Charge Transfer Absorption and Emission at ZnO/Organic Interfaces

We investigate hybrid charge transfer states (HCTS) at the planar interface between α-NPD and ZnO by spectrally resolved electroluminescence (EL) and external quantum efficiency (EQE) measurements. Radiative decay of HCTSs is proven by distinct emission peaks in the EL spectra of such bilayer device...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters Vol. 6; no. 3; pp. 500 - 504
Main Authors: Piersimoni, Fortunato, Schlesinger, Raphael, Benduhn, Johannes, Spoltore, Donato, Reiter, Sina, Lange, Ilja, Koch, Norbert, Vandewal, Koen, Neher, Dieter
Format: Journal Article
Language:English
Published: United States American Chemical Society 05-02-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate hybrid charge transfer states (HCTS) at the planar interface between α-NPD and ZnO by spectrally resolved electroluminescence (EL) and external quantum efficiency (EQE) measurements. Radiative decay of HCTSs is proven by distinct emission peaks in the EL spectra of such bilayer devices in the NIR at energies well below the bulk α-NPD or ZnO emission. The EQE spectra display low energy contributions clearly red-shifted with respect to the α-NPD photocurrent and partially overlapping with the EL emission. Tuning of the energy gap between the ZnO conduction band and α-NPD HOMO level (E int) was achieved by modifying the ZnO surface with self-assembled monolayers based on phosphonic acids. We find a linear dependence of the peak position of the NIR EL on E int, which unambiguously attributes the origin of this emission to radiative recombination between an electron on the ZnO and a hole on α-NPD. In accordance with this interpretation, we find a strictly linear relation between the open-circuit voltage and the energy of the charge state for such hybrid organic–inorganic interfaces.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1948-7185
1948-7185
DOI:10.1021/jz502657z