Tapping the Potential of Polymer Brushes through Synthesis
Conspectus Polymer brushes are becoming increasing popular in the chemical literature, because scientists can control their chemical configuration, density, architecture, and thickness down to nanoscale precision with even simple laboratory setups. A polymer brush is made up of a layer of polymers a...
Saved in:
Published in: | Accounts of chemical research Vol. 48; no. 2; pp. 229 - 237 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
17-02-2015
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Conspectus Polymer brushes are becoming increasing popular in the chemical literature, because scientists can control their chemical configuration, density, architecture, and thickness down to nanoscale precision with even simple laboratory setups. A polymer brush is made up of a layer of polymers attached to a substrate surface at one end with the other end dangling into a solvent. In a suitable solvent, the polymer chains stretch away from the surface due to both steric and osmotic repulsion between the chain segments. In an inadequate solvent, however, the polymer chains collapse due to enough interior free space after desolvation. This unique class of materials exhibit interesting physicochemical properties at interfaces and have numerous applications from sensing to surface/interface property control. Chemists have made recent advances in surface modification and specific application of polymer brushes, due to both profound mechanistic understanding and synthetic strategies. The commonly used synthetic strategies for generating polymer brushes are surface-initiated polymerizations (SIPs), which resemble planting rice. That is, the assembly of initiator on the surface is similar to transplanting rice seedlings, and the subsequent polymerizations are akin to rice growth. Among different SIP methods, researchers mostly use surface-initiated atom transfer radical polymerization (SI-ATRP) because it provides many advantages in the preparation of well-defined polymer brushes, including easy initiator synthesis, fair control over polymer growth, a “living” end for copolymer grafting, and polymerization in aqueous solution. However, chemists gradually realized that there still room for improvement in this method, since the conventional SI-ATRP method suffers several drawbacks. These include having limited availability on various materials surfaces, rigorous synthetic protocols, heavy consumption and waste of unreacted monomers, and limited ability to control a polymerization process. Moreover, applications of polymer brushes as model surfaces must benefit from the synergistic strategies and profound insights into the fundamental understanding of the polymerization. This is not only to optimize the SI-ATRP process but also to expand the range of monomers, simplify reaction setups, reduce the cost, and ultimately gain control of the synthesis of well-defined polymeric surfaces for material science and engineering. In this Account, we provide an overview of our and others’ recent advances in the fabrication of polymer brushes by using SI-ATRP, to promote the widespread application of SI-ATRP and practical applications of the polymer brushes. We aim to provide fundamental mechanistic and synthetic features of SI-ATRP, while emphasizing the various externally applied stimuli mediated catalytic and initiation systems, including electrochemistry, chemical reducing agents, and photochemistry. In addition, we discuss how chemists can advantageously exploit these methods to synthesize functional polymeric surfaces in environmentally friendly media and facilitate in situ regulation of a dynamic polymerization process. We also discuss structural polymer brushes, such as block copolymers and patterned and gradient structures. Finally, we provide examples that highlight some practical applications of polymer brushes using SI-ATRP, especially the emerging polymerization methods. Overall, recently developed SI-ATRP systems overcome many limitations that permit less rigorous synthetic protocols and facilitate scientific community-wide access to surface modifications. By using these methodologies, chemists are tapping the potential of polymer brushes in surface/interface research areas. |
---|---|
AbstractList | CONSPECTUS: Polymer brushes are becoming increasing popular in the chemical literature, because scientists can control their chemical configuration, density, architecture, and thickness down to nanoscale precision with even simple laboratory setups. A polymer brush is made up of a layer of polymers attached to a substrate surface at one end with the other end dangling into a solvent. In a suitable solvent, the polymer chains stretch away from the surface due to both steric and osmotic repulsion between the chain segments. In an inadequate solvent, however, the polymer chains collapse due to enough interior free space after desolvation. This unique class of materials exhibit interesting physicochemical properties at interfaces and have numerous applications from sensing to surface/interface property control. Chemists have made recent advances in surface modification and specific application of polymer brushes, due to both profound mechanistic understanding and synthetic strategies. The commonly used synthetic strategies for generating polymer brushes are surface-initiated polymerizations (SIPs), which resemble planting rice. That is, the assembly of initiator on the surface is similar to transplanting rice seedlings, and the subsequent polymerizations are akin to rice growth. Among different SIP methods, researchers mostly use surface-initiated atom transfer radical polymerization (SI-ATRP) because it provides many advantages in the preparation of well-defined polymer brushes, including easy initiator synthesis, fair control over polymer growth, a "living" end for copolymer grafting, and polymerization in aqueous solution. However, chemists gradually realized that there still room for improvement in this method, since the conventional SI-ATRP method suffers several drawbacks. These include having limited availability on various materials surfaces, rigorous synthetic protocols, heavy consumption and waste of unreacted monomers, and limited ability to control a polymerization process. Moreover, applications of polymer brushes as model surfaces must benefit from the synergistic strategies and profound insights into the fundamental understanding of the polymerization. This is not only to optimize the SI-ATRP process but also to expand the range of monomers, simplify reaction setups, reduce the cost, and ultimately gain control of the synthesis of well-defined polymeric surfaces for material science and engineering. In this Account, we provide an overview of our and others' recent advances in the fabrication of polymer brushes by using SI-ATRP, to promote the widespread application of SI-ATRP and practical applications of the polymer brushes. We aim to provide fundamental mechanistic and synthetic features of SI-ATRP, while emphasizing the various externally applied stimuli mediated catalytic and initiation systems, including electrochemistry, chemical reducing agents, and photochemistry. In addition, we discuss how chemists can advantageously exploit these methods to synthesize functional polymeric surfaces in environmentally friendly media and facilitate in situ regulation of a dynamic polymerization process. We also discuss structural polymer brushes, such as block copolymers and patterned and gradient structures. Finally, we provide examples that highlight some practical applications of polymer brushes using SI-ATRP, especially the emerging polymerization methods. Overall, recently developed SI-ATRP systems overcome many limitations that permit less rigorous synthetic protocols and facilitate scientific community-wide access to surface modifications. By using these methodologies, chemists are tapping the potential of polymer brushes in surface/interface research areas. |
Author | Yu, Bo Ye, Qian Zhou, Feng Li, Bin |
AuthorAffiliation | State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: University of Chinese Academy of Sciences – name: State Key Laboratory of Solid Lubrication – name: Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Bin surname: Li fullname: Li, Bin organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Bo surname: Yu fullname: Yu, Bo organization: Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 3 givenname: Qian surname: Ye fullname: Ye, Qian organization: Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 4 givenname: Feng surname: Zhou fullname: Zhou, Feng email: zhouf@licp.cas.cn organization: Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25521476$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0LtOwzAUBmALgegFBl4AZUGCIeB7HTaouEmVQKLMlp2ctKmSONjJ0LfHqKUT0_GRPv3y-SfouHUtIHRB8C3BlNwZLzBmlHVHaEwExSlXmTpGY4wxiW9OR2gSwiaulMvZKRpRISjhMzlG90vTdVW7Svo1JB-uh7avTJ24Mi71tgGfPPohrCFE4N2wWief2zbaUIUzdFKaOsD5fk7R1_PTcv6aLt5f3uYPi9QwRfp0llMAlsd_Gl4YWWRlwayVBRibEQBuhWUWc8mIwaxUJcuo4bhQVjHBDVFsiq53uZ133wOEXjdVyKGuTQtuCJpIITEXhPBIb3Y09y4ED6XufNUYv9UE69-q9KGqaC_3sYNtoDjIv24iuNoBkwe9cYNv45X_BP0AU0BxLQ |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2023_11_053 crossref_primary_10_1021_acsmacrolett_7b00903 crossref_primary_10_1002_ange_202204410 crossref_primary_10_1002_anie_201600080 crossref_primary_10_1021_acsami_9b22574 crossref_primary_10_1039_D0SM01043J crossref_primary_10_1021_acs_langmuir_6b02622 crossref_primary_10_1021_acsmacrolett_9b00921 crossref_primary_10_1021_acsami_9b09885 crossref_primary_10_1021_acsmacrolett_9b00089 crossref_primary_10_1002_cptc_202300090 crossref_primary_10_1021_acsmacrolett_7b00989 crossref_primary_10_1016_j_talanta_2019_120632 crossref_primary_10_1016_j_polymer_2024_127206 crossref_primary_10_1039_C6TB01489E crossref_primary_10_1002_pola_28128 crossref_primary_10_1021_acsmacrolett_6b00004 crossref_primary_10_1016_j_bsbt_2017_10_001 crossref_primary_10_1021_acs_langmuir_2c03012 crossref_primary_10_1021_acsami_7b07053 crossref_primary_10_1021_acs_langmuir_3c00733 crossref_primary_10_1038_s41427_019_0121_2 crossref_primary_10_1039_C5TC01376C crossref_primary_10_1002_pat_3861 crossref_primary_10_1002_marc_202000337 crossref_primary_10_1021_acscentsci_7b00165 crossref_primary_10_1039_C9CC04061G crossref_primary_10_1002_smll_201503472 crossref_primary_10_1021_acs_langmuir_8b02073 crossref_primary_10_1002_ange_201809915 crossref_primary_10_1016_j_colsurfb_2017_01_025 crossref_primary_10_1016_j_eurpolymj_2022_111795 crossref_primary_10_1021_acs_macromol_3c01292 crossref_primary_10_3390_polym12071553 crossref_primary_10_1021_acs_langmuir_3c02813 crossref_primary_10_1002_ange_202103182 crossref_primary_10_1016_j_jcis_2021_02_014 crossref_primary_10_1002_adhm_201601173 crossref_primary_10_1021_acs_macromol_0c01586 crossref_primary_10_1002_marc_202000228 crossref_primary_10_1002_anie_201809915 crossref_primary_10_1002_anie_202219312 crossref_primary_10_1002_app_44215 crossref_primary_10_1016_j_progpolymsci_2016_09_010 crossref_primary_10_1021_acsami_7b15726 crossref_primary_10_1039_D0TC02850A crossref_primary_10_1002_marc_202300089 crossref_primary_10_1002_ange_202219312 crossref_primary_10_1002_app_46232 crossref_primary_10_1002_adma_201602900 crossref_primary_10_1021_acs_chemrev_5b00586 crossref_primary_10_1039_C5NR07107K crossref_primary_10_1002_slct_201801081 crossref_primary_10_1021_acs_macromol_1c00016 crossref_primary_10_1039_C6PY01402J crossref_primary_10_1039_C9PY00436J crossref_primary_10_1039_C9RA03440D crossref_primary_10_1039_D0PY01061H crossref_primary_10_1002_ange_201805534 crossref_primary_10_1039_D1RA04198C crossref_primary_10_1016_j_porgcoat_2021_106298 crossref_primary_10_1002_marc_201500630 crossref_primary_10_1016_j_xcrp_2024_101784 crossref_primary_10_1021_acsabm_3c00029 crossref_primary_10_1002_adma_201803371 crossref_primary_10_1007_s12274_017_1446_1 crossref_primary_10_1002_marc_202300029 crossref_primary_10_1021_acs_langmuir_9b01689 crossref_primary_10_1021_acs_macromol_9b02032 crossref_primary_10_1039_C7RA08897C crossref_primary_10_1016_j_memsci_2017_02_043 crossref_primary_10_1002_anie_202103182 crossref_primary_10_1002_ange_201600080 crossref_primary_10_1002_anie_201904436 crossref_primary_10_3390_polym13081269 crossref_primary_10_1021_acs_macromol_5b01267 crossref_primary_10_1021_acsami_2c00419 crossref_primary_10_1021_acsmacrolett_9b00699 crossref_primary_10_1002_ange_201904436 crossref_primary_10_1016_j_surfcoat_2022_129124 crossref_primary_10_1002_app_43584 crossref_primary_10_1016_j_mattod_2024_05_008 crossref_primary_10_1039_C5RA17468F crossref_primary_10_1021_acs_langmuir_5b03924 crossref_primary_10_1021_acs_macromol_9b01797 crossref_primary_10_1021_acsmacrolett_1c00706 crossref_primary_10_1021_acsami_0c07508 crossref_primary_10_1021_acscatal_0c04312 crossref_primary_10_1021_jacs_6b02952 crossref_primary_10_1002_anie_201805534 crossref_primary_10_1021_acs_macromol_7b01966 crossref_primary_10_1039_C4SC03851G crossref_primary_10_1002_anie_202204410 crossref_primary_10_1016_j_eurpolymj_2021_110652 crossref_primary_10_1016_j_actbio_2017_06_033 crossref_primary_10_1021_acs_accounts_3c00310 crossref_primary_10_1021_acs_langmuir_0c02494 crossref_primary_10_1002_smll_201602020 crossref_primary_10_1021_acsnano_0c01304 crossref_primary_10_1002_marc_202300036 crossref_primary_10_1039_D2TB00242F crossref_primary_10_1002_marc_201500239 |
Cites_doi | 10.1002/anie.201102518 10.1002/anie.201304449 10.1002/adma.201301184 10.1002/adfm.201201156 10.1021/ja4026402 10.1021/ma401537j 10.1021/cm4023634 10.1039/c2py20148h 10.1002/pola.27327 10.1021/ja205193f 10.1002/ange.201301845 10.1021/am101270f 10.1002/3527603824 10.1126/science.1202357 10.1021/ma981290v 10.1002/1521-3935(20000901)201:14<1625::AID-MACP1625>3.0.CO;2-9 10.1002/anie.201400546 10.1002/polb.23356 10.1002/anie.201310349 10.1002/marc.201200653 10.1021/am4050822 10.1002/anie.201203639 10.1021/ma400869e 10.1039/c2cs35453e 10.1002/pola.26119 10.1021/ma100479x 10.1021/ja409598c 10.1021/ma3001719 10.1021/ma3014383 10.1021/la304949h 10.1039/c1cs15026j 10.1002/marc.201100349 10.1021/ja035560n 10.1021/cr900045a 10.1021/la501380m 10.1021/ja3116197 10.1021/ja408069v 10.1016/j.carbon.2010.03.014 10.1021/ja411780m 10.1002/anie.201201533 10.1021/mz300457e 10.1002/anie.201105317 10.1126/science.283.5402.661 10.1021/ma300773t 10.1002/anie.201306337 10.1039/c2cs15225h 10.1021/mz400237w 10.1016/j.progpolymsci.2014.02.002 10.1021/ja0654377 10.1039/b210143m 10.1002/marc.201400121 10.1021/la304385r 10.1021/ma0112467 10.1021/la063402e 10.1039/C1CC15341B |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/ar500323p |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 237 |
