
  ident: ref33/cit33
  doi: 10.1142/3168
  contributor:
    fullname: Kobayashi T.
– ident: ref3/cit3
  doi: 10.1103/PhysRevB.81.033306
– ident: ref27/cit27
  doi: 10.1063/1.1676250
– ident: ref36/cit36
  doi: 10.1063/1.2052591
– ident: ref43/cit43
  doi: 10.1103/PhysRevLett.92.107402
– ident: ref13/cit13
  doi: 10.1021/ja0162459
– ident: ref26/cit26
  doi: 10.1021/jp3086717
SSID ssj0053013
Score 2.3477
Snippet Photophysical properties of molecular aggregates are largely determined by exciton coherence size: a spatial extension of exciton delocalization. Increase in...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 7941
Title Enhancement of the Exciton Coherence Size in Organic Semiconductor by Alkyl Chain Substitution
URI http://dx.doi.org/10.1021/acs.jpcc.5b12686
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uHvTit2x-kYMePHS2aZOmx1E7PHmpgidL8pqw6WjHuoHzrzdpOxiioLcQQgjvveT9Xn55Lwhdg6auFkTZ-nbKCYjkjuRUOERqLlREtczrq4s0fHzh98lmmZzvDD7x7gRUg7cZwIBKjzDOOmibhAYoWBgUp-tTlxpD9RsG2SDGIAhbSvKnGawjgmrDEW14lNH-f9ZygPZa3IiHjaIP0ZYqjtBOvP6u7Ri9JsXYatDe9uFSYwPscPIBZsMW2OZg1Fl9OJ18KjwpcJOCCTi1b-PLwhZ9LedYrvBw-r6a4ngszCB7qNQvCYzuTtDzKHmKH5z28wRHmKBz4XiahUEEJv6JpOJUMial9pnyPTBBCBhYx7lpEld4wKS2GxHAD7mKLBUJkX-KukVZqB7CwKmifgjE9WXgcpB5kFMhRC45BHlO-ujGCCZrjb_Kal6beFndaaSVtdLqo9u1xLNZU0vj17Fnf5zzHO0aCMMsv0O8C9RdzJfqEnWqfHlV28cXRUu3oA
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZoGcrCG1GeHmBgCDROnDpjVVoVUbqkSExE9sVRC1VSNa1E-fWc00R0AAmxWZZ1su5s33f-fGdCriDmjVgyberbactlSlhKcGkxFQupfR6rKL-6CJqDF3HfMWVy7DIXBieRoaQsJ_G_qwvYd6bvbQpwy5XNPOFVyCb3EAsbNNQOysOX43p1VkQyAkfXbRbM5E8SjD-CbM0frTmW7s4_prRLtgsUSVsrs--RDZ3sk1q7_LztgLx2kpGxp7n7o2lMEebRzgfg9k2oycjIc_xoMP7UdJzQVUIm0MC8lE8TUwI2nVG1pK3J-3JC2yOJg8wRk78rQEsekuduZ9juWcVXCpbEEHRu2THqygeMhnylBVeep1TseNqxAUMSQJAnBDZZQ9rgqdhsSwCnKbRviEnwnSNSTdJEHxMKgmvuNIE1HOU2BKjIjbiUMlIC3ChidXKNigmLrZCFOcvN7DDvRG2Fhbbq5KZUfDhdVdb4dezJH2Veklpv-NQP-w-Dx1OyheDGM8wPs89IdT5b6HNSyaLFRb5kvgBsXcAN
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aQb34FuszBz14WN3NbrLZY-kDRSlCFTy5JJOEVstu6bZg_fUm2y30oCDeQghDmMlkZvLNTBC6BEN9I4h2_e20FxHJPcmp8Ig0XOiEGqnKp4te3H3lrbZrk0MXtTB2E4WlVJQgvtPqkTJVh4Hg1s2_jwBuqAwI42wVrVEWJy7majR7iwuY2jMbzsFk6zxGUVyhkz9RcDYJiiWbtGRcOtv_3NYO2qq8SdyYi38XrehsD200F5-47aO3dtZ3cnVvgDg32Lp7uP0JVo0z7Cozylo_3Bt8aTzI8LwwE3DPZcznmWsFm4-xnOHG8GM2xM2-sIvcVVPmF1iJHqCXTvu5eedVXyp4woaiEy8wLI4SsFFRIjWnkjEpTch0GIANTcA6e5zbIfFFAEwap54AYcx14gBKSMJDVMvyTB8hDJxqGsZA_FBGPgepIkWFEEpyiJQidXRlGZNWKlGkJdpNgrSctNxKK27V0fWC-elo3mHj17XHf6R5gdafWp308b77cII2rY_DHABEglNUm4yn-gytFmp6Xp6ab9j0wpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+the+Exciton+Coherence+Size+in+Organic+Semiconductor+by+Alkyl+Chain+Substitution&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Tanaka%2C+Shunsuke&rft.au=Miyata%2C+Kiyoshi&rft.au=Sugimoto%2C+Toshiki&rft.au=Watanabe%2C+Kazuya&rft.date=2016-04-21&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=120&rft.issue=15&rft.spage=7941&rft.epage=7948&rft_id=info:doi/10.1021%2Facs.jpcc.5b12686&rft.externalDocID=a277596386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon