The Role of a Detachment Fault in the Spatial Distribution of Ore-Bearing Paleofluid Flows in the Central Kolyma Region: A Nonconventional Approach to Predictive Metallogenic Modeling

— The Central Kolyma region is the main gold-bearing part of the Verkhoyansk–Kolyma fold-and-thrust belt. Analysis of the developed geodynamic models of fold and thrust belt formation mechanisms, the Verkhoyansk–Kolyma belt in particular, suggests the leading role of subhorizontal movements on the d...

Full description

Saved in:
Bibliographic Details
Published in:Geology of ore deposits Vol. 64; no. 4; pp. 163 - 179
Main Authors: Savchuk, Yu. S., Volkov, A. V.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01-08-2022
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:— The Central Kolyma region is the main gold-bearing part of the Verkhoyansk–Kolyma fold-and-thrust belt. Analysis of the developed geodynamic models of fold and thrust belt formation mechanisms, the Verkhoyansk–Kolyma belt in particular, suggests the leading role of subhorizontal movements on the detachment zone (decollement) at the base of an orogen as the “sole,” on which nappes detached at an early stage and with which major reverse strike-slip listric faults were directly associated at the collisional stage. In our opinion, the role of a detachment fault, the most important regional structure, is obviously underestimated in predictive metallogenic models. The detachment fault zone is complicated by transverse NE-trending faults, where its thickness and the fluid permeability can occur. The paper proposes a variant that links previously discovered gold deposits and occurrences in five gold mineralization strips along the inferred paleofluid flow routes. Here, the paleofluid flow route is the horizontal projection of the most probable migration pathway of released fluids from their generation zone to the ore deposition zone, which is drawn across the largest ore accumulations.
ISSN:1075-7015
1555-6476
DOI:10.1134/S1075701522040055