ExternalDocumentID | 10_1021_ar500323p 25521476 b852588881 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 6P2 7~N 85S 8W4 AABXI ABFLS ABFRP ABMVS ABPTK ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AETEA AFEFF AFXLT AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L EBS ED~ EJD F5P GGK GNL IH2 IH9 JG~ LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 XSW YZZ ZCA ~02 ABJNI AGXLV CUPRZ NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a381t-7c2ee3c021a4da6d9fd3bb6deab91ee4b5b3b04631a03f8f392a40d8b8354a183 |
IEDL.DBID | ACS |
ISSN | 0001-4842 |
IngestDate | Fri Oct 25 08:05:32 EDT 2024 Fri Nov 22 00:34:00 EST 2024 Sat Sep 28 07:56:25 EDT 2024 Mon Feb 06 12:14:59 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a381t-7c2ee3c021a4da6d9fd3bb6deab91ee4b5b3b04631a03f8f392a40d8b8354a183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25521476 |
PQID | 1656045114 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1656045114 crossref_primary_10_1021_ar500323p pubmed_primary_25521476 acs_journals_10_1021_ar500323p |
PublicationCentury | 2000 |
PublicationDate | 2015-02-17 |
PublicationDateYYYYMMDD | 2015-02-17 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Magenau A. J. D. (ref29/cit29) 2013; 46 Coad B. R. (ref50/cit50) 2014; 30 Ye Q. (ref8/cit8) 2010; 43 Wei Q. (ref19/cit19) 2012; 3 Wang X. (ref13/cit13) 2014; 6 Zhou F. (ref6/cit6) 2006; 128 Welch M. E. (ref15/cit15) 2013; 51 Barbey R. (ref2/cit2) 2009; 109 Bell C. A. (ref23/cit23) 2011; 133 Mosnáček J. (ref40/cit40) 2012; 45 Li B. (ref27/cit27) 2012; 51 Guo R. (ref12/cit12) 2013; 25 Liu J. (ref47/cit47) 2012; 48 Piner R. D. (ref48/cit48) 1999; 283 Hu H. (ref16/cit16) 2010; 48 Paripovic D. (ref55/cit55) 2011; 3 Gao T. (ref20/cit20) 2013; 29 Dadashi-Silab S. (ref37/cit37) 2014; 52 Magenau A. J. D. (ref25/cit25) 2011; 332 Li B. (ref28/cit28) 2013; 135 Zhang Q. (ref33/cit33) 2013; 135 Ye Q. (ref18/cit18) 2011; 40 Matyjaszewski K. (ref32/cit32) 2012; 45 Konkolewicz D. (ref36/cit36) 2012; 1 Anastasaki A. (ref35/cit35) 2014; 136 Alfredo N. V. (ref41/cit41) 2012; 45 Simakova A. (ref42/cit42) 2013; 52 Li B. (ref24/cit24) 2013; 34 Wei Q. (ref52/cit52) 2014; 53 Welch M. E. (ref11/cit11) 2014; 136 Yan J. (ref31/cit31) 2013; 52 Ionov L. (ref45/cit45) 2003; 125 Azzaroni O. (ref3/cit3) 2012; 50 Li B. (ref38/cit38) 2014; 35 Matyjaszewski K. (ref30/cit30) 2007; 23 Hui C. M. (ref5/cit5) 2014; 26 Yang W. J. (ref54/cit54) 2014; 39 Zhou X. (ref46/cit46) 2011; 50 Krabbenborg S. O. (ref51/cit51) 2014; 53 Yan J. (ref34/cit34) 2013; 2 Baum M. (ref7/cit7) 2002; 35 Sigg S. J. (ref43/cit43) 2011; 32 Qiu J. (ref22/cit22) 2000; 201 Edmondson S. (ref1/cit1) 2004; 33 Wei Q. (ref10/cit10) 2013; 46 Bortolamei N. (ref26/cit26) 2011; 50 Chen T. (ref44/cit44) 2012; 41 Jiang H. (ref53/cit53) 2013; 42 Husseman M. (ref9/cit9) 1999; 32 Hong S. (ref21/cit21) 2012; 22 Poelma J. E. (ref49/cit49) 2013; 125 Sugnaux C. (ref17/cit17) 2013; 29 Fors B. P. (ref39/cit39) 2012; 51 Matyjaszewski K. (ref4/cit4) 2014; 136 Advincula R. C. (ref14/cit14) 2004 |
References_xml | – volume: 50 start-page: 6506 year: 2011 ident: ref46/cit46 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201102518 contributor: fullname: Zhou X. – volume: 52 start-page: 9125 year: 2013 ident: ref31/cit31 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201304449 contributor: fullname: Yan J. – volume: 25 start-page: 3343 year: 2013 ident: ref12/cit12 publication-title: Adv. Mater. doi: 10.1002/adma.201301184 contributor: fullname: Guo R. – volume: 22 start-page: 4711 year: 2012 ident: ref21/cit21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201156 contributor: fullname: Hong S. – volume: 135 start-page: 7355 year: 2013 ident: ref33/cit33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4026402 contributor: fullname: Zhang Q. – volume: 46 start-page: 9368 year: 2013 ident: ref10/cit10 publication-title: Macromolecules doi: 10.1021/ma401537j contributor: fullname: Wei Q. – volume: 26 start-page: 745 year: 2014 ident: ref5/cit5 publication-title: Chem. Mater. doi: 10.1021/cm4023634 contributor: fullname: Hui C. M. – volume: 3 start-page: 2129 year: 2012 ident: ref19/cit19 publication-title: Polym. Chem. doi: 10.1039/c2py20148h contributor: fullname: Wei Q. – volume: 52 start-page: 2878 year: 2014 ident: ref37/cit37 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.27327 contributor: fullname: Dadashi-Silab S. – volume: 133 start-page: 11944 year: 2011 ident: ref23/cit23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205193f contributor: fullname: Bell C. A. – volume: 125 start-page: 6982 year: 2013 ident: ref49/cit49 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201301845 contributor: fullname: Poelma J. E. – volume: 3 start-page: 910 year: 2011 ident: ref55/cit55 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am101270f contributor: fullname: Paripovic D. – volume-title: Polymer Brushes: Synthesis, Characterization, Applications year: 2004 ident: ref14/cit14 doi: 10.1002/3527603824 contributor: fullname: Advincula R. C. – volume: 332 start-page: 81 year: 2011 ident: ref25/cit25 publication-title: Science doi: 10.1126/science.1202357 contributor: fullname: Magenau A. J. D. – volume: 32 start-page: 1424 year: 1999 ident: ref9/cit9 publication-title: Macromolecules doi: 10.1021/ma981290v contributor: fullname: Husseman M. – volume: 201 start-page: 1625 year: 2000 ident: ref22/cit22 publication-title: Macromol. Chem. Phys. doi: 10.1002/1521-3935(20000901)201:14<1625::AID-MACP1625>3.0.CO;2-9 contributor: fullname: Qiu J. – volume: 53 start-page: 8004 year: 2014 ident: ref52/cit52 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201400546 contributor: fullname: Wei Q. – volume: 51 start-page: 1457 year: 2013 ident: ref15/cit15 publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/polb.23356 contributor: fullname: Welch M. E. – volume: 53 start-page: 2 year: 2014 ident: ref51/cit51 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201310349 contributor: fullname: Krabbenborg S. O. – volume: 34 start-page: 246 year: 2013 ident: ref24/cit24 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201200653 contributor: fullname: Li B. – volume: 6 start-page: 2583 year: 2014 ident: ref13/cit13 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4050822 contributor: fullname: Wang X. – volume: 51 start-page: 8850 year: 2012 ident: ref39/cit39 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201203639 contributor: fullname: Fors B. P. – volume: 46 start-page: 4346 year: 2013 ident: ref29/cit29 publication-title: Macromolecules doi: 10.1021/ma400869e contributor: fullname: Magenau A. J. D. – volume: 42 start-page: 3394 year: 2013 ident: ref53/cit53 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35453e contributor: fullname: Jiang H. – volume: 50 start-page: 3225 year: 2012 ident: ref3/cit3 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.26119 contributor: fullname: Azzaroni O. – volume: 43 start-page: 5554 year: 2010 ident: ref8/cit8 publication-title: Macromolecules doi: 10.1021/ma100479x contributor: fullname: Ye Q. – volume: 136 start-page: 1879 year: 2014 ident: ref11/cit11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409598c contributor: fullname: Welch M. E. – volume: 45 start-page: 4015 year: 2012 ident: ref32/cit32 publication-title: Macromolecules doi: 10.1021/ma3001719 contributor: fullname: Matyjaszewski K. – volume: 45 start-page: 8135 year: 2012 ident: ref41/cit41 publication-title: Macromolecules doi: 10.1021/ma3014383 contributor: fullname: Alfredo N. V. – volume: 29 start-page: 7325 year: 2013 ident: ref17/cit17 publication-title: Langmuir doi: 10.1021/la304949h contributor: fullname: Sugnaux C. – volume: 40 start-page: 4244 year: 2011 ident: ref18/cit18 publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15026j contributor: fullname: Ye Q. – volume: 32 start-page: 1710 year: 2011 ident: ref43/cit43 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201100349 contributor: fullname: Sigg S. J. – volume: 125 start-page: 8302 year: 2003 ident: ref45/cit45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja035560n contributor: fullname: Ionov L. – volume: 109 start-page: 5437 year: 2009 ident: ref2/cit2 publication-title: Chem. Rev. doi: 10.1021/cr900045a contributor: fullname: Barbey R. – volume: 30 start-page: 8357 year: 2014 ident: ref50/cit50 publication-title: Langmuir doi: 10.1021/la501380m contributor: fullname: Coad B. R. – volume: 135 start-page: 1708 year: 2013 ident: ref28/cit28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3116197 contributor: fullname: Li B. – volume: 136 start-page: 6513 year: 2014 ident: ref4/cit4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408069v contributor: fullname: Matyjaszewski K. – volume: 48 start-page: 2347 year: 2010 ident: ref16/cit16 publication-title: Carbon doi: 10.1016/j.carbon.2010.03.014 contributor: fullname: Hu H. – volume: 136 start-page: 1141 year: 2014 ident: ref35/cit35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411780m contributor: fullname: Anastasaki A. – volume: 51 start-page: 5092 year: 2012 ident: ref27/cit27 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201201533 contributor: fullname: Li B. – volume: 1 start-page: 1219 year: 2012 ident: ref36/cit36 publication-title: ACS Macro Lett. doi: 10.1021/mz300457e contributor: fullname: Konkolewicz D. – volume: 50 start-page: 11391 year: 2011 ident: ref26/cit26 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201105317 contributor: fullname: Bortolamei N. – volume: 283 start-page: 661 year: 1999 ident: ref48/cit48 publication-title: Science doi: 10.1126/science.283.5402.661 contributor: fullname: Piner R. D. – volume: 45 start-page: 5859 year: 2012 ident: ref40/cit40 publication-title: Macromolecules doi: 10.1021/ma300773t contributor: fullname: Mosnáček J. – volume: 52 start-page: 12148 year: 2013 ident: ref42/cit42 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201306337 contributor: fullname: Simakova A. – volume: 41 start-page: 3280 year: 2012 ident: ref44/cit44 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15225h contributor: fullname: Chen T. – volume: 2 start-page: 592 year: 2013 ident: ref34/cit34 publication-title: ACS Macro Lett. doi: 10.1021/mz400237w contributor: fullname: Yan J. – volume: 39 start-page: 1017 year: 2014 ident: ref54/cit54 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2014.02.002 contributor: fullname: Yang W. J. – volume: 128 start-page: 16253 year: 2006 ident: ref6/cit6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0654377 contributor: fullname: Zhou F. – volume: 33 start-page: 14 year: 2004 ident: ref1/cit1 publication-title: Chem. Soc. Rev. doi: 10.1039/b210143m contributor: fullname: Edmondson S. – volume: 35 start-page: 1287 year: 2014 ident: ref38/cit38 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201400121 contributor: fullname: Li B. – volume: 29 start-page: 1054 year: 2013 ident: ref20/cit20 publication-title: Langmuir doi: 10.1021/la304385r contributor: fullname: Gao T. – volume: 35 start-page: 610 year: 2002 ident: ref7/cit7 publication-title: Macromolecules doi: 10.1021/ma0112467 contributor: fullname: Baum M. – volume: 23 start-page: 4528 year: 2007 ident: ref30/cit30 publication-title: Langmuir doi: 10.1021/la063402e contributor: fullname: Matyjaszewski K. – volume: 48 start-page: 398 year: 2012 ident: ref47/cit47 publication-title: Chem. Commun. doi: 10.1039/C1CC15341B contributor: fullname: Liu J. |
SSID | ssj0002467 |
Score | 2.5218465 |
Snippet | Conspectus Polymer brushes are becoming increasing popular in the chemical literature, because scientists can control their chemical configuration, density,... CONSPECTUS: Polymer brushes are becoming increasing popular in the chemical literature, because scientists can control their chemical configuration, density,... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 229 |
Title | Tapping the Potential of Polymer Brushes through Synthesis |
URI | http://dx.doi.org/10.1021/ar500323p https://www.ncbi.nlm.nih.gov/pubmed/25521476 https://search.proquest.com/docview/1656045114 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgHODC-zEeU3lcK5o0fXFDY9NOCGlD4lYljQNI0E7rdti_x2m7CSQmOEZKLMt2489N8hngJpPk5MBHF2M0VKAY5qpMBDSknZCFsalfyA2G0eNL_NCzNDnXK07wObuVk4Aij_vjddjgESEEi3-6w-V2y0VYE2NSXSxiwRf0Qd-X2tSTlT9Tzwo8WeWV_s6_NNqF7QY2Ove1n_dgDfN92OwuurUdwN1IWqaFV4cAnfNUTO0lIFpQGBp8zD9x4pAXyzcsnaYzjzOc5zS3fC8P4bnfG3UHbtMXwZWUX6dulHFEPyNVpNAy1InRvlKhRqkShihUoHxlmcCY9HwTG4JAUng6VvYnj6Rv-AhaeZHjCTgqU0EWxUnI0CNZiWKB8VAnPGKBjhOvDR0yXNrEdZlWR9acpUsTtOFqYdN0XPNj_DbpcmHtlMxijyRkjsWM5FnuH0uRJtpwXLthKYaKHdtEKTz9S4cz2CIYUz00Z9E5tKaTGV7AeqlnnSpUvgANjrUC |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYOIwL78d4jIK4VjRt2qbc0Ng0xJiQNiRuVdKmgATttGyH_XucvgAJhDhGSizLTuPPdfIZ4CLi6GTXkaZkMsEEJSGmiKiLQzwJiceS4oXcYOyPnthNr6bJ0W9hUAmFklRexP9kFyCXfObiBrSdaQNWXQ9BsIZB3XF96trUK_gxMT2mjNoVi9DXpToCRep7BPoFVubhpb_xH8U2Yb0EkcZ14fUtWJHpNrS6Ve-2HbiacM278GwgvDMesrm-EoQLsgQHb8t3OTPQp-pFKqPs02OMlynOVa9qFx77vUl3YJZdEkyO0XZu-pEtpROhKpzG3IuDJHaE8GLJRUCkpMIVjtC8YIRbTsISBEScWjET-pcPxy96D5pplsoDMEQk3MhngUekhbICQdzEknFg-8SNWWC1oYMWCMtdrsK8gG2TsDZBG84r04bTgi3jp0lnldFDNIsuUPBUZguUp5mANGEabcN-4Y1aDKY-uqWSd_iXDqfQGkzuh-HwdnR3BGsIcPIn6MQ_huZ8tpAn0FDxopPvng8XYr1v |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT8MwDLbYkIAX7mMcoyBeC03b9OAN7dAQaJq0IfFWJU0CSNBNy_awf4_TYwIJhHiMlFiW7cR2XX8GuEoZKpl60paRVJigKGLz1Ke4xJeQBJEqOuR6w7D_HLU7BibnuuqFQSY0UtJ5Ed_c6olQJcIAuWFTikboepMarNIgjE2yddcaLl9e1w8KjExMkf3Idyskoa9HjRdK9Xcv9EtombuY7tZ_mduGzTKYtO4K7e_Aisx2Yb1VzXDbg9sRM_gLLxaGedZgPDO_BuGBscLF--JDTi3UrX6V2irn9VjDRYZ79Zveh6duZ9Tq2eW0BJuh153ZYepK6aXICvMFC0SshMd5ICTjMZHS55R73OCDEeZ4KlIYGDHfERE3n34Y3uwDqGfjTB6BxVNO0zCKAyIdpBVzQpUjReyGhIoodhrQRCkkpbXrJC9kuyRZiqABl5V4k0mBmvHTpotK8AmKxRQqWCbHc6RnEIEMcJrfgMNCI0symAKZ0UrB8V88nMPaoN1NHu_7DyewgXFO3olOwlOoz6ZzeQY1LebN3IA-AYemv_I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tapping+the+potential+of+polymer+brushes+through+synthesis&rft.jtitle=Accounts+of+chemical+research&rft.au=Li%2C+Bin&rft.au=Yu%2C+Bo&rft.au=Ye%2C+Qian&rft.au=Zhou%2C+Feng&rft.date=2015-02-17&rft.eissn=1520-4898&rft.volume=48&rft.issue=2&rft.spage=229&rft.epage=237&rft_id=info:doi/10.1021%2Far500323p&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